SUPPORTING INFORMATION

Metal-free C-H functionalization of 2*H*-imidazole 1-oxides with pyrrolyl fragments in the design of novel azaheterocyclic ensembles

Mikhail Varaksin,^{a,b} Timofey Moseev,^a Oleg Chupakhin,^{*a,b} Valery Charushin^{a,b} and Boris Trofimov^c

 ^a Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russia
 ^b Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya Str., 620041 Ekaterinburg, Russia
 ^c Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia

E-mail: chupakhin@ios.uran.ru

TABLE OF CONTENTS

General Experimental Methods	S2
Experimental Procedure and Characterization Data for (1 <i>H</i> -Pyrrol-2-yl)-2 <i>H</i> -imidazole	
hydrochlorides (3a–m)HCl	S2
Experimental Procedure and Characterization Data for (1 <i>H</i> -Pyrrol-2-yl)-2 <i>H</i> -imidazoles 3a-m	S 5
¹ H and ¹³ C NMR Spectra	S 9
X-ray Analysis DataS	34

General Experimental Methods

The ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were recorded using TMS as the internal standard and DMSO-d₆ as a deuterated solvent. The X-ray diffraction analysis was performed on a diffractometer, equipped with CDD detector (Mo KR graphite-monochromated radiation, $\lambda = 1.54184$ Å, ω -scanning technique, the scanning step was 1° and the exposure time per frame was 10 s at 295(2) K. Analytical absorption correction was used in the reflection intensity integration.¹ The structure was solved by the direct method and refined applying full matrix least-squares versus F^2_{hkl} with anisotropic displacement parameters for all non-hydrogen atoms using the SHELX97 program package.² All hydrogen atoms were located in different electron density maps and refined using a riding model with fixed thermal parameters. The mass spectra were recorded on a mass spectrometer with sample ionization by electron impact (EI). The IR spectra were recorded using a Fourier-transforminfrared spectrometer equipped with a diffuse reflection attachment. The elemental analysis was carried out on a CHNS/O analyzer. The course of the reactions was monitored by TCL on 0.25 mm silica gel plates (60F 254). Column chromatography was performed on silica gel (60, 0.035-0.070 mm (220-440 mesh)).

2,2-dimethyl-4-phenyl-2*H*-imidazole 1-oxide **1a**, 3-phenyl-1,4-diazaspiro[4.5]deca-1,3-diene 1-oxide **1c**,³ 2-Ethyl-2-methyl-4-phenyl-2*H*-imidazole **1b**,⁴ were prepared according to the published procedures. Pyrrole **2a**, 1-methylpyrrole **2b**, 2-phenyl-1*H*-pyrrole **2c**, 4,5,6,7-tetrahydro-1*H*-indole **2d** were purchased.

Experimental Procedure and Characterization Data for (1*H*-Pyrrol-2-yl)-2*H*-imidazole hydrochlorides (3a-m)HCl

To a stirring solution of the corresponding nitrone **1a-c** (1 mmol) and pyrrole **2a-d** (1 mmol) in benzene (15 mL), AcCl (0.07 mL, 1 mmol) was added dropwise at 5 °C. After 10 min, the reaction mixture was warmed to room temperature. The precipitate of hydrochloride (**4a-c**, **e-g**, **i**, **l**)**HCl** was formed, in order to initiate a precipitation heptane (5 mL) in case of (4d, h, k, m)HCl. The formed precipitate was filtered off, washed with benzene, and dried in air for 24 h.

2,2-Dimethyl-4-phenyl-5-(1*H***-pyrrol-2-yl)-2***H***-imidazole hydrochloride (3aHCl). Yield: 218 mg (80 %), mp = 142-145 °C. R_{\rm f} 0.1 (hexane/EtOAc, 6:4). ¹H NMR (DMSO-d₆): \delta 1.71 (s, 6H); 6.34-6.29 (m, 2H); 7.71-7.54 (m, 6H); 12.95 (s, 1H) ppm. ¹³C NMR (DMSO-d₆): \delta 24.0 (CH₃); 96.47 (C); 112.5 (CH); 119.6 (C); 122.6 (CH); 128.3 (CH); 128.8 (CH); 130.6 (CH); 131.9 (C); 132.0 (CH); 153.0 (C); 163.5 (C) ppm. IR (DRA): v 3085, 2976, 2841, 2536, 1630, 1607, 1584, 1526, 1444, 1400,** 1363, 1153, 1054, 851, 697, 591 cm⁻¹. MS (EI): *m/z* 237 [M]⁺. Anal. Calcd for C₁₅H₁₆ClN₃: C, 65.81; H, 5.89; N, 15.35. Found: C, 65.44; H, 6.26; N, 14.98.

2,2-Dimethyl-4-(1-methyl-1*H***-pyrrol-2-yl)-5-phenyl-2***H***-imidazole hydrochloride (3bHCl). Yield: 264 mg (92 %), mp = 37-40 \BoxC. R_f 0.1 (hexane/EtOAc, 6:4). ¹H NMR (DMSO-d_6): \delta 1.63 (s, 6H); 3.98 (s, 3H); 5.99-5.97 (m, 1H); 6.08-6.04 (m, 1H); 7.26 (s, 1H); 7.52-7.45 (m, 2H); 7.59-7.53 (m, 3H); ppm. ¹³C NMR (DMSO-d_6): \delta 24.1 (CH₃); 36.5 (CH₃); 99.8 (C); 108.4 (CH); 118.8 (CH); 122.8 (C); 128.1 (CH); 128.7 (CH); 130.3 (CH); 131.7 (CH); 132.5 (C); 153.9 (C); 164.3 (C) ppm. IR (DRA): v 3070, 2985, 2501, 1626, 1604, 1583, 1490, 1422, 1401, 1427, 1084, 1071, 961, 760, 700, 607 cm⁻¹. MS (EI): m/z 251 [M]⁺. Anal. Calcd for C₁₆H₁₈ClN₃: C, 66.78; H, 6.30; Cl, 12.32; N, 14.60. Found: C, 66.60; H, 6.51; N, 14.38.**

2,2-Dimethyl-4-phenyl-5-(5-phenyl-1*H***-pyrrol-2-yl)-2***H***-imidazole hydrochloride (3cHCl). Yield: 268 mg (77 %), mp = 172-175 \BoxC. R_f 0.1 (hexane/EtOAc, 6:4). ¹H NMR (DMSO-d_6): \delta 1.76 (s, 6H); 6.44-6.40 (m, 1H); 6.94-6.91 (m, 1H); 7.54-7.42 (m, 3H); 7.68-7.56 (m, 3H); 7.75-7.70 (m, 2H); 8.11-8.07 (m, 2H); 13.57 (s, 1H) ppm. ¹³C NMR (DMSO-d_6): \delta 24.1 (CH₃); 95.66 (C); 111.2 (CH); 120.0 (C); 126.0 (CH); 127.2 (CH); 128.3 (CH); 128.3 (CH); 128.8 (CH); 129.0 (C); 129.1 (CH); 129.8 (CH); 130.7 (CH); 131.7 (C); 145.1 (C); 151.7 (C); 163.4 (C) ppm. IR (DRA): v 3043, 2979, 2932, 2349, 1558, 1446, 1407, 1366, 1299, 1194, 1159, 1130, 1015, 740, 696, 661 cm⁻¹. MS (EI):** *m/z* **317 [M]⁺. Anal. Calcd for C₂₁H₂₀ClN₃O: C, 72.09; H, 5.76; N, 12.01. Found: C, 72.25; H, 5.91; N, 12.09.**

2-(2,2-Dimethyl-5-phenyl-2*H***-imidazol-4-yl)-4,5,6,7-tetrahydro-1***H***-indole hydrochloride (3dHCl). Yield: 222 mg (68 %), mp = 137-140 °C. R_f 0.1 (hexane/EtOAc, 6:4). ¹H NMR (DMSO-d₆): \delta 1.74-1.58 (m, 10H); 2.31(t, 2H, J = 5.88); 2.69 (t, 2H, J = 6.02); 6.14 (s, 1H); 7.70-7.53 (m, 5H); 13.06 (s, 1H) ppm. ¹³C NMR (DMSO-d₆): \delta 21.7 (CH₂); 21.8 (CH₂); 22.4 (CH₂); 22.9 (CH₂); 24.4 (CH₃); 94.8 (C); 117.3 (C); 122.8 (CH); 123.5 (C); 128.4 (CH); 128.7 (CH); 130.8 (CH); 131.7 (C); 146.4 (C); 150.6 (C); 163.4 (C) ppm. IR (DRA): v 2990, 2932, 1635, 1548 1464, 1375, 1279, 1188, 1082, 1070, 1005, 844, 750, 662, 599 cm⁻¹. MS (EI):** *m/z* **291 [M]⁺. Anal. Calcd for C₁₉H₂₂ClN₃: C, 69.61; H, 6.76; N, 12.82. Found: C, 69.58; H, 7.03; N, 12.44.**

2-Ethyl-2-methyl-4-phenyl-5-(*1H*-**pyrrol-2-yl**)-*2H*-imidazole hydrochloride (3eHCl). Yield: 226 mg (79 %), mp = 177-180 °C. R_f 0.1 (hexane/EtOAc, 6:4). ¹H NMR (DMSO-d_6): δ 0.94 (t, 3H, J = 7.38); 1.69 (s, 3H); 2.15-2.00 (m, 2H); 6.37-6.31 (m, 2H); 7.72-7.53 (m, 6H); 13.09 (s, 1H) ppm. ¹³C NMR (DMSO-d_6): δ 8.3 (CH₃); 21.8 (CH₃); 30.7 (CH₂); 99.2 (C); 112.7 (CH); 119.5 (C); 123.0 (CH); 128.4 (CH); 128.8 (CH); 130.7 (CH); 131.9 (C); 132.4 (CH); 153.2 (C); 163.9 (C) ppm. IR (DRA): v 3087, 2972, 2876, 2637, 2478, 1626, 1583, 1489, 1444, 1363, 1296, 1159, 930, 850, 780, 696 cm⁻¹. MS (EI): *m/z* 251 [M]⁺. Anal. Calcd for C₁₆H₁₈ClN₃: C, 66.78; H, 6.30; N, 14.60. Found: C, 66.52; H, 6.30; N, 14.48.

2-Ethyl-2-methyl-4-(1-methyl-1*H***-pyrrol-2-yl)-5-phenyl-2***H***-imidazole hydrochloride (3fHCl).** Yield: 273 mg (91 %), mp = 112-115 °C. R_f 0.1 (hexane/EtOAc, 6:4). ¹H NMR (DMSO-d_6): δ 0.74 (t, 3H, J = 7.36); 1.60 (s, 3H); 2.15-2.04 (m, 2H); 3.96 (s, 3H); 5.98-5.96 (m, 1H); 6.07-6.04 (m, 1H); 7.23 (s, 1H); 7.60-7.44 (m, 5H) ppm. ¹³C NMR (DMSO-d_6): δ 8.1 (CH₃); 22.6 (CH₃); 30.6 (CH₂); 36.6 (CH₃); 102.4 (C); 108.4 (CH); 118.5 (CH); 122.9 (C); 128.2 (CH); 128.7 (CH); 130.3 (CH); 131.7 (CH); 132.6 (C); 154.5 (C); 165.0 (C) ppm. IR (DRA): v 3058, 2967, 2933, 1618, 1580, 1488, 1444, 1401, 1341, 1243, 1160, 1064, 1015, 961, 813, 711, 646 cm⁻¹. MS (EI): *m/z* 265 [M]⁺. Anal. Calcd for C₁₇H₂₀ClN₃: C, 67.65; H, 6.68; N, 13.92. Found: C, 67.64; H, 6.74; N, 13.80.

2-Ethyl-2-methyl-4-phenyl-5-(5-phenyl-1*H***-pyrrol-2-yl)-2***H***-imidazole hydrochloride (3gHCl).** Yield: 286 mg (79 %), mp = 67-70 °C. R_f 0.1 (hexane/EtOAc, 7:3). ¹H NMR (DMSO-d_6): δ 0. 99 (t, 3H, J = 7.38); 1.73 (s, 3H); 2.18-2.02 (m, 2H); 6.42 (d, 1H; J = 2.12); 6.96-6.92 (m, 1H); 7.55-7.40 (m, 3H); 7.75-7.57 (m, 5H); 8.08 (d, 2H, J = 7.32); 13.58 (m, 1H) ppm. ¹³C NMR (DMSO-d_6): δ 8.3 (CH₃); 21.9 (CH₃); 30.9 (CH₂); 95.3 (C); 98.8 (C); 111.3 (CH); 120.1 (CH); 126.0 (CH); 128.3 (CH); 128.5 (CH); 128.8 (CH); 129.1 (C); 129.2 (CH); 129.8 (CH); 130.8 (CH); 131.8 (C); 152.0 (C); 163.9 (C) ppm. IR (DRA): v 3098, 2937, 2839, 2455, 2343 1625, 1550, 1399, 1295, 1165, 997, 861, 805, 764, 693, 602 cm⁻¹. MS (EI): *m/z* 327 [M]⁺. Anal. Calcd for C₂₂H₂₂ClN₃: C, 72.62; H, 6.09; N, 11.55. Found: C, 72.46; H, 6.13; N, 11.40.

2-(2-Ethyl-2-methyl-5-phenyl-2*H***-imidazol-4-yl)-4,5,6,7-tetrahydro-1***H***-indole hydrochloride (3hHCl). Yield: 231 mg (68 %), mp = 135-138 °C. R_{\rm f} 0.1 (hexane/EtOAc, 6:4). ¹H NMR (DMSO-d₆): \delta 0.92 (t, 3H, J = 7.38); 1.76-1.56 (m, 7H); 2.14-1.97 (m, 2H); 2.31 (t, 2H, J = 5.94); 2.70 (t, 2H, J = 6.1); 6.15 (s, 1H); 7.61-7.54 (m, 2H); 7.69-7.61 (m, 3H); 13.18 (s, 1H) ppm. ¹³C NMR (DMSO-d₆): \delta 8.0 (CH₃); 21.7 (CH₂); 21.8 (CH₂); 22.3 (CH₃); 22.4 (CH₂); 22.9 (CH₂); 31.1 (CH₂); 97.6 (C); 117.2 (C); 123.0 (CH); 123.7 (C); 128.5 (CH); 128.7 (CH); 130.8 (CH); 131.7 (C); 146.8 (C); 150.8 (C); 163.9 (C) ppm. IR (DRA): v 3103, 2929, 2865, 2780, 2569, 1630, 1585, 1442, 1373, 1278, 1145, 1058, 996, 844, 700 cm⁻¹. MS (EI):** *m/z* **305 [M]⁺. Anal. Calcd for C₂₀H₂₄ClN₃: C, 70.26; H, 7.08; N, 12.29. Found: C, 70.15; H, 7.23; N, 12.24.**

2-Phenyl-3-(1*H***-pyrrol-2-yl)-1,4-diazaspiro[4.5]deca-1,3-diene hydrochloride (3iHCl).** Yield: 244 mg (78 %), mp = 188-190 °C. R_f 0.1 (hexane/EtOAc, 6:4). ¹H NMR (DMSO-d_6): δ 2.07-1.49 (m, 10H); 6.38-6.30 (d, 2H); 7.47-7.52 (m, 6H); 13.36 (s, 1H) ppm. ¹³C NMR (DMSO-d_6): δ 22.3 (CH₂); 24.1 (CH₂); 34.0 (CH₂); 99.1 (CH); 99.4 (C); 111.9 (CH); 119.9 (C); 121.8 (CH); 128.0 (CH); 128.4 (CH); 130.1 (CH); 132.0 (C); 152.8 (C); 163.2 (C) ppm. IR (DRA): v 3020, 2934, 2851, 2681, 1632, 1586, 1491, 1397, 1337, 1152, 1057, 952, 824, 769, 702 cm⁻¹. MS (EI): *m/z* 277 [M]⁺. Anal. Calcd for C₁₈H₂₀ClN₃: C, 68.89; H, 6.42; N, 13.39. Found: C, 68.56; H, 6.50; N, 13.28.

(1-methyl-1*H*-pyrrol-2-yl)-3-phenyl-1,4-diazaspiro[4.5]deca-1,3-diene hydrochloride (3kHCl). Yield: 261 mg (80 %), mp = 137-140 °C. R_f 0.1 (hexane/EtOAc, 6:4). ¹H NMR (DMSO-d_6):

δ 1.65 (s, 2H); 1.88-1.74 (m, 8H); 3.94 (s, 3H); 5.98-5.95 (m, 1H); 6.04-6.01 (m, 1H); 7.35 (s, 1H); 7.51-7.44 (m, 2H); 7.58-7.51 (m, 3H) ppm. ¹³C NMR (DMSO-d₆): δ 23.5 (CH₂); 24.9 (CH₂); 34.4 (CH₂); 36.4 (CH₃); 102.4 (C); 108.0 (CH); 117.4 (CH); 123.3 (C); 128.0 (CH); 128.6 (CH); 130.1 (CH); 130.8 (CH); 132.8 (C); 154.1 (C); 164.4 (C) ppm. IR (DRA): v 2940, 2857, 1746, 1617, 1568, 1471, 1418, 1361, 1237, 1158, 986, 785, 744, 706, 584, 556 cm⁻¹. MS (EI): m/z 291 [M]⁺. Anal. Calcd for C₁₉H₂₂ClN₃: C, 69.61; H, 6.76; N, 12.82. Found: C, 69.35; H, 6.94; N, 12.51.

2-Phenyl-3-(5-phenyl-1*H***-pyrrol-2-yl)-1,4-diazaspiro[4.5]deca-1,3-diene hydrochloride (3IHCl). Yield: 342 mg (88 %), mp = 212-215 °C.** *R***_f 0.1 (hexane/EtOAc, 6:4). ¹H NMR (DMSO-d₆): δ 1.61-1.49 (m, 1H), 1.78-1.68 (m, 1H); 1.94-1.79 (m, 4H); 2.13-1.97 (m, 4H); 6.46-6.40 (m, 1H); 6.97-6.92 (m, 1H); 7.48-7.42 (m, 1H); 7.54-7.48 (m, 2H); 7.63-7.56 (m, 2H); 7.69-7.63 (m, 1H); 7.75-7.69 (m, 2H); 8.12 (d, 2H, J = 7.32); 13.87 (s, 1H) ppm. ¹³C NMR (DMSO-d₆): δ 22.3 (CH₂); 24.3 (CH₂); 34.0 (CH₂); 98.6 (C); 111.4 (CH); 120.1 (C); 126.1 (CH); 128.2 (CH); 128.4 (CH); 128.9 (CH); 129.0 (C); 129.2 (CH); 129.9 (CH); 130.7 (CH); 131.9 (CH); 145.6 (C); 151.7 (C); 163.5 (C) ppm. IR (DRA): v 2942, 2892, 2741, 1624, 1602, 1576, 1553, 1445, 1306, 1293, 1057, 954, 854, 765, 690 cm⁻¹. MS (EI):** *m/z* **353 [M]⁺. Anal. Calcd for C₂₄H₂₄ClN₃: C, 73.93; H, 6.20; N, 10.78. Found: C, 73.89; H, 6.30; N, 10.60.**

2-Phenyl-3-(4,5,6,7-tetrahydro-1*H***-indol-2-yl)-1,4-diazaspiro[4.5]deca-1,3-diene hydrochloride (3mHCl).** Yield: 256 mg (70 %), mp = 206-210 °C. $R_{\rm f}$ 0.1 (hexane/EtOAc, 6:4). ¹H NMR (DMSO-d₆): δ 1.89-1.47 (m, 12H); 2.1-1.9 (m, 2H); 2.32 (t, 2H, J = 5.96); 2.71 (t, 2H, J = 6.1); 6.14 (s, 1H); 7.60-7.53(m, 2H); 7.69-7.61 (m, 3H); 13.38 (s, 1H) ppm. ¹³C NMR (DMSO-d₆): δ 21.7 (CH₂); 21.8 (CH₂); 22.3 (CH₂); 22.4 (CH₂); 22.9 (CH₂); 24.2 (CH₂); 34.3 (CH₂); 97.8 (C); 99.5 (C); 117.5 (C); 123.1 (CH); 123.6 (C); 128.4 (CH); 128.8 (CH); 130.7 (CH); 131.9 (C); 150.6 (C); 163.4 (C) ppm. IR (DRA): v 3099, 2999, 2927, 1631, 1585, 1529, 1439, 1421, 1343, 1280, 1251, 1146, 956, 846, 699 cm⁻¹. MS (EI): *m/z* 331 [M]⁺. Anal. Calcd for C₂₂H₂₆ClN₃: C, 71.82; H, 7.12; N, 11.42. Yield: C, 71.57; H, 7.32; N, 11.12.

Experimental Procedure and Characterization Data for (1*H*-Pyrrol-2-yl)-2*H*-imidazoles 3a-m

In order to convert hydrochlorides (4a-m)HCl to the corresponding bases 4a-m, NaHCO₃ (2.5 mL, 2 mmol) was added to (4a-m)HCl in aq EtOH (30 mL), and the mixture was heated under reflux for 40 min. Finally, the reaction mixture was cooled and filtered through silica gel and then concentrated in vacuo. The residue was additionally purified by recrystallization from the heptane/benzene mixture, 1:1 mixture.

2,2-Dimethyl-4-phenyl-5-(1*H***-pyrrol-2-yl)-2***H***-imidazole (3a). Yield: 182 mg (77 %), mp = 115-118 °C. R_f 0.2 (hexane/EtOAc, 6:4). ¹H NMR (DMSO-d₆): \delta 1.51 (s, 6H); 5.82-5.89 (m, 1H); 5.95-6.03 (m, 1H); 6.89-6.97 (m, 1H); 7.45-7.61 (m, 5H); 11.74 (s, 1H) ppm. ¹³C NMR (DMSO-d₆): \delta 24.6 (CH₃); 100.9 (C); 108.9 (CH); 113.3 (CH); 123.1 (CH); 123.1(C); 128.1(CH); 128.2(CH); 129.6(CH); 134.1(C); 155.1(C); 163.8(C) ppm. IR (DRA): v 3850, 3243, 3188, 3167, 3141, 2978, 1602, 1579, 1519, 1442, 1133, 917, 735, 696, 580 cm⁻¹. MS (EI):** *m/z* **237 [M]⁺. Anal. Calcd for C₁₅H₁₅N₃: C, 75.92; H, 6.37; N, 17.71. Found: C, 76.15; H, 6.20; N, 17.65.**

2,2-Dimethyl-4-(1-methyl-1*H***-pyrrol-2-yl)-5-phenyl-2***H***-imidazole (3b). Yield: 225 mg (90 %), mp = 47-50 °C. R_f 0.2 (hexane/EtOAc, 6:4). ¹H NMR (DMSO-d_6): \delta 1.51 (s, 6H); 3.87 (s, 3H); 5.82-5.81 (m, 1H); 5.96-5.94 (m, 1H); 7.00 (t, 1H, J = 2.1); 7.51-7.45 (m, 5H) ppm. ¹³C NMR (DMSO-d_6): \delta 24.4 (CH₃); 36.4 (CH₃); 101.4 (C); 107.1 (CH); 114.9 (CH); 124.3 (C); 127.9 (CH); 128.2 (CH); 128.3 (CH); 129.6 (CH); 133.9 (C); 155.2 (C); 164.3(C) ppm. IR (DRA): v 2975, 2930, 1726, 1558, 1419, 1241, 1215, 1171, 1078, 1061, 958, 898, 695, 679, 574 cm⁻¹. MS (EI):** *m/z* **251 [M]⁺. Anal. Calcd for C₁₆H₁₇N₃: C, 76.46; H, 6.82; N, 16.72. Found: C, 76.26; H, 7.23; N, 16.51.**

2,2-Dimethyl-4-phenyl-5-(5-phenyl-1*H***-pyrrol-2-yl)-2***H***-imidazole (3c). Yield: 234 mg (75 %), mp = 72-75 °C. R_f 0.3 (hexane/EtOAc, 6:4). ¹H NMR (DMSO-d₆): \delta 1.55 (s, 6H); 5.90 (d, 1H, J = 1.14); 6.49 (t, 1H, J = 1.74); 7.22 (t, 1H, J = 7.36); 7.37-7.30 (m, 2H); 7.58-7.48 (m, 5H); 7.85 (t, 2H, J = 4.18), 11.99 (s, 1H) ppm. ¹³C NMR (DMSO-d₆): \delta 24.6 (CH₃); 101.1 (C); 107.2 (CH); 115.0 (CH); 124.9 (CH); 125.5 (C); 126.7 (CH); 128.0 (CH); 128.2 (CH); 128.4 (CH); 129.4 (CH); 131.5 (C); 134.1 (C); 136.2 (C); 154.8 (C); 163.8 (C) ppm. IR (DRA): v 2977, 2838, 2493, 1624, 1550, 1487, 1447, 1303, 1174, 1059, 913, 861, 764, 597, 566 cm⁻¹. MS (EI):** *m/z* **313 [M]⁺. Anal. Calcd for C₂₁H₁₉N₃: C, 80.48; H, 6.11; N, 13.41. Found: C, 80.03; H, 6.30; N, 13.67.**

2-(2,2-Dimethyl-5-phenyl-2*H***-imidazol-4-yl)-4,5,6,7-tetrahydro-1***H***-indole (3d). Yield: 183 mg (63 %), mp = 87-90 °C. R_f 0.1 (hexane/EtOAc, 6:4). ¹H NMR (DMSO-d_6): \delta 1.69-1.39 (m, 12H); 2.32-2.15 (m, 2H); 5.57 (s, 1H); 7.62-7.43 (m, 5H); 11.19 (s, 1H) ppm. ¹³C NMR (DMSO-d_6): \delta 22.2 (CH₂); 22.4 (CH₂); 22.6 (CH₂); 23.2 (CH₂); 24.8 (CH); 100.5 (C); 112.4 (CH); 117.2 (C); 122.0 (C); 128.0 (CH); 128.2 (CH); 129.5 (CH); 133.0 (C); 154.9 (C); 164.0 (C) ppm. IR (DRA): v 3288, 3212, 2927, 2854, 1705, 1660, 1603, 1538, 1490, 1443, 1402, 1184, 934, 694, 578 cm⁻¹. MS (EI): m/z 291 [M]+. Anal. Calcd for C₁₉H₂₁N₃: C, 78.32; H, 7.26; N, 14.42. Found: C, 78.48; H, 7.21; N, 14.31.**

2-Ethyl-2-methyl-4-phenyl-5-(1*H*-pyrrol-2-yl)-2*H*-imidazole (3e). Yield: 185 mg (74 %), mp = 80-83 °C. R_f 0.2 (hexane/EtOAc, 6:4). ¹H NMR (DMSO-d₆): δ 0.71 (t, 3H, J = 7.14); 1.49 (s, 3H); 2.08-1.94(m, 2H); 5.85 (s, 1H); 5.94 (s, 1H); 6.92 (s, 1H); 7.58-7.45 (m, 5H); 11.71 (s, 1H); ¹³C NMR (DMSO-d₆): δ 8.2 (CH₃); 23.1 (CH₃); 30.8 (CH₂); 103.2 (C); 108.9 (CH₂); 113.2 (CH₂); 123.0 (CH₂); 123.1 (C); 128.1 (CH₂); 128.2 (CH₂); 129.6 (CH₂); 134.2 (C); 155.6 (C); 164.5 (C). IR (DRA): v 3256, 3168, 3146, 3115, 2974, 2933, 1601, 1579, 1519, 1418, 1120, 1042, 931, 736, 696 cm⁻¹. MS

(EI): *m/z* 251 [M]⁺. Anal. Calcd for C₁₆H₁₇N₃: C, 76.46; H, 6.82; N, 16.72. Found: C, 76.68; H, 6.42; N, 16.90.

2-Ethyl-2-methyl-5-(1-methyl-1*H***-pyrrol-2-yl)-4-phenyl-2***H***-imidazole (3f). Yield: 230 mg (87 %), mp =97-100 °C. R_f 0.3 (hexane/EtOAc, 6:4). ¹H NMR (DMSO-d₆): \delta 0.72 (t, 3H, J = 7.36); 1.49 (s, 3H); 2.03-1.95 (m, 2H); 3.87 (s, 3H); 5.82-5.79 (m, 1H); 5.96-5.93 (m, 1H); 7.01 (t, 1H, J = 2.04); 7.52-7.42 (m, 5H) ppm. ¹³C NMR (DMSO-d₆): 8.2(CH₃); 22.9 (CH₃); 30.6 (CH₂); 36.4 (CH₃); 103.7 (C); 107.1 (CH); 114.9 (CH); 124.3 (C); 128.0 (CH); 128.3 (CH); 128.3 (CH); 129.6 (CH); 133.9 (C); 155.7 (C); 164.9 (C) \delta ppm. IR (DRA): v 2974, 2933, 1600, 1570, 1514, 1459, 1423, 1240, 1067, 961, 726, 696, 607, 569, 524 cm⁻¹. MS (EI):** *m/z* **265 [M]⁺. Anal. Calcd for C₁₇H₁₉N₃: C, 76.95; H, 7.22; N, 15.84. Found: C, 76.73; H, 7.59; N, 15.68.**

2-Ethyl-2-methyl-4-phenyl-5-(5-phenyl-1*H***-pyrrol-2-yl)-2***H***-imidazole (3g). Yield: 241 mg (74 %), mp = 80-82 °C. R_f 0.2 (hexane/EtOAc, 6:4). ¹H NMR (DMSO-d_6): \delta 0.73 (t, 3H, J = 7.02); 1.5 (s, 3H); 2.16-1.93 (m, 2H); 5.91 (d, 1H, J = 4.00); 6.48 (d, 1H, J = 4.00); 7.22 (t, 1H, J = 8.00); 7.35 (t, 2H, J = 8.00); 7.53 (t, 5H, J = 7.55); 7.83 (d, 2H, J = 7.52); 11.94 (s, 1H) ppm. ¹³C NMR (DMSO-d_6): 8.1 (CH₃); 23.2 (CH₃); 30.8 (CH₂); 103.4 (C); 107.3 (CH); 115.1 (C); 124.9 (CH); 125.5 (C); 126.8 (CH); 128.1(CH); 128.2 (CH); 128.5 (CH); 129.6 (CH); 131.5 (C); 136.2 (C); 155.3 (C); 164.6 (C) \delta ppm. IR (DRA): v 3383, 3295, 3063, 2965, 2923, 1725, 1600, 1572, 1538, 1488, 1456, 1288, 1273, 1052, 754, 692 cm⁻¹. MS (EI):** *m/z* **327 [M]⁺. Anal. Calcd for C₂₂H₂₁N₃: C, 80.70; H, 6.46; N, 12.83. Found: C, 80.36; H, 6.85; N, 12.79.**

2-(2-Ethyl-2-methyl-5-phenyl-2*H***-imidazol-4-yl)-4,5,6,7-tetrahydro-1***H***-indole (3h). Yield: 192 mg (63 %), mp = 127-130 °C. R_f 0.2 (hexane/EtOAc, 6:4). ¹H NMR (DMSO-d₆): \delta 0.72 (t, 3H, J = 7.34); 1.48 (s, 3H); 1.76-1.60 (t, 4H); 2.08-1.88 (m, 2H); 2.29 (t, 2H, J = 5.78); 2.56 (t, 2H, J = 5.92); 5.56 (d, 1H, J = 2.00); 7.56-7.41 (d, 5H); 10.87 (s, 1H) ppm. ¹³C NMR (DMSO-d₆): 8.1 (CH₃); 22.2 (CH₂); 22.4 (CH₂); 22.6 (CH₂); 23.2 (CH₂); 23.4 (CH₃); 30.8 (CH₂); 102.7 (C); 112.3 (CH); 117.2 (C); 122.0 (C); 128.0 (CH); 128.1 (CH); 129.5 (CH); 132.9 (C); 134.4 (C); 155.4 (C); 164.7 (C) \delta ppm. IR (DRA): v 3330, 3274, 3213, 3180, 2968, 2855, 1641, 1603, 1537, 1443, 1372, 1180, 1143, 941, 694 cm⁻¹. MS (EI):** *m/z* **305 [M]⁺. Anal. Calcd for C₂₀H₂₃N₃: C, 78.65; H, 7.59; N, 13.76. Found: C, 78.63; H, 7.83; N, 13.54.**

2-Phenyl-3-(1*H***-pyrrol-2-yl)-1,4-diazaspiro[4.5]deca-1,3-diene (3i).** Yield: 210 mg (76 %), mp = 122-125 °C. R_f 0.3 (hexane/EtOAc, 6:4). ¹H NMR (DMSO-d₆): δ 1.91-1.48 (m, 10H); 5.86 (s, 1H); 5.99 (s, 1H); 6.92 (s, 1H); 7.57-7.43 (m, 5H); 11.61 (s, 1H) ppm. ¹³C NMR (DMSO-d₆): δ 23.7 (CH₂); 25.2 (CH₂); 34.8 (CH₂); 103.1 (C); 108.8 (CH); 113.1 (CH); 122.9 (CH); 124.1 (C); 128.0 (CH); 128.3 (CH); 129.5 (CH); 134.3 (C); 154.9 (C); 163.9 (C) ppm. IR (DRA): v 3169, 3123, 3085, 3028, 2941, 2922, 2849, 1604, 1580, 1523, 1418, 1097, 736, 693, 562 cm⁻¹. MS (EI): *m/z* 277 [M]⁺. Anal. Calcd for C₁₈H₁₉N₃: C, 77.95; H, 6.90; N, 15.15. Found: C, 77.93; H, 6.78; N, 15.29.

2-(1-Methyl-1*H***-pyrrol-2-yl)-3-phenyl-1,4-diazaspiro[4.5]deca-1,3-diene (3k).** Yield: 221 mg (76 %), mp = 102-105 °C. $R_{\rm f}$ 0.2 (hexane/EtOAc, 6:4). ¹H NMR (DMSO-d₆): δ 1.91-1.48 (m, 10H); 3.88 (s, 3H); 5.82 (s, 1H); 5.94 (s, 1H); 7.00 (s, 1H); 7.54-7.39 (m, 5H) ppm. ¹³C NMR (DMSO-d₆): δ 23.8 (CH₂); 25.2 (CH₂); 34.7 (CH₂); 36.4 (CH₃); 103.6 (C); 107.0 (CH); 114.7 (CH); 124.5 (C); 128.0 (CH); 128.2 (CH); 128.3 (CH); 129.5 (CH); 134.1 (C); 155.1 (C); 164.3 (C) ppm. IR (DRA): v 3350, 3098, 2932, 2844, 1598, 1564, 1443, 1418, 1243, 1103, 976, 958, 736, 697, 676, 566 cm⁻¹. MS (EI): *m/z* 291 [M]⁺. Anal. Calcd for C₁₉H₂₁N₃: C, 78.32; H, 7.26; N, 14.42. Found: C, 78.21; H, 7.64; N, 14.15.

2-Phenyl-3-(5-phenyl-1*H***-pyrrol-2-yl)-1,4-diazaspiro[4.5]deca-1,3-diene (3l).** Yield: 292 mg (83 %), mp = 107-110 °C. $R_{\rm f}$ 0.2 (hexane/EtOAc, 6:4). ¹H NMR (DMSO-d₆): δ 1.94-1.48 (m, 10H); 5.92 (d, 1H, J = 3.4); 6.48 (d, 1H, J = 3.32); 7.22 (t, 1H, J = 7.24); 7.35 (t, 2H, J = 7.58); 7.61-7.46 (m, 5H); 7.83 (d, 2H, J = 7.64); 11.86 (s, 1H) ppm. ¹³C NMR (DMSO-d₆): δ 23.7 (CH₂); 25.2 (CH₂); 34.9 (CH₂); 103.3 (C); 107.4 (CH); 115.1 (CH); 125.0(CH); 125.6 (C); 126.8 (CH); 128.1 (CH); 128.3 (CH); 128.5 (CH); 129.5 (CH); 131.5 (C); 134.3 (C); 136.2 (C); 154.7 (C); 163.9 (C) ppm. IR (DRA): v 3449, 2927, 2847, 1601, 1572, 1535, 1487, 1443, 1269, 955, 752, 690, 646, 565 cm⁻¹. MS (EI): *m/z* 353 [M]⁺. Anal. Calcd for C₂₄H₂₃N₃: C, 81.55; H, 6.56; N, 11.89. Found: C, 81.79; H, 6.59; N, 11.62.

2-Phenyl-3-(4,5,6,7-tetrahydro-1*H***-indol-2-yl)-1,4-diazaspiro[4.5]deca-1,3-diene (3m).** Yield: 208 mg (63 %), mp = 117-120 °C. R_f 0.1 (hexane/EtOAc, 6:4). ¹H NMR (DMSO-d_6): δ 1.91-1.46 (m, 14H); 2.27-2.19 (t, 2H, J = 5.62); 2.56-2.50 (m, 2H); 5.59-5.57 (m, 1H); 7.56-7.44 (m, 5H); 11.08 (s, 1H). ¹³C NMR (DMSO-d_6): δ 22.2 (CH₂); 22.5 (CH₂); 22.6 (CH₂); 23.2 (CH₂); 23.7 (CH₂); 25.2 (CH₂); 35.1 (CH₂); 102.6 (C); 112.2 (CH); 117.2 (C); 122.2 (C); 128.0 (CH); 128.2 (CH); 129.4 (CH); 132.8 (C); 134.6 (C); 154.8 (C); 164.1 (C) ppm. IR (DRA): v 2924, 2851, 1601, 1538, 1489, 1442, 1336, 1267, 1233, 1184, 1009, 971, 954, 698, 566 cm⁻¹. MS (EI): *m/z* 331 [M]⁺. Anal. Calcd for C₂₂H₂₅N₃: C, 79.72; H, 7.60; N, 12.68. Yield: C, 79.84; H, 7.87; N, 12.29.

^{8.0} 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 Figure S5 ¹H-¹³C HSQC Spectrum of 2,2-dimethyl-4-(1-methyl-1*H*-pyrrol-2-yl)-5-phenyl-2*H*-imidazole (3b)

^{160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10} Figure S8 ¹³C NMR Spectrum (APT) of 2,2-dimethyl-4-phenyl-5-(5-phenyl-1*H*-pyrrol-2-yl)-2*H*-imidazole (3c)

^{160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0} Figure S12 ¹³C NMR Spectrum (APT) of 2-ethyl-2-methyl-4-phenyl-5-(1*H*-pyrrol-2-yl)-2*H*-imidazole (3e)

160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 Figure S14 ¹³C NMR Spectrum (APT) of 2-ethyl-2-methyl-5-(1-methyl-1*H*-pyrrol-2-yl)-4-phenyl-2*H*imidazole (3f)

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 Figure S16 ¹³C NMR Spectrum (APT) of 2-ethyl-2-methyl-4-phenyl-5-(5-phenyl-1*H*-pyrrol-2-yl)-2*H*imidazole (3g)

^{160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0} Figure S20 ¹³C NMR Spectrum (APT) of 2-phenyl-3-(1*H*-pyrrol-2-yl)-1,4-diazaspiro[4.5]deca-1,3-diene (3i)

160 150 140 130 120 110 100 90 80 70 50 50 40 30 20 10 0 Figure S24 ¹³C NMR Spectrum (APT) of 2-phenyl-3-(5-phenyl-1*H*-pyrrol-2-yl)-1,4-diazaspiro[4.5]deca-1,3diene (3l)

diazaspiro[4.5]deca-1,3-diene (3m)

hydrochloride (3bHCl)

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 Figure S32 ¹³C NMR Spectrum (APT) of 2,2-dimethyl-4-phenyl-5-(5-phenyl-1*H*-pyrrol-2-yl)-2*H*-imidazole hydrochloride (3cHCl)

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 Figure S34 ¹³C NMR Spectrum (APT) of 2-(2,2-dimethyl-5-phenyl-2*H*-imidazol-4-yl)-4,5,6,7-tetrahydro-1*H*indole hydrochloride (3dHCl)

hydrochloride (3eHCl)

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 Figure S40 ¹³C NMR Spectrum (APT) of 2-ethyl-2-methyl-4-phenyl-5-(5-phenyl-1*H*-pyrrol-2-yl)-2*H*-imidazole hydrochloride (3gHCl)

160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 Figure S42 ¹³C NMR Spectrum (APT) of 2-(2-ethyl-2-methyl-5-phenyl-2*H*-imidazol-4-yl)-4,5,6,7-tetrahydro-1*H*-indole hydrochloride (3hHCl)

S31

160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 Figure S48 ¹³C NMR Spectrum (APT) of 2-phenyl-3-(5-phenyl-1*H*-pyrrol-2-yl)-1,4-diazaspiro[4.5]deca-1,3-diene hydrochloride (3lHCl)

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 Figure S50 ¹³C NMR Spectrum (APT) of 2-phenyl-3-(4,5,6,7-tetrahydro-1*H*-indol-2-yl)-1,4-diazaspiro[4.5]deca-1,3diene hydrochloride (3mHCl)

X-ray Analysis Data

The crystallographic data and basic refinement parameters for 2-ethyl-2-methyl-4-phenyl-5-(1*H*-pyrrol-2-yl)-2*H*-imidazole **3e** are shown in Table S1.

Parameter	4e
Molecular formula	C ₂₁ H ₂₁ N ₃ O
Molecular weight	331.41
T/K	295.(2)
$\lambda/Å$	1.54184
Syngony	monoclinic
Space group	$P2_{1}/c$
a/Å	6.098(3)
b/Å	27.444(14)
$c/{ m \AA}$	11.214(3)
α/deg	90.00
β /deg	103.50(3)
γ/deg	90.00
$V, Å^3$	1824.8(13)
Ζ	4
$d_{calc}/g \cdot cm^{-3}$	1.206
μ/mm^{-1}	0.597
F(000)	704
Crystal size/mm	0.45x0.18x0.03
2θ-Scan range/deg	3.201-65.46
Completeness based on $2\theta_{max}$	0.982
Completeness based on $2\theta = 52^{\circ}$	0.982
	-7 < h < 7
hkl ranges	-32 < k < 31
	-13 < 1 < 13
Total number of reflections	16506
Number of independent reflections	3134
Number of reflections with $I > 2\sigma(I)$	2442
Number of refined parameters	248
Absorption correction	multi-scan
GOOF (based on F^2)	1.003
<i>R</i> factors (based on reflections with $I > 2\sigma(I)$)	
R_1	0.0434
wR_2	0.0895
<i>R</i> factors (based on all reflections)	
R_1	0.0696
wR_2	0.0922
$\Delta \rho_{\text{max}} / \Delta \rho_{\text{min}}, e \text{\AA}^{-3}$	0.158 /-0.162

Table S1. X-ray analysis data and basic refinement parameters for 3e

Crystallographic data (excluding structure factors) for the structure **3e** in this paper has been deposited with the Cambridge Crystallographic Data Centre as supplementary publication nos. CCDC 1567078. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, (fax: +44 (0)1223 336033 or e-mail: deposit@ccdc.cam.ac.uk).

References

- 1. G.M. Sheldrick, Acta Crystallorg. Sect. A, 2008, 64, 112-122.
- 2. R. C. Clark, J. S. Reid, Acta Crystallogr., Sect. A: Found. Crystallogr., 1995, 51, 887-897.
- 3. I. A. Kirilyuk, I. A. Grigor'ev, L. B. Volodarskii, Russ. Chem. Bull., 1991, 40, 1871-1879.
- 4. M. V. Varaksin, I. A. Utepova, I. A. Chupakhin, V. N. Charushin, J. Org. Chem., 2012, 77, 9087-9093