Supplementary Information for:

Rational design and structure-activity relationship studies of quercetinamino acid hybrids targeting the anti-apoptotic protein Bcl-xL

Tahsin F. Kellici^{a,b}, Maria V. Chatziathanasiadou^a, Min-Sung Lee^c, Nisar Sayyad^a, Geromichalou EG^d, Eirinaios I. Vrettos^a, Antonis D. Tsiailanis^a, Seung-Wook Chi^c, George D Geromichalos^{e,f} Thomas Mavromoustakos^b,

Andreas G. Tzakos^{a,*}

^aDepartment of Chemistry, University of Ioannina, Ioannina 45110, Greece

^bDepartment of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou 15771, Greece

^cDisease Target Structure Research Center, KRIBB, Daejeon 34141, Republic of Korea

^dLaboratory of Pharmacology, Medical School National and Kapodistrian University of Athens, Athens 11527, Greece

^eLaboratory of Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece

^fCell Culture, Molecular Modelling and Drug Design Lab., Symeonidion Research Center, Theagenion Cancer Hospital, Thessaloniki, Greece

Corresponding Authors

* Tel.: +3026510 08387, E-mail: agtzakos@gmail.com (A. Tzakos)

Contents

1.	Synthetic procedure for the quercetin – amino acid analogues	1
2.	NMR and MS Characterization of the four quercetin – amino acid analogues	5
	2.1 NMR and MS characterization of 3'-O-CO-(Ala-OtBu)-Quercetin (1a) and 4'-O-CO-(Ala-OtBu)- Quercetin (1b) (76%)	5
	2.2 NMR and MS characterization Synthesis of 3'-O-CO-Ala-Quercetin (1c) and 4'-O-CO-Ala- Quercetin (1d) (94%)	ô
	2.3 NMR and MS characterization Synthesis of 3'-O-CO-(Leu-OtBu)-Quercetin (2a) and 4'-O-CO- (Leu-OtBu)-Quercetin (2b) (75%):	8
	2.4 NMR and MS characterization Synthesis of 3'-O-CO-Leu-Quercetin (2c) and 4'-O-CO-Leu-Quercetin (2d) (90%):	9
	2.5 NMR and MS characterization Synthesis of 3'-O-CO-(Glu-OtBu)-Quercetin (3a) and 4'-O-CO- (Glu-OtBu)-Quercetin (3b) (71%):	1
	2.6 NMR and MS characterization Synthesis 3'-O-CO-Glu-Quercetin (3c) and 4'-O-CO-Glu- Quercetin (3d) (86%):	2
	2.7 NMR and MS characterization 4'-O-CO-(Phe-OtBu)-Quercetin (4a) and 4'-O-CO-(Phe-OtBu)- Quercetin (4b) (67%):	4
	2.8 NMR and MS characterization of 3'-O-CO-Phe-Quercetin (4c) and 4'-O-CO-Phe-Quercetin (4d) (90%):	5
3.	Mass and IR spectra of the four synthesized hybrids16	ŝ
4.	2D and 3D representation of the binding poses of the quercetin analogues22	1
5. ar	Fluorescence spectroscopic study and K_d determination of Bcl-xL and quercetin-amino acid nalogues	ô
	5.1 Fluorescence spectroscopic study of the Bcl-xL and Que-Ala interaction and K_d determination.	ô
	5.2 Fluorescence spectroscopic study of the Bcl-xL and Que-Leu interaction and K _d determination.	7
	5.3 Fluorescence spectroscopic study of the Bcl-xL and Que-Phe interaction and K_d determination.	7
	5.4 Fluorescence spectroscopic study of the Bcl-xL and Que-Glu interaction and K _d determination.	8
6.	Mapping the Bcl-xL-quercetin binding interface by 2D 1 H– 15 N HSQC NMR	Э
7.	Weighted ΔCS values for Quercetin-amino acid analogues30)
8.	LogP values and retention times	7

1. Synthetic procedure for the quercetin – amino acid analogues $\underset{\substack{i,ii \\ H^{O} \leftarrow f^{OH} \\ H^{O} \leftarrow g^{OH} \\ H^{O} \leftarrow g^{OH$

HCI

i, ii,

Amino acid OtBu.HCl

Figure S1: General synthetic scheme of Quercetin-amino acids. i) BNPC, DIPEA, THF, rt, 12h; ii) Quercetin, rt, 12h; iii) TFA/CH₂Cl₂ (1/10, v/v), 0^oC to rt, 4h.

он

b

он о

iii _

но

он

d

он о

~25%

 $1: R = CH_3$

2: $R = CH_2CH(CH_3)_2$

3: R=CH₂CH₂COOH 4: R=CH₂Ph

2. NMR and MS Characterization of the four quercetin – amino acid analogues

2.1 NMR and MS characterization of 3'-O-CO-(Ala-OtBu)-Quercetin (1a) and 4'-O-CO-(Ala-OtBu)-Quercetin (1b) (76%).

¹H-NMR characterization of 1a (500 MHz, DMSO-d₆, 25°C): δ = 12.47 (s, 1 H, 5-OH), 10.84 (s, 1 H, 7-OH), 10.40 (s, 1 H, 4'-OH), 9.58 (s,1 H, 3-OH), 8.13 (d, J = 7.3 Hz, 1 H, 8'-NH), 7.94 (dd, J = 8.7 Hz, 2.2 Hz, 1 H, 6'-H), 7.88 (d, J = 2.2 Hz, 1 H, 2'-H), 7.09 (d, J = 8.6 Hz, 1 H, 5'-H), 6.48 (d, J = 2.0 Hz, 1 H, 8-H), 6.23 (d, J = 2.0 Hz, 1 H, 6-H), 4.05- 3.99 (m, 1 H, 9'-H), 1.46 (s, 9 H, 12'-H), 1.35 (d, J = 7.2, 3 H, 13'-H) ppm;

¹³C-NMR (500 MHz, DMSO-d₆, 25°C): δ = 177.04 (C4), 172.64 (C10'), 164.87 (C7), 161.51 (C5), 157.04 (C9), 154.54 (C7'), 152.5 (C4'), 146.64 (C2), 126.62 (C6'), 123.79 (C2'), 122.50 (C1'), 117.33 (C5'), 103.86 (C10), 98.91 (C6), 94.22 (C8), 81.34(C11'), 50.97 (C9'), 28.40 (C12'), 17.74 (C13') ppm;

¹H-NMR characterization of 1b (500 MHz, DMSO-d₆, 25°C): δ = 12.41 (s, 1 H, 5-OH), 10.89 (s, 1 H, 7-OH), 10.00 (s, 1 H, 3'-OH), 9.69 (s, 1 H, 3-OH), 8.12 (d, J = 7.3 Hz, 1 H, 8'-NH), 7.81 (d, J = 2.0 Hz, 1 H, 2'-H), 7.61 (dd, J = 8.6, 2.0 Hz, 1 H, 6'-H), 7.18 (d, J = 8.6Hz, 1 H, 5'-H), 6.45 (d, J = 2.0 Hz, 1 H, 8-H), 6.24 (d, J = 2.0 Hz, 1 H, 6-H), 4.05- 3.99 (m, 1 H, 9'-H), 1.46 (s, 9 H, 12'-H), 1.35 (d, J = 7.2 Hz, 3 H, 13'-H) ppm;

¹³C-NMR (500 MHz, DMSO-d₆, 25°C): δ = 177.02 (C4), 172.64 (C10'), 164.86 (C7), 161.65 (C5), 157.00 (C9), 154.50 (C7'), 150.31 (C3'), 146.32 (C2), 140.77 (C4'), 137.75 (C3), 129.4 (C1'), 124.20 (C5'), 119.24 (C6'), 116.55 (C2'), 103.98 (C10), 98.97 (C6), 94.07 (C8), 81.34 (C11'), 50.97 (C9'), 28.40 (C12'),17.74 (C13') ppm;

Mass characterization of 1a and 1b regioisomers: MS (ESI) m/z: [M-H]⁻ for C₂₃H₂₃NO₁₀: calcd: 473.13, found: 472.1.

2.2 NMR and MS characterization Synthesis of 3'-O-CO-Ala-Quercetin (1c) and 4'-O-CO-Ala-Quercetin (1d) (94%).

¹H-NMR characterization 1c (500 MHz, DMSO-d₆, 25°C): δ = 12.66 (bs, 1 H, 11'-OH), 12.47 (s, 1 H, 5OH), 10.85 (s, 1 H, 7–OH), 10.39 (s, 1 H, 4'-OH), 9.56 (s, 1 H, 3-OH), 8.10 (d, J = 7.4 Hz, 1 H, 8'-NH), 7.93 (dd, J = 8.6 Hz, 2.2 Hz, 1 H, 6'-H), 7.90 (d, J = 2.2 Hz, 1 H, 2'-H), 7.09 (d, J = 8.6Hz, 1 H, 5'-H), 6.50 (d, J = 2.0 Hz, 1 H, 8-H), 6.23 (d, J = 2.0 Hz, 1 H, 6-H), 4.12- 4.09 (m, 1 H, 9'-H), 1.39- 1.37 (m, 3 H, 11'-H) ppm;

¹³C-NMR (500 MHz, DMSO-d₆, 25°C): δ = 176.5 (C4), 174.7 (C10'), 164.83 (C7), 161.6 (C5), 157.04 (C9), 154.46 (C7'), 152.63 (C4'), 146.57 (C2), 139.4 (C3'), 126.45 (C6'), 123.73 (C2'), 122.77 (C3), 122.66 (C1'), 117.19 (C5'), 103.95 (C10), 103.91 (C8), 99.05 (C6), 50.33 (C9'), 18.13 (C11') ppm.

¹H-NMR characterization 1d (500 MHz, DMSO-d₆, 25°C): δ = 12.66 (bs, 1 H, 11'-OH), 12.41 (s, 1 H, 5OH), 10.87 (s, 1 H, 7–OH), 9.99 (s, 1H, 3'-OH), 9.68 (s, 1H, 3-OH), 8.09 (d, J = 7.4 Hz, 1 H, 8'-NH), 7.81 (d, J= 2.1 Hz, 1 H, 2'-H), 7.61 (dd, J = 8.6 Hz, 2.2 Hz, 1 H, 6'-H), 7.19 (d, J = 8.6Hz, 1 H, 5'-H), 6.45 (d, J = 2.0 Hz, 1 H, 8-H), 6.24 (d, J = 2.0 Hz, 1 H, 6-H), 4.12- 4.06 (m, 1 H, 9'-H), 1.39- 1.37 (m, 3 H, 11'-H) ppm;

¹³C-NMR (500 MHz, DMSO-d₆, 25°C): δ = 176.5 (C4), 174.7 (C10'), 164.83 (C7), 161.7 (C5), 156.92 (C9), 154.46 (C7'), 150.22 (C3'), 146.39 (C2), 140.97 (C4'), 129.29 (C1'), 124.10 (C5'), 122.77 (C3), 119.23 (C6'), 116.54 (C2'), 104.06 (C10), 99.12 (C6), 94.02 (C8), 50.1 (C9'), 18.13 (C11') ppm.

Mass characterization of 1c and 1d regioisomers: **Mass:** MS (ESI) m/z: [M+H]⁺ for C₁₉H₁₅NO₁₀: calcd: 417.07; found: 417.9, 438.0 [M+Na]⁺

Figure S2. ¹H-¹³C HSQC (colored in black) and ¹H-¹³C HMBC (colored in red) spectra of 1c and 1d.

2.3 NMR and MS characterization Synthesis of 3'-O-CO-(Leu-OtBu)-Quercetin (2a) and 4'-O-CO-(Leu-OtBu)-Quercetin (2b) (75%):

¹H-NMR characterization 2a (500 MHz, DMSO-d₆, 25°C): δ = 12.47 (s, 1 H, 5-OH), 10.83 (s, 1H, 7-OH), 10.40 (s, 1 H, 4'-OH), 9.57 (s, 1 H, 3-OH), 8.09 (d, J = 7.8 Hz, 1 H, 8'-NH), 7.94 (dd, J = 8.6 Hz, 2.2 Hz, 1 H, 6'-H), 7.88 (d, J = 2.2 Hz, 1 H, 2'-H), 7.08 (d, J = 8.6Hz, 1 H, 5'-H), 6.48 (d, J = 2.0 Hz, 1 H, 8-H), 6.23 (d, J = 2.0 Hz, 1 H, 6-H), 4.01- 3.96 (m, 1 H, 9'-H), 1.82-1.74 (m, 1 H, 14'-H), 1.67-1.60 (m, 1 H, 13'a-H), 1.56-1.52 (m, 1 H, 13'b-H), 1.46 (s, 9 H, 12'H), 0.93 (d, J = 6.5, 6 H, 15'H) ppm;

¹³C-NMR (500 MHz, DMSO-d₆, 25°C): $\delta = 176.7$ (C4), 172.5 (C10'), 164.75 (C7), 161.62 (C5), 156.95 (C9), 154.80 (C7'), 152.63 (C4'), 146.58 (C2), 139.90 (C3'), 132.45 (C3), 126.63 (C6'), 123.63 (C2'), 122.62 (C1'), 117.26 (C5'), 103.86 (C10), 99.09 (C6), 94.21 (C8), 81.49 (C11'), 53.89 (C9'), 40.47 (C13'), 28.50 (C12'), 24.96 (C14'), 22.09 (C15') ppm.

¹H-NMR characterization 2b (500 MHz, DMSO-d₆, 25°C): δ = 12.41 (s, 1 H, 5-OH), 10.89 (s, 1 H, 7-OH), 10.00 (s, 1 H, 3'-OH), 9.68 (s, 1 H, 3-OH), 8.10 (d, J = 7.8 Hz, 1 H, 8'-NH), 7.81 (d, J = 2.2 Hz, 1 H, 2'-H), 7.61 (dd, J = 8.6Hz, 2.2 Hz, 1 H, 6'-H), 7.18 (d, J = 8.6Hz, 1 H, 5'-H), 6.45 (d, J = 2.0 Hz, 1 H, 8-H), 6.24 (d, J = 2.0 Hz, 1 H, 6-H), 4.01- 3.96 (m, 1 H, 9'-H), 1.82-1.74 (m, 1 H, 14'-H), 1.67-1.60 (m, 1 H, 13'a-H), 1.56-1.52 (m, 1 H, 13'b-H), 1.46 (s, 9 H, 12'H), 0.93 (d, J = 6.5, 6 H, 15'H) ppm;

¹³C-NMR (500 MHz, DMSO-d₆, 25°C): δ = 172.50 (C10'), 164.93 (C7), 161.73 (C5), 154.80 (C7'), 157.09 (C9), 150.31 (C3'), 146.20 (C2), 141.00 (C4'), 122.62 (C1'), 119.34 (C6'), 117.26 (C5'), 116.56 (C2'), 103.90 (C10), 99.19 (C6), 94.06 (C8), 81.49 (C11'), 53.89 (C9'), 40.47 (C13'), 28.50 (C12'), 24.96 (C14'), 22.09 (C15') ppm.

Mass characterization of 2a and 2b regioisomers: **Mass:** MS (ESI) m/z: [M-H]⁻ for C₂₆H₂₉NO₁₀: calcd: 515.18; found: 514.2.

2.4 NMR and MS characterization Synthesis of 3'-O-CO-Leu-Quercetin (2c) and 4'-O-CO-Leu-Quercetin (2d) (90%):

¹H-NMR characterization 2c (500 MHz, DMSO-d₆, 25°C): δ = 12.67 (bs, 1 H, 10'-OH), 12.47 (s, 1 H, 5OH), 10.83 (s, 1H, 7-OH), 10.39 (s, 1 H, 4'-OH), 9.57 (s, 1 H, 3-OH), 8.07 (d, J = 8.1 Hz, 1 H, 8'-NH), 7.94 (dd, J = 8.6 Hz, 2.0 Hz, 1 H, 6'-H), 7.89 (d, J = 2.0 Hz, 1 H, 2'-H), 7.08 (d, J = 8.6Hz, 1 H, 5'-H), 6.49 (d, J = 1.8 Hz, 1 H, 8-H), 6.23 (d, J = 1.8 Hz, 1 H, 6-H), 4.08-4.03 (m, 1 H, 9'-H), 1.82-1.76 (m, 1 H, 12'-H), 1.69-1.62 (m, 1 H, 11'a-H), 1.60-1.54 (m, 1 H, 11'b-H), 0.94 (d, J = 6.5Hz, 6 H, 13'-H) ppm;

¹³C-NMR (500 MHz, DMSO-d₆, 25°C): δ = 176.76 (C4), 174.77 (C10'), 164.82 (C7), 161.58 (C5), 157.95 (C9), 152.55 (C4'), 146.69 (C2), 139.7 (C3'), 136.77 (C3), 126.54 (C6'), 123.63 (C2'), 117.22 (C5'), 103.91 (C10), 99.09 (C6), 94.27 (C8), 53.08 (C9'), 40.57 (C11'), 24.95 (C12'), 22.00 (C13') ppm.

¹H-NMR characterization 2d (500 MHz, DMSO-d₆, 25°C): δ = 12.67 (bs, 1 H, 10'-OH), 12.41 (s, 1 H, 5OH), 10.89 (s, 1 H, 7-OH), 9.96 (s, 1 H, 3'-OH), 9.68 (s, 1 H, 3-OH), 8.07 (d, J = 8.1 Hz, 1 H, 8'-NH), 7.80 (d, J = 2.0 Hz, 1 H, 2'-H), 7.62 (dd, J = 8.6Hz, 2.0 Hz, 1 H, 6'-H), 7.18 (d, J = 8.6 Hz, 1 H, 5'-H), 6.45 (d, J = 1.8 Hz, 1 H, 8-H), 6.24 (d, J = 1.8 Hz, 1 H, 6-H), 4.08-4.03 (m, 1 H, 9'-H), 1.82-1.76 (m, 1 H, 12'-H), 1.69-1.62 (m, 1 H, 11'a-H), 1.60-1.54 (m, 1 H, 11'b-H), 0.94 (d, J = 6.5, 6 H, 13'H) ppm;

¹³C-NMR (500 MHz, DMSO-d₆, 25°C): δ = 177.01 (C4), 174.77 (C10'), 165.09 (C7), 161.64 (C5), 157.15 (C9), 150.20 (C3'), 146.40 (C2), 141.00 (C4'), 137.76 (C3), 124.08 (C5'), 119.35 (C6'), 116.51 (C2'), 103.95 (C10), 99.24 (C6), 94.02 (C8), 53.08 (C9'), 40.57 (C11'), 24.95 (C12'), 22.00 (C13') ppm.

Mass characterization of 2c and 2d regioisomers: Mass: MS (ESI) m/z: $[M+H]^+$ for C₂₂H₂₁NO₁₀: calcd: 459.12; found: 459.4.

Figure S3. ¹H-¹³C HSQC (colored in black) and ¹H-¹³C HMBC (colored in red) spectra of 2c and 2d.

2.5 NMR and MS characterization Synthesis of 3'-O-CO-(Glu-OtBu)-Quercetin (3a) and 4'-O-CO-(Glu-OtBu)-Quercetin (3b) (71%):

¹H-NMR characterization 3a (500 MHz, DMSO-d₆, 25°C): δ = 12.47 (s, 1 H, 5-OH), 10.84 (s, 1 H, 7-OH), 10.36 (s, 1 H, 4'-OH), 9.55 (s, 1 H, 3-OH), 8.11 (d, J = 7.5 Hz, 1 H, 8'-NH), 7.95 (dd, J = 8.6 Hz, 2.2 Hz, 1 H, 6'-H), 7.8 (d, J = 2.2 Hz, 1 H, 2'-H), 7.09 (d, J = 8.6Hz, 1 H, 5'-H), 6.48 (d, J = 2.0 Hz, 1 H, 8-H), 6.23 (d, J = 2.0 Hz, 1 H, 6-H), 4.04- 3.99 (m, 1 H, 9'-H), 2.00 (m, 2 H, 14'-H), 1.87 (m, 2 H, 13'-H), 1.47 (s, 9 H, 17'-H), 1.45 (s, 9 H, 12'-H) ppm;

¹³C-NMR (500 MHz, DMSO-d₆, 25°C): δ = 176.81 (C4), 172.31 (C15'), 172.31 (C10'), 164.80 (C7), 161.60 (C5), 157.00 (C9), 154.75 (C7'), 152.44 (C4'), 146.59 (C2), 139.59 (C3'), 126.72 (C6'), 123.73 (C2'), 122.63 (C1'), 117.30 (C5'), 103.92 (C10), 98.96 (C6), 94.25 (C8), 81.7 (C11'), 80.72 (C16'), 54.62 (C9'), 28.48 (C17'), 28.48 (C12'), 27.00 (C14'), 27.00 (C13') ppm.

¹H-NMR characterization 3b (500 MHz, DMSO-d₆, 25°C): δ = 12.41 (s, 1 H, 5-OH), 10.88 (s, 1 H, 7-OH), 9.97 (s, 1 H, 3'-OH), 9.68 (s, 1 H, 3-OH), 8.11 (d, J = 7.5 Hz, 1 H, 8'-NH), 7.81 (d, J = 2.2 Hz, 1 H, 2'-H), 7.62 (dd, J = 8.6, 2.2 Hz, 1 H, 6'-H), 7.18 (d, J = 8.6Hz, 1 H, 5'-H), 6.45 (d, J = 2.0 Hz, 1 H, 8-H), 6.24 (d, J = 2.0 Hz, 1 H, 6-H), 4.04- 3.99 (m, 1 H, 9'-H), 2.00 (m, 2 H, 14'-H), 1.87 (m, 2 H, 13'-H), 1.47 (s, 9 H, 17'-H), 1.45 (s, 9 H, 12'-H) ppm;

¹³C-NMR (500 MHz, DMSO-d₆, 25°C): δ = 177.03 (C4), 172.31 (C10'), 172.30 (C15'), 164.80 (C7), 161.60 (C5), 157.00 (C9), 154.75 (C7'), 150.21 (C3'), 146.36 (C2), 140.86 (C4'), 129.55 (C1'), 124.15 (C5'), 119.33 (C6'), 116.61 (C2'), 103.92 (C10), 98.96 (C6), 94.14 (C8), 81.70 (C11'), 80.72 (C16'), 54.62 (C9'), 28.48 (C17'), 28.48 (C12'), 27.05 (C14'), 27.05 (C13') ppm.

Mass characterization of 3a and 3b regioisomers: **Mass:** MS (ESI) m/z: [M-H]⁻ for C₂₉H₃₃NO₁₂: calcd: 587.20; found: 586.3.

2.6 NMR and MS characterization Synthesis 3'-O-CO-Glu-Quercetin (3c) and 4'-O-CO-Glu-Quercetin (3d) (86%):

¹H-NMR characterization 3c (500 MHz, DMSO-d₆, 25°C): $\delta = 12.85$ (bs), 12.47 (s, 1 H, 5-OH), 10.84 (s, 1 H, 7-OH), 10.36 (s, 1 H, 4'-OH), 9.55 (s, 1 H, 3-OH), 8.14 (d, J = 8.2 Hz, 1 H, 8'-NH), 7.92 (dd, J = 8.6 Hz, 2.2 Hz, 1 H, 6'-H), 7.79 (d, J = 2.2 Hz, 1 H, 2'-H), 7.06 (d, J = 8.6Hz, 1 H, 5'-H), 6.48 (d, J = 2.0 Hz, 1 H, 8-H), 6.23 (d, J = 2.0 Hz, 1 H, 6-H), 4.27 - 4.22 (m, 1 H, 9'H), 3.16 - 3.11 (m, 2 H, 12'-H), 3.01 - 3.29 (m, 2 H, 11'-H) ppm;

¹³C-NMR (500 MHz, DMSO-d₆, 25°C): δ = 177.01 (C4), 173.77 (C13'), 173.44 (C10'), 164.81 (C7), 161.67 (C5), 156.88 (C9), 154.99 (C7'), 152.26 (C4'), 146.70 (C2), 139.42 (C3'), 126.7 (C6'), 123.83 (C1'), 123.73 (C2'), 117.31 (C5'), 103.99 (C10), 98.98 (C6), 94.25 (C8), 56.46 (C9'), 37.36 (C11'), 37.36 (C12') ppm.

¹H-NMR characterization 3d (500 MHz, DMSO-d₆, 25°C): δ = 12.85 (bs), 12.41 (s, 1 H, 5-OH), 10.88 (s, 1 H, 7-OH), 9.97 (s, 1 H, 3'-OH), 9.68 (s, 1 H, 3-OH), 8.15 (d, J = 8.2 Hz, 1 H, 8'-NH), 7.78 (dd, J = 2.2 Hz, 1 H, 2'-H), 7.58 (d, J = 8.6, 2.2 Hz, 1 H, 6'-H), 7.07 (d, J = 8.4Hz, 1 H, 5'H), 6.44 (d, J = 2.0 Hz, 1 H, 8-H), 6.23 (d, J = 2.0 Hz, 1 H, 6-H), 4.27 - 4.22 (m, 1 H, 9'-H), 3.16 - 3.11 (m, 2 H, 12'-H), 3.01 - 3.29 (m, 2 H, 11'-H) ppm;

¹³C-NMR (500 MHz, DMSO-d₆, 25°C): δ = 177.01 (C4), 173.77 (C13'), 173.44 (C10'), 165.07 (C7), 161.67 (C5), 157.23 (C9), 154.99 (C7'), 150.28 (C3'), 146.50 (C2), 140.89 (C4'), 129.47 (C1'), 124.01 (C5'), 119.30 (C6'), 116.54 (C2'), 104.03 (C10), 98.98 (C6), 94.25 (C8), 56.46 (C9'), 37.36 (C11'), 37.36 (C12') ppm.

Mass characterization of 3c and 3d regioisomers: Mass: MS (ESI) m/z: $[M-H]^-$ for $C_{21}H_{17}NO_{12}$: calcd: 475.08; found: 474.0.

Figure S4. ¹H-¹³C HSQC (colored in black) and ¹H-¹³C HMBC (colored in red) spectra of 3c and 3d.

2.7 NMR and MS characterization 4'-O-CO-(Phe-OtBu)-Quercetin (4a) and 4'-O-CO-(Phe-OtBu)-Quercetin (4b) (67%):

¹H-NMR characterization 4a (500 MHz, DMSO-d₆, 25°C): δ = 12.47 (s, 1 H, 5-OH), 10.84 (s, 1H, 7-OH), 10.39 (s, 1 H, 4'-OH), 9.57 (s, 1 H, 3-OH), 8.20 (d, J = 7.7 Hz, 1 H, 8'-NH), 7.93 (dd, J = 8.7 Hz, 2.2 Hz, 1 H, 6'-H), 7.82 (d, J = 2.2 Hz, 1 H, 2'-H), 7.36-7.34 (m, 4 H, 15' and 16'-H), 7.30-7.26 (m, 1 H, 17'-H), 7.08 (d, J = 8.7Hz, 1 H, 5'-H), 6.48 (d, J = 2.0 Hz, 1 H, 8-H), 6.23 (d, J = 2.0 Hz, 1 H, 6-H), 4.22- 4.17 (m, 1 H, 9'-H), 3.08-2.98 (m, 2 H, 13'-H), 1.39 (s, 9 H, 12'-H) ppm;

¹³C-NMR (500 MHz, DMSO-d₆, 25°C): δ = 176.81 (C4), 171.42 (C10'), 164.76 (C7), 161.63 (C5), 156.98 (C9), 154.59 (C7'), 152.45 (C4'), 146.56 (C2), 139.54 (C3'), 138.2 (C14'), 136.89 (C3), 130.03 (C15'), 129.05 (C16'), 127.32 (C17'), 126.69 (C6'), 123.69 (C2'), 122.45 (C1'), 117.25 (C5'), 103.91 (C10), 98.98 (C6), 94.25 (C8), 81.66 (C11'), 57.08 (C9'), 37.56 (C13'), 28.43 (C12') ppm.

¹H-NMR characterization 4b (500 MHz, DMSO-d₆, 25°C): δ = 12.41 (s, 1 H, 5-OH), 10.88 (s, 1 H, 7-OH), 9.99 (s, 1 H, 3'-OH), 9.68 (s, 1 H, 3-OH), 8.21 (d, J = 7.8 Hz, 1 H, 8'-NH), 7.80 (d, J = 2.1 Hz, 1 H, 2'-H), 7.59 (dd, J = 8.6 Hz, 2.1 Hz, 1 H, 6'-H), 7.36-7.34 (m, 4 H, 15' and 16'-H), 7.30-7.26 (m, 1 H, 17'-H), 7.10 (d, J = 8.6Hz, 1 H, 5'-H), 6.44 (d, J = 2.0 Hz, 1 H, 8-H), 6.24 (d, J = 2.0 Hz, 1 H, 6-H), 4.22- 4.17 (m, 1 H, 9'-H), 3.08-2.98 (m, 2 H, 13'-H), 1.39 (s, 9 H, 12'-H) ppm;

¹³C-NMR (500 MHz, DMSO-d₆, 25°C): δ = 177.07 (C4), 171.46 (C10'), 164.95 (C7), 161.74 (C5), 157.04 (C9), 154.59 (C7'), 150.27 (C3'), 146.27 (C2), 140.87 (C4'), 138.20 (C14'), 130.03 (C15'), 129.05 (C16'), 127.32 (C17'), 124.05 (C5'), 122.45 (C1'), 119.32 (C6'), 116.59 (C2'), 104.02 (C10), 98.98 (C6), 94.14 (C8), 81.66 (C11'), 57.08 (C9'), 37.56 (C13'), 28.43 (C12') ppm.

Mass characterization of 4a and 4b regioisomers: **Mass:** MS (ESI) m/z: [M-H]⁻ for C₂₉H₂₇NO₁₀: calcd: 549.16; found: 548.2.

¹H-NMR characterization 4c (500 MHz, DMSO-d₆, 25°C): δ = 12.88 (bs, 1H, 11'-OH), 12.47 (s, 1 H, 5OH), 10.85 (s, 1H, 7-OH), 10.37 (s, 1 H, 4'-OH), 9.55 (s, 1 H, 3-OH), 8.14 (d, J = 8 Hz, 1 H, 8'-NH), 7.92 (dd, J = 8.7 Hz, 2.2 Hz, 1 H, 6'-H), 7.79 (d, J = 2.2 Hz, 1 H, 2'-H), 7.36-7.35 (m, 4 H, 14' and 15'-H), 7.31-7.26 (m, 1 H, 16'-H), 7.06 (d, J = 8.6Hz, 1 H, 5'-H), 6.48 (d, J = 2.0 Hz, 1 H, 8-H), 6.23 (d, J = 2.0 Hz, 1 H, 6-H), 4.27- 4.22 (m, 1 H, 9'-H), 3.14 (dd, J = 14.0 Hz, 4.4Hz, 1 H, 12a'-H), 2.99 (dd, J = 9.6Hz, 4.2Hz, 1 H, 12b'-H) ppm;

¹³C-NMR (500 MHz, DMSO-d₆, 25°C): δ = 174.04 (C10'), 165.03 (C7), 161.77 (C5), 157.07 (C9), 152.45 (C4'), 146.74 (C2), 139.57 (C3'), 138.64 (C13'), 130.02 (C14'), 129.01 (C15'), 127.3 (C16'), 126.70 (C6'), 123.83 (C2'), 122.63 (C1'), 117.40 (C5'), 104.00 (C10), 99.10 (C6), 94.34 (C8), 56.54 (C9'), 37.39 (C12') ppm.

¹H-NMR characterization 4d (500 MHz, DMSO-d₆, 25°C): $\delta = 12.88$ (bs, 1 H, 11'-OH), 12.40 (s, 1 H, 5OH), 10.89 (s, 1 H, 7-OH), 9.97 (s, 1 H, 3'-OH), 9.67 (s, 1 H, 3-OH), 8.15 (d, J = 7.8 Hz, 1 H, 8'-NH), 7.78 (d, J = 2. Hz, 1 H, 2'-H), 7.58 (dd, J = 8.6 Hz, 2.1 Hz, 1 H, 6'-H), 7.36-7.35 (m, 4 H, 14' and 15'-H), 7.32-7.26 (m, 1 H, 16'-H), 7.07 (d, J = 8.6Hz, 1 H, 5'-H), 6.44 (d, J = 2.2 Hz, 1 H, 8-H), 6.23 (d, J = 2.2 Hz, 1 H, 6-H), 4.27- 4.22 (m, 1 H, 9'-H), 3.14 (dd, J = 14.0 Hz, 4.4Hz, 1 H, 12a'-H), 2.99 (dd, J = 9.6Hz, 4.2Hz, 1 H, 12b'-H) ppm; ¹³C-NMR (500 MHz, DMSO-d₆, 25°C): $\delta = 174.04$ (C10'), 165.09 (C7), 161.50 (C5), 157.26 (C9), 150.15 (C3'), 146.74 (C2), 140.84 (C4'), 138.64 (C13'), 130.02 (C14'), 129.64 (C1'), 129.01 (C15'), 127.30 (C16'), 124.16 (C5'), 119.50 (C6'), 116.66 (C2'), 104.00 (C10), 99.10 (C6), 94.23 (C8), 56.54 (C9'), 37.39 (C12') ppm.

Mass characterization of 4c and 4d regioisomers: **Mass:** MS (ESI) m/z: $[M+H]^+$ for C₂₅H₁₉NO₁₀: calcd, 493.10; found: 516.0 $[M+Na]^+$.

Figure S5. ¹H-¹³C HSQC (colored in black) and ¹H-¹³C HMBC (colored in red) spectra of 4c and 4d.

3. Mass and IR spectra of the four synthesized hybrids

Figure S6. IR spectrum of Quercetin-Alanine.

Figure S7. IR spectrum of Quercetin-Glutamic acid.

Figure S8. IR spectrum of Quercetin-Leucine.

Figure S9. IR spectrum of Quercetin-Phenylalanine.

Figure S10. ESI Mass spectrum of Quercetin-Alanine in negative ion mode.

Figure S11. ESI Mass spectrum of Quercetin-Glutamic acid in negative ion mode.

Figure S12. ESI Mass spectrum of Quercetin-Leucine in negative ion mode.

Figure S13. ESI Mass spectrum of Quercetin-Phenylalanine in negative ion mode.

4. 2D and 3D representation of the binding poses of the quercetin analogues.

Figure S14. 2D representation of the binding poses of the quercetin analogues: A) Que-Ala3; B) Que-Glu3; C) Que-Phe3 and D) Que-Leu3 in the crystal structure of Bcl-xLwith PDB ID 3ZLR.

Figure S15. 2D representation of the binding poses of the quercetin analogues: A) Que-Ala4; B) Que-Glu4; C) Que-Phe4 and D) Que-Leu4 in the crystal structure of Bcl-xLwith PDB ID 3ZLR.

Figure S16. 3D representation of the binding poses of the quercetin analogues: A) Que-Ala3; B) Que-Glu3; C) Que-Phe3 and D) Que-Leu3 in the crystal structure of Bcl-xLwith PDB ID 2YXJ.

Figure S17. 2D representation of the binding poses of the quercetin analogues: A) Que-Ala3; B) Que-Glu3; C) Que-Phe3 and D) Que-Leu3 in the crystal structure of Bcl-xLwith PDB ID 2YXJ.

Figure S18. 3D representation of the binding poses of the quercetin analogues: A) Que-Ala4; B) Que-Glu4; C) Que-Phe4 and D) Que-Leu4 in the crystal structure of Bcl-xLwith PDB ID 2YXJ.

Figure S19. 2D representation of the binding poses of the quercetin analogues: A) Que-Ala4; B) Que-Glu4; C) Que-Phe4 and D) Que-Leu4 in the crystal structure of Bcl-xLwith PDB ID 2YXJ.

5. Fluorescence spectroscopic study and K_d determination of Bcl-xL and quercetin-amino acid analogues.

5.1 Fluorescence spectroscopic study of the Bcl-xL and Que-Ala interaction and K_d determination.

Figure S20. Fluorescence spectroscopic study of the Bcl-xL and Que-Ala interaction (right) and K_d determination (left). The concentration of Bcl-xLwas 2 uM. A-X curves represent titrations with incremental concentrations of Que-Ala (0.33, 0.67, 1.00, 1.34, 1.68, 2.01, 2.35, 2.68, 3.02, 3.36, 3.69, 4.03, 4.36, 4.70, 5.04, 5.37, 5.77, 6.24, 6.72, 8.06. 9.81, 10.75, 12.49 and 13.44 uM, respectively). K_d = 8.7 ± 0.2 uM.

5.2 Fluorescence spectroscopic study of the Bcl-xL and Que-Leu interaction and K_d determination.

Figure S21. Fluorescence spectroscopic study of the Bcl-xL and quercetin-leucine interaction (right) and K_d determination (left). The concentration of Bcl-xLwas 2 uM. A-X curves represent titrations with incremental concentrations of quercetin-leucine (0.32, 0.64, 0.97, 1.29, 1.61, 1.94, 2.26, 2.59, 2.91, 3.23, 3.56, 3.88, 4.20, 4.53, 4.85, 5.18, 5.56, 6.02, 6.47, 7.77, 9.45, 10.36, 12.04 and 12.95 uM, respectively). K_d = 8.2 ± 0.1 uM.

5.3 Fluorescence spectroscopic study of the Bcl-xL and Que-Phe interaction and K_d determination.

Figure S22. Fluorescence spectroscopic study of the Bcl-xL and quercetin-phenylalanine interaction (right) and K_d determination (left). The concentration of Bcl-xLwas 2 uM. A-X curves represent titrations with incremental concentrations of quercetin-phenylalanine (0.32,

 $0.65, 0.97, 1.30, 1.63, 1.95, 2.28, 2.61, 2.93, 3.26, 3.59, 3.91, 4.24, 4.56, 4.89, 5.22, 5.61, 6.07, 6.52, 7.83, 9.53, 10.44, 12.14 \text{ and } 13.05 \text{ uM}, \text{respectively}). K_d = 5.3 \pm 0.2 \text{ uM}$

5.4 Fluorescence spectroscopic study of the Bcl-xL and Que-Glu interaction and K_d determination.

Figure S23. Fluorescence spectroscopic study of the Bcl-xL and Que-Glu interaction (right) and K_d determination (left). The concentration of Bcl-xLwas 2 uM. A-X curves represent titrations with incremental concentrations of Que-Glu ($0.39, 0.79, 1.19, 1.58, 1.98, 2.38, 2.77, 3.17, 3.57, 3.96, 4.36, 4.76, 5.15, 5.55, 5.95, 6.35, 6.82, 7.38, 7.93, 9.52, 11.58, 12.70, 14.76 and 15.87 uM, respectively). K_d = <math>2.8 \pm 0.1$ uM.

6. Mapping the Bcl-xL-quercetin binding interface by 2D ¹H-¹⁵N HSQC NMR.

Figure S24. Mapping the Bcl-xL-quercetin binding interface by NMR. 2D ¹H–¹⁵N HSQC full spectra of ¹⁵N-labeled Bcl-xLprotein without (blue crosspeaks) and with the addition of quercetin analogues (red crosspeaks) (molar ratio 1:4).

7. Weighted Δ CS values for Quercetin-amino acid analogues.

Table S1: Weighted ΔCS values. The residues showing $\Delta CS > 0.1$ ppm are colored in red, whereas $\Delta CS > 0.05$ ppm are colored in blue.

* '0' indicates the disappearance of crosspeak upon ligand binding.

** 'N/A' indicates that the NMR assignment in free Bcl-xL is not available.

*** Not assigned due to peak overlap

	ΔCS for				
Residue	QUE_ALA	ΔCS for QUE_E	∆CS for QUE_PHE	∆CS for QUE_LEU	
M1	0.021858637	0.015498387	0.023349518	0.018766992	
S2	0.00614817	0.01888915	0.021730163	0.011575837	
Q3	0.025573424	0.0085557	0.01479189	0.080087452	
S4	0.031003226	0.003	0.01118034	0.004898979	
N5	0.020736441	0.031260198	0.036894444	0.029495762	
R6	0.003286335	0.0085557	0.010246951	0.009011104	
E7	0.026717036	0.012441865	0.015779734	0.007224957	
L8	0.01077961	0.021232051	0.01744133	0.014703741	
V9	0.008173127	0.008590693	0.029003448	0.021913466	
V10	0.035239183	0.018138357	0.03822303	0.025063918	
D11					Not assigned due to
F12	0 021042814	0.013630847	0.030561414	0 020513/1	peak overlap
113	0.021042014	0.013030847	0.050501414	0.02051541	
S1/	0.011009087	0.003	0.003833132	0.017005881	
V15	0.012080378	0.021400255	0.0400025	0.01030232	
K16	0.020551850	0.00078233	0.024449949	0.01020784	
117	0.021042014	0.013030647	0.030301414	0.02051541	
C12	0.045591245	0.005	0.037000332	0.019041792	Ν / Δ
019	0 023340051	0 02531/028	0 020000751	0 010230185	N/ A
K20	0.023340931	0.023314028	0.020099731	0.019230183	
G21	0.007008110	0.004024922	0.023043301	0.012870333	
V22	0.021930271	0.004024922	0.004582570	0.004024922	
\$23	0.014240780	0.010334014	0.020390110	0.000	
W24	0.003701944	0.038920432	0.00909330	0.014	
\$25	0.057759707	0.02041308	0.029577018	0.022117800	
026	0.003770814	0.04520809	0.008000122	0.02774527	
E27	0.013747727	0.008554055	0.011307193	0.00020033	
528	0.014004133	0.021750105	0.031203703	0.003011104	
020 D29	0.02107407	0.024754758	0.033207142	0.02103733	
V30	0.029583779	0.007348469	0.01479109	0.00501996	
F31	0.023303773	0.007546405	0.000	0.00001000	
E31 F32	0.02417023	0.010133434	0.023317378	0.019402785	
N33	0.023702321	0.020223748	0.027889000	0.022893414	
R3/	0.022501028	0.01330400	0.018550505	0.012080094	
T25	0.013064387	0.000340347	0.004494441	0.003741037	
F36	0.031707308253	0.032003123	0.021042014	0.020390110	
L30 A27	0.02/290352	0.0203/1023	0.020223748	0.02000001/	
D38	0.023043301	0.003103131	0.010035345	0.003737333	Proline
1.00					1 Unite

E39	0.013069047	0.017469974	0.01047855	0.010334409	
G40	0.021559221	0.009	0.009391486	0.00811172	
T41	0.010733126	0.016099689	0.020302709	0.019057807	
E42	0.022040871	0.025694357	0.020104726	0.022842942	
S43	0.023047776	0.054444467	0.051718469	0.050890078	
E44	0.013483323	0.024203306	0.025195238	0.022720035	
A85	0.008049845	0.011567195	0.007861298	0.00501996	
V86	0.002408319	0.01200833	0.00244949	0.00742967	
K87	0.026687076	0.00614817	0.026404545	0.020302709	
Q88	0.019462785	0.015336232	0.036772272	0.038907583	
A89	0.027495454	0.027799281	0.038512336	0.038026307	
L90	0.08411183	0.067536657	0	0	
R91	0.032003125	0.049570152	0.162810319	0.101863634	
E92	0.039620702	0.033178306	0.046	0.018782971	
A93	0.12856827	0.052257057	0.020104726	0.022842942	
G94	0.252571178	0.189020634	0	0	
	Not assigned				
D95	due to peak overlap	0	0	0	
E96	•				
	Not assigned	Not assigned			
F97	due to peak	due to peak	0	0	
	overlap	overlap			
E98	0.115537007	0	0	0	
L99	0.049680982	0	0	0	
R100	0	0.042341469	0	0.049032642	
Y101	0.037094474	0	0	0	
R102	0.019626513	0.014703741	0.022004545	0.011009087	
R103	0.019390719	0.00676757	0.017285832	0.014064139	
A104	0.096932967	0	0	0	
F105	0.005761944	0.038920432	0.00969536	0.014	
S106	0	0	0	0	
D107	0.030727838	0	0	0	
L108	0	0	0	0	
T109	0.021559221	0.009	0.009391486	0.00811172	
S110	<mark>0.248851763</mark>	<mark>0.117888931</mark>	0	0	
Q111	<mark>0.171956971</mark>	<mark>0.103100921</mark>	0	0	
L112	0	0	0	0	
H113	0.016149303	0.009011104	0.015931102	0.004	
1114	0	0.012441865	0	0	
T115					
P116					
G117					
T118	0	0	0	0	
A119					
Y120	0.036276714	0.039227541	0.0085557	0.032707797	
Q121	0	0.038835551	0	0	
S122	0	0.042647391	0	0	

N / A

N / A Proline N / A

N / A

F123					
E124	0.063183859	0.055450879	0.061540231	0.062194855	
Q125	0.097196708	0.061743016	0.078452533	0.065259482	
V126	0.053555579	0.022667157	0.04215685	0	
V127	0	0	0	0	
N128	0.054459159	0.075546012	0.064070274	0.079869894	
E129	0.034842503	0.033612498	0.037971042	0.03047622	
L130	0	0	0	0	
F131	0	0	0.104690974	0	
R132	0.076571535	0.055219562	0.039952472	0.013190906	
D133	0.069657735	0.036894444	0.023430749	0	
G134	0.046175751	0.030740852	0.03726929	0.048641546	
V135	0.070378974	0.072609917	0.052438535	0.055894544	
N136	0.060636623	0.089800891	0.211425637	0.094877816	
	Not assigned				
W137	due to peak				
	overlap	0.125963487	0	0	
G138	0	<mark>0.098737024</mark>	0	0	
R139	<mark>0.07783187</mark>	0	0	0	
1140	0.136285729	0.140576669	0	0	
V141	0.064529063	0.060506198	0	0.03555559	
A142	0.118367225	0	0	0	
F143	0.074021618	0.033154185	0	0.066904409	
F144	0.018708287	0.021789906	0	0.038340579	
S145	0	0.089465077	0	0	
F146	<mark>0.053933292</mark>	0.042227953	0	0	
G147	0.020493902	0.021113976	0.035344024	0.018579559	
G148	<mark>0.054591208</mark>	0.032499231	0	0.053710334	
A149	0.037971042	0.015620499	0.089368898	0.039306488	
L150	0.018444511	0.01200833	0.018809572	0.021019039	
C151	0.014696938	0.0083666	0.036348315	0.024592682	
V152	<mark>0.066616815</mark>	0.042647391	<mark>0.062025801</mark>	0.043453423	
E153	0.016149303	0.009011104	0.015931102	0.004	
S154	0.022275547	0.009602083	0.01485934	0.007602631	
V155	0.007	0.024149534	0.018574176	0.023430749	
D156	0.013630847	0	0	0	
K157	<mark>0.060894992</mark>	0.044375669	<mark>0.074711445</mark>	<mark>0.051070539</mark>	
E158	0.02433516	0.022289011	0.029031018	0.017023513	
M159	0.019869575	0.024919872	0.031368774	0.028003571	
Q160	0.011036304	0.007758866	0.013535139	0.010733126	
V161	0.02041568	0.003577709	0.015159156	0.001	
L162	0.014449913	0.013718601	0.014064139	0.01505988	
V163	0.019626513	0.014703741	0.022004545	0.011009087	
S164	0.034187717	0.018809572	0.011874342	0.015	
R165	0.03902307	0.032707797	0.013747727	0.018335757	
I166	0.032252132	0.022645088	0.032523837	0.02433516	
A167	0.023345235	0.022275547	0.015931102	0.017697457	
A168	0.018138357	0.01003992	0.00409878	0.007224957	

N / A

W169	0.041099878	0.019209373	0.02488373	0.018487834
M170	0.034744784	0.025957658	0.038285768	0.026627054
A171	0.038026307	0.072174788	0.04844791	0.050281209
T172	0.074021618	0.057504782	0.067714105	0.054781384
Y173	0	0	0	0.112321859
L174	0.028217016	0.014310835	0.010733126	0.00303315
N175	0.05485253	0.053682399	0.043758428	0.039713977
D176	0.005761944	0.038920432	0.00969536	0.014
H177	0.038486361	0.019256168	0.01505988	0.01523811
L178	0.02167487	0.0085557	0.011567195	0.012837445
E179	0.029516097	0.063771467	0.031131977	0.050217527
P180				
W181	0.017023513	0.010440307	0.023276598	0.00438178
I182	0.004669047	0.029223278	0.025938389	0.026866336
Q183	0.007348469	0.018143869	0.048309419	0.022578751
E184	0.012561847	0.025254703	0.072119346	0.037280021
N185	0.031767908	0.01077961	0.053732672	0.029668165
G186	0.019230185	0.007348469	0.036334557	0.019626513
G187	0.016431677	0.01479189	0.054990908	0.03354102
W188	0.026187783	0.02905512	0.02041568	0.025694357
D189	0.053233448	0.05711217	0.096354554	0.080126151
T190	0.024935918	0.041782772	0.022275547	0.034939948
F191	0.03822303	0.032863353	0.035386438	0.043692105
V192	0.036044417	0.057628118	0.107525811	0
E193	0.05691397	0.048787293	0.056760902	0.091165783
L194	0.032074912	0.023004347	0	0
Y195	0.039194387	0	0	0
G196	0.102079381	0.092267004	0	0
N197	0.04531887	0.051915316	0	0
N198	0.02433516	0.063283489	0	0.052026916
A199	0.03555559	0.041349728	0.088032948	0.084651048
A200	0.032261432	0.016099689	0.039809547	0.062737549
A201	0.019778777	0.01300769	0.051544156	0.055138009
E202	0.047667599	0.072008333	0.076499673	0.068042634
S203	0.035159636	0.042482938	0.071111181	0.065940883
R204	0.028368997	0.017285832	0.067363195	0.060474788
K205	0.061788348	0.04587156	0	0.092456476
G206	0.042341469	0.025976913	0.057690554	<mark>0.056</mark>
Q207	0.020302709	0.018444511	0.012680694	0.009859006
E208	0.020044949	0.020302709	0.023155993	0.028639134
R209	0.038026307	0.072174788	0.04844791	0.050281209
L210	0.047812132	0.125927757	0.097143193	0.102196869
E211	0.029342802	0.070998592	0.052438535	0.055894544

Proline

Table S2: Per residue decomposition of the MM-GBSA scores in kcal/mol (contribution higher than - 0.5 kcal/mol and lower than 1 kcal/mol are shown in blue, contributions between -1 and -2 kcal/mol are shown in yellow, contributions higher than -2 kcal/mol are shown in red).

Residue	ΔH Que_Ala	ΔH Que_Ala4	∆H Que_Glu	ΔH Que_Glu4	ΔH Que_Phe	ΔH Que_Phe4	ΔH Que_Leu	∆H Que_Leu4
R GLY -4	-0.004196201	-0.004568858	-0.00875506	-0.009068233	-0.006108973	-0.005954261	0.002796394	0.005467383
R PRO -3	-0.000369158	-0.000181955	-0.0002027	-9.15E-05	-0.000947513	-0.000180955	0.000187977	0.00035866
R LEU -2	0.000563609	0.000188703	0.00012072	-1.12E-05	-0.000274431	-0.000246438	0.000239343	0.000992502
R GLY -1	0.000476631	-2.70E-05	-0.00023369	0.000220195	3.35E-05	-2.52E-05	0.00243989	0.001307423
R SER 0	0.00048163	0.001426893	0.000809798	0.000709573	0.000298925	0.001269183	0.00207998	0.004505374
R MET 1	0.000130717	0.000259435	0.000262434	0.000430142	-0.0001987	3.85E-05	-0.00065609	-0.001567494
R SER 2	-2.72E-05	0.000128718	-0.00017521	0.000170957	-3.52E-05	-0.00012122	0.001417146	0.001738815
R GLN 3	0.000111222	0.001861785	-8.77E-05	0.000111972	-0.000124969	0.001247438	0.000823544	0.004571357
R SER 4	0.001473632	0.001182454	0.001268433	0.001374156	-0.000172207	0.001872282	0.001210447	0.003347163
RASN 5	0.000459635	0.000276931	0.000803299	0.000859785	-0.000164459	0.000536616	0.000196951	0.006949263
R ARG 6	-0.003590352	-0.007781055	-0.00991102	-0.007536866	-0.007578105	-0.004255436	-0.01226543	-0.002653087
R GLU 7	0.007733817	0.017089978	0.026275431	0.017980005	0.003586603	0.018510372	0.008099475	0.008616596
R LEU 8	0.000338915	6.87E-05	0.000369408	0.000933767	0.000106223	2.52E-05	-0.00027493	0.000980505
R VAL 9	-7.42E-05	8.00E-06	4.02E-05	0.000228693	0.00023844	-2.10E-05	7.72E-05	0.000341415
R VAL 10	0.00016171	0.000545114	6.20E-05	0.000669083	0.000188453	0.000305924	0.000206198	0.000331417
R ASP 11	0.015344164	0.014186953	0.029824044	0.027781805	0.004300925	0.011742564	0.005647588	0.017586853
R PHE 12	0.000464134	-0.000181955	-0.00014496	6.82E-05	0.00012072	-0.000157211	0.000305174	-1.92E-05
R LEU 13	0.000163459	-0.000191952	-0.00020845	0.000156711	0.000311672	-0.000109223	0.000383654	-0.000224944
R SER 14	0.000566608	-0.000149713	-0.00046463	0.00031992	0.000295676	-0.000257936	4.42E-05	0.000245189
R TYR 15	0.000906773	0.000356161	0.000486128	0.00075956	6.17E-05	0.000218695	7.60E-05	-0.000489378
RLYS 16	-0.006619595	-0.003231442	-0.00789178	-0.007698325	-0.008099725	-0.00291802	-0.00874406	-0.005094476
R LEU 17	4.85E-05	-0.000214946	-0.00042964	-0.000250937	0.000350162	-0.000180705	0.000611097	-0.0001997
R SER 18	0.00035841	-1.10E-05	-8.02E-05	0.000406148	7.42E-05	1.05E-05	-0.00031792	-0.000425894
R GLN 19	0.000589103	-6.22E-05	-0.00031292	0.00028093	0.000392152	0.00016196	0.000539115	-0.000431392
R LYS 20	-0.005245439	-0.002477381	-0.00596901	-0.006153712	-0.009992752	-0.00387828	-0.00756686	-0.003133717
R GLY 21	-0.000258935	1.62E-05	0.00031967	0.000557111	0.000808798	0.000213447	4.02E-05	-0.000180455
R TYR 22	-4.37E-05	-0.000134716	-0.00064659	-0.000712822	0.000980255	-0.00027818	0.000363159	-0.000149213
R SER 23	-2.60E-05	-0.000252687	-0.00133517	-0.001362909	0.001135216	-1.15E-05	0.000442139	0.000104474
R TRP 24	-4.85E-05	-0.000341165	-0.001001	-0.000912522	0.000193452	-0.00012147	0.000148213	-0.000312922
R SER 25	0.000170707	-9.50E-05	0.000580605	0.000415146	0.000508373	-0.000251937	0.000164709	0.000105474
R GLN 26	0.001463134	0.000871032	0.001387653	0.001809548	0.002505624	0.00103849	0.002131467	0.001642089
R MET 83	0.001468383	0.002035741	0.003547863	0.003338915	0.001924019	0.001716321	0.002205949	0.000947263
R ALA 84	0.001057236	0.001157961	0.002504374	0.002215696	0.001995251	0.00075881	0.001791052	0.001633842
R ALA 85	0.001962759	0.001705574	0.002906023	0.002352162	0.00336191	0.000855036	0.002565359	0.001845789
R VAL 86	0.0033999	0.00227968	0.005764559	0.003317171	0.004060485	0.003270182	0.00203874	0.003342664
R LYS 87	-0.004861285	-0.004726568	-0.02177256	-0.013809798	-0.003888028	0.001625594	-0.00395726	-0.00383854
R GLN 88	0.003068233	0.003196951	0.005457886	0.005029743	0.005264934	0.002626343	0.004298675	0.004537366
R ALA 89	0.004781555	0.002352912	0.007995251	0.004497876	0.001151962	0.002537116	0.001583854	0.00148088
R LEU 90	0.006770557	-0.014419645	0.005507373	-0.012272932	-0.008028743	-0.003495626	-0.01808573	-0.006510872
R ARG 91	-0.002846538	0.004019245	-0.01356161	-0.004372157	0.001743108	-0.00123819	-0.00077281	0.016466513
R GLU 92	0.031293177	0.025910772	0.067948013	0.04524194	0.035467383	0.029232942	0.025301675	0.025220195
R ALA 93	0.004301675	-0.017090477	-0.00054036	-0.013744564	-0.052887662	-0.006023342	-0.02294987	-0.003697326
R GLY 94	0.01004199	0.045690577	0.038142928	0.058352596	0.017948968	0.018102474	0.050016496	0.011151968

R ASP 95	0.05244164	0.099296176	0.113279539	0.12259985	0.071313422	0.052628593	0.072405399	0.051615846
R GLU 96	0.075715821	0.016924269	0.369866823	0.064941765	0.072219335	0.052229479	0.042260551	0.04976031
R PHE 97	-0.765581976	-1.51239704	-1.63702448	-1.500655087	-1.743136022	-0.807388354	-1.49272324	-1.285558883
R GLU 98	0.107420145	-0.227822577	0.102447498	-0.472374522	0.097911369	0.240059652	0.277368266	0.166554052
R LEU 99	0.024184454	0.019376906	-0.01692477	0.032298925	0.003385654	0.003654586	0.013146213	0.005615846
R ARG 100	-0.094892619	-0.048629093	-6.88096242	-0.040545324	-0.069394499	-0.09374567	-0.04839416	-0.012227989
R TYR 101	-1.20583977	-0.563781707	-4.87013592	-0.824769222	-0.648974157	-0.673903244	-0.46576947	-0.700766459
R ARG 102	-2.608783923	-3.251807815	-1.82399122	-3.704338451	-1.971443345	-0.2138168	-2.37538371	-2.090751087
R ARG 103	-6.961083644	-0.128741958	0.004424906	-0.128041229	-0.038496496	-0.004228238	-0.02620145	-0.069645664
R ALA 104	-0.861316334	-0.467285194	0.00180155	-0.067814667	-0.116108023	-0.625269416	-0.11687225	-0.131505071
R PHE 105	-0.458549052	-2.19497821	-1.49270315	-2.038377043	-3.881646011	-3.993481474	-3.77626845	-2.725629699
R SER 106	-0.21837508	-0.56550371	-0.30458088	-0.401352577	-0.319650209	-1.554455637	-0.3663222	-0.086762459
R ASP 107	-0.594586063	-0.51740232	-0.42690656	-0.703408191	-0.518995965	-0.817301385	-0.5286634	-1.156848295
R LEU 108	-2.635863141	-3.026740773	-2.74963642	-2.516701754	-2.734780463	-2.838764218	-2.73321653	-2.731241073
R THR 109	-0.160763205	-0.297590484	-0.48591342	-0.657298553	-0.500627053	-0.898675202	-0.30825475	-0.333848583
R SER 110	0.032551112	0.005983754	0.013502374	0.008309423	0.019585854	0.011000101	0.017379405	0.023461885
R GLN 111	0.050803497	0.029581355	0.032441173	0.026978005	0.039866034	0.027377156	0.044858512	-0.003229443
R LEU 112	-0.005130217	-0.014664334	-0.00255911	-0.011308423	-0.005512122	-0.00384054	-0.00963609	-0.289632195
R HIE 113	0.011925019	0.012193702	0.006077731	0.008066733	0.006143964	0.01088153	0.009502624	0.009779055
R ILE 114	-7.40E-05	-0.005231942	-0.00275056	-0.00307898	-0.002567358	4.25E-05	-0.00060085	-0.000550862
R THR 115	0.002631092	0.003071232	0.002323669	0.00299925	0.002242689	0.002780305	0.002508373	0.002445639
R PRO 116	-0.000368908	-0.000243689	-1.82E-05	3.55E-05	-0.000181705	-0.000419145	-0.0001897	-0.000310672
R GLY 117	0.00128143	0.00143989	0.001116721	0.001006248	0.001155711	0.001084979	0.001306673	0.00084154
R THR 118	0.00251962	0.002576106	0.00288028	0.002127718	0.003247188	0.001941765	0.002875781	0.00235841
R ALA 119	0.002033992	0.002550862	0.00284179	0.003143464	0.002422394	0.002139465	0.001973257	0.001784304
R TYR 120	0.001997501	0.002709323	0.003452387	0.003846288	0.002652087	0.002263184	0.002526868	0.003453137
R GLN 121	0.006237941	0.006256686	0.006395651	0.006354661	0.005930017	0.005351912	0.006157211	0.004348163
R SER 122	0.006973257	0.00795926	0.009277931	0.008896026	0.009452887	0.0076001	0.008779055	0.00648013
R PHE 123	-0.019064234	-0.017153212	-0.01776531	-0.01215821	-0.024347913	-0.015077731	-0.02097851	-0.009418895
R GLU 124	0.027275931	0.031995751	0.043677581	0.052986753	0.025068733	0.031047238	0.026890027	0.036282929
R GLN 125	0.025014246	0.017808298	0.022787303	0.020567858	0.024044239	0.020377906	0.02540115	0.016355411
R VAL 126	-0.045629343	-0.09143914	-0.06025394	-0.050322419	-0.062234635	-0.040206948	-0.07696701	-0.017613597
R VAL 127	-0.084627593	-0.050412897	-0.07121595	-0.041379155	-0.09056161	-0.050228193	-0.09168783	-0.039566858
R ASN 128	-0.012295676	0.027125969	0.015137466	0.0110005	-0.011244689	0.007694076	-0.01104074	0.007477131
R GLU 129	-0.124467784	0.016951571	-0.02541038	0.114173134	-0.350957877	0.081810799	-0.20583171	0.062580956
R LEU 130	-2.262032605	-1.235181995	-2.22185767	-1.06924255	-2.550340409	-1.347438883	-2.49493241	-1.206532355
R PHE 131	-0.093054986	0.053713322	-0.04547563	0.022448638	-0.080486097	-0.044325919	-0.05472972	0.029646838
R ARG 132	-0.137378057	-1.663305455	-0.17209155	-1.12753364	-0.211806996	-0.024251697	-0.08515814	-0.039914621
R ASP 133	0.305640826	0.519955396	0.651481686	0.51835193	0.41010436	0.474258938	0.433172764	0.368852862
R GLY 134	0.003884185	-0.013952012	0.020286941	0.016624828	0.003381432	-0.035802192	0.00343739	-0.02625789
R VAL 135	-0.019146463	0.007954761	-0.03476081	0.002871282	0.009945264	-0.035905731	-0.00154161	-0.041830409
R ASN 136	-2.547162684	-0.113661389	-3.26204997	-0.617817554	-1.149330922	-2.68340413	-2.01274441	-2.578851678
R TRP 137	-0.079232692	-0.045141715	-0.11821495	-0.051308801	-0.199620162	-0.085937755	-0.09919091	-0.071129376
R GLY 138	-0.253487478	-0.100519702	-0.6758947	-0.196574011	-0.861170724	-0.306100782	-0.41622306	-0.344025439
R ARG 139	-6.53374757	-5.835365149	-9.86321479	-7.402474466	-4.52176815	-6.217256505	-7.21671762	-7.70137065
R ILE 140	-0.074660335	-0.067491627	-0.09098725	-0.069245189	-0.149301175	-0.100016246	-0.09456086	-0.076214696
R VAL 141	-0.091541615	-0.288591602	-0.2967856	-0.297845539	-0.621745791	-0.362890827	-0.24166232	-0.309040036
RALA 142	-0.752026923	-1.155619077	-1.131429	-1.146744835	-1.288971536	-1.649421787	-0.72119023	<mark>-1.45294541</mark>

R PHE 143	-0.103550362	-0.105651087	-0.22479955	-0.115051237	-0.195922519	-0.15767456	-0.19548363	-0.144308289
R PHE 144	-0.06632042	-0.136567358	-0.18757886	-0.159229193	-0.184660335	-0.131693577	-0.19447263	-0.141299925
R SER 145	-0.487156134	-2.388101738	-1.40884616	-1.79095133	-1.423593618	-1.465436217	-0.87324692	-1.509139869
R PHE 146	-1.095176076	-2.232325299	-2.28723035	-2.095820585	-1.957643057	-1.739044187	-1.96163728	-1.523370792
R GLY 147	0.035613847	0.015913522	0.014468133	0.020536616	0.015148463	0.02723919	0.026492877	0.016265934
R GLY 148	-0.024300425	-0.160228193	-0.06044364	-0.193695595	-0.062755311	-0.107786553	-0.05491002	-0.085819545
R ALA 149	-0.245603138	-0.589987217	-0.57678405	-0.732988367	-0.544442718	-0.63709022	-0.38125424	-0.529335839
R LEU 150	-0.047229443	-0.132860513	-0.06725269	-0.091717921	-0.068650587	-0.068083229	-0.0645516	-0.026866283
R CYS 151	0.006504624	0.014132717	0.007290177	0.010781805	0.009421645	0.0103994	0.011073982	0.003565609
R VAL 152	-0.003944014	-0.025745564	-0.01652962	-0.039005999	-0.012897276	-0.014747063	-0.0089985	-0.017657586
R GLU 153	0.031116471	0.049974006	0.072190952	0.058826293	0.056907023	0.039663834	0.040896026	0.032793052
R SER 154	0.002928268	0.007149463	0.003953762	0.006381155	0.004452387	0.005004999	0.004188453	0.004815296
R VAL 155	0.000797301	0.002202199	0.000866783	0.001410897	0.001210947	0.001738065	0.001545864	0.002322419
R ASP 156	0.016550362	0.029713822	0.036428143	0.034589603	0.025704574	0.019933767	0.022283679	0.017748313
R LYS 157	0.001075731	-0.002202449	-0.01124594	-0.01287853	-0.000463384	0.00080055	-0.00223919	-0.000342664
R GLU 158	0.005378155	0.009663584	0.013406898	0.012872782	0.00844139	0.006331917	0.00724094	0.007053237
R MET 159	0.001071482	0.001500125	0.00163959	0.001538865	0.001097226	0.001552112	0.001098725	0.001528368
R GLN 160	0.001816796	0.003033992	0.002976256	0.003060235	0.002706823	0.002325669	0.002353412	0.002012497
R VAL 161	0.001170957	0.001769808	0.002097976	0.001749063	0.00167933	0.001836041	0.001597851	0.001536366
R LEU 162	0.000883029	0.000846288	0.001550612	0.000964509	0.001317921	0.001067733	0.000775306	0.001427893
R VAL 163	0.00231842	0.002930767	0.004190202	0.003816546	0.003463634	0.003325419	0.003008248	0.003090977
R SER 164	0.001505624	0.002230192	0.002597101	0.001987753	0.002543114	0.002049488	0.002286678	0.001708073
R ARG 165	-0.00152162	-0.003058235	-0.00794051	-0.008350162	-0.001249438	-0.001055486	-0.00152562	-0.001896526
R ILE 166	-0.00104074	-0.004889528	-0.00105299	-0.005033742	-0.001741815	-0.002629093	-0.00217071	-0.001767308
R ALA 167	0.00128193	0.001411647	0.002579355	0.002146213	0.001045989	0.001185454	0.001266433	0.00112122
R ALA 168	0.000823044	0.000778555	0.001312172	0.001322919	0.001083229	0.000788803	0.001058985	0.001043739
R TRP 169	0.000567108	0.000301175	0.002644339	0.000869533	0.002585354	0.000947763	0.001966508	0.002299675
R MET 170	-0.001907523	-0.001971507	-0.00611922	-0.001103224	-0.006893777	-0.004726318	-0.00257361	-0.003132467
R ALA 171	0.000485129	0.000264934	0.000391152	-2.75E-06	-0.000583854	0.000171957	-8.95E-05	5.75E-06
R THR 172	0.002949013	0.002669833	0.002877531	0.002368658	0.005233942	0.002770807	0.004823544	0.003191452
R TYR 173	-0.003896276	0.000343664	-0.00019845	0.00420045	-0.003965509	0.003053987	-0.00234491	0.006024994
R LEU 174	-0.00028068	0.000506623	-0.00108773	0.000371907	-0.001087228	0.000289678	-0.00077331	0.000331167
R ASN 175	0.002962259	0.000923519	0.003370657	0.00183904	0.003824794	0.003313672	0.003162209	0.002127968
R ASP 176	0.023664584	0.024751312	0.037236441	0.033108723	0.023947513	0.02436166	0.025808548	0.025820545
R HIE 177	0.015348913	0.012128968	0.015307923	0.013574856	0.017677831	0.015175706	0.017830542	0.014178455
R LEU 178	-0.003477881	-0.003589353	-0.00475381	-0.00303999	-0.00387828	-0.00372032	-0.00418695	-0.004382654
R GLU 179	0.023296426	0.018509373	0.044950012	0.029837041	0.023596101	0.023425394	0.021669083	0.024174706
R PRO 180	0.000104474	-0.000301675	0.000248938	-0.00019895	-1.30E-05	0.000581855	0.000171707	0.00052087
R TRP 181	-0.006860035	-0.002712072	-0.00602049	-0.002827543	-0.009263434	-0.008420895	-0.01076856	-0.007587853
R ILE 182	-0.002602349	-0.001229193	-0.00254736	-0.001396651	-0.002710322	-0.001947513	-0.00229218	-0.00223844
R GLN 183	0.001389403	0.000173457	0.001890777	-0.000268183	0.001655086	0.001407898	0.0016006	0.00156061
R GLU 184	0.027677581	0.021668333	0.039837541	0.034757311	0.024093977	0.030366658	0.028220445	0.031844539
R ASN 185	0.009070482	0.005082729	0.010789553	0.006327168	0.011897776	0.011036491	0.010073232	0.011310172
R GLY 186	0.000576356	-1.95E-05	0.000652837	-0.000688578	0.000887278	0.000813547	0.000476881	0.000755311
R GLY 187	0.004058485	0.002669833	0.005433642	0.001384654	0.00463959	0.004541865	0.004220945	0.004220945
R TRP 188	-0.000364909	0.001013997	-0.00149288	0.000695076	-0.000268683	-2.90E-05	0.003542864	-0.000362409
R ASP 189	0.016252437	0.013094976	0.033776056	0.017769308	0.013803549	0.016224694	0.017487878	0.016131967
R THR 190	0.004435641	0.003650337	0.005418395	7.82E-05	0.005587353	0.004818545	0.005698825	0.008347663

R PHE 191	-0.00595901	-0.001914771	-0.00989628	0.001704324	-0.015135536	-0.004630092	-0.00845714	-0.002025994
R VAL 192	-0.000288178	0.001124219	0.003531867	0.000917021	0.001730317	0.00035841	0.002388153	0.000221195
R GLU 193	0.020122219	0.019027493	0.055771057	0.019176456	0.028145214	0.01995951	0.038169958	0.014263184
R LEU 194	0.001262434	0.004448138	0.016387873	0.002445639	-0.005784997	-0.000438584	0.025531587	0.001345914
R TYR 195	0.014190596	0.021901189	-0.01366382	0.006898025	0.040371295	0.025903177	-0.0995663	0.013935717
R GLY 196	0.00272132	0.003768808	0.007211601	0.004027493	0.000826793	0.00235941	0.017494376	0.000786553
R ASN 197	0.016993002	0.03651862	0.012755906	0.02563984	0.036651087	0.016156211	0.056514025	0.012941515
LMOL 1	-14.26272859	-9.241710289	-10.4480786	-6.246816036	-10.24299003	-10.26826564	-9.36459659	-9.450279576

8. LogP values and retention times

Retention Time in HPLC
13.5 min
14 min
12.9 min
18.3 min
18.6 min

Table S3. Retention times in HPLC of the parent compound Quercetin and the four hybrids.