Supplementary Information

Novel Spirocyclic Systems

via a Multicomponent Aza-Diels-Alder Reaction

Sabin Llona-Minguez, Adam Throup, Emilie Steiner, Molly Lightowler, Sandra Van der Haegen, Evert Homan, Lars Eriksson, Pål Stenmark, Annika Jenmalm-Jensen, and Thomas Helleday

aDivision of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden. bDivision of Molecular Structural Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, SE-171 77, Sweden. cDepartment of Materials and Environmental Chemistry, Stockholm University, Stockholm, 106 91, Sweden. dDepartment of Biochemistry and Biophysics, Stockholm University, Stockholm, 106 91, Sweden. eChemical Biology Consortium Sweden, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
Table Of Contents

Supplementary Tables S1
 Supplementary Table 1 S1

Supplementary Figures S2
 Supplementary Figure 1 S2
 Supplementary Figure 2 S3
 Supplementary Figure 3 S4
 Supplementary Figure 4 S5
 Supplementary Figure 5 S6
 Supplementary Figure 6 S7

Crystallography Experimental Section S8
 Crystallography Experimental Procedure S8

Computational Chemistry Experimental Section S8
 Molecular Property Calculations S8

Synthetic Chemistry Experimental Section S9
 General Information S9
 Typical procedure for the synthesis of products S9

Product characterization S10

NMR spectra S16
 \(^1\)H and \(^{13}\)C NMR spectra of 8a in MeOD S16
 \(^1\)H, COSY, NOESY, \(^{13}\)C and DEPT135 spectra of 8b in MeOD S17
 \(^1\)H and \(^{13}\)C NMR spectra of 8c in MeOD S20
 \(^1\)H, COSY, NOESY, \(^{13}\)C and DEPT135 spectra of 8d in MeOD S21
 \(^1\)H and \(^{13}\)C NMR spectra of 8e in MeOD S24
 \(^1\)H and \(^{13}\)C NMR spectra of 8f in MeOD S25
 \(^1\)H and \(^{13}\)C NMR spectra of 8g in MeOD S26
 \(^1\)H and \(^{13}\)C NMR spectra of 8h in MeOD S27
 \(^1\)H, COSY, NOESY, \(^{13}\)C and DEPT135 spectra of 8h in MeOD S28
 \(^1\)H and \(^{13}\)C NMR spectra of 8i in MeOD S31
 \(^1\)H and \(^{13}\)C NMR spectra of 9a in MeOD S32
 \(^1\)H and \(^{13}\)C NMR spectra of 9b in MeOD S33
 \(^1\)H and \(^{13}\)C NMR spectra of 9c in MeOD S34
 \(^1\)H and \(^{13}\)C NMR spectra of 9d in MeOD S35
 \(^1\)H, COSY, NOESY, \(^{13}\)C and DEPT135 spectra of 9e in MeOD S36
 \(^1\)H and \(^{13}\)C NMR spectra of 9f in MeOD S39
 \(^1\)H and \(^{13}\)C NMR spectra of 9g in MeOD S40
 \(^1\)H and \(^{13}\)C NMR spectra of 9h in MeOD S41
 \(^1\)H, COSY, \(^{13}\)C and DEPT135 spectra of 9i in MeOD S42
 \(^1\)H, COSY, NOESY, \(^{13}\)C and DEPT135 spectra of 11a in MeOD S44
 \(^1\)H, COSY, NOESY, \(^{13}\)C and DEPT135 spectra of 11b in MeOD S47
 \(^1\)H, COSY, NOESY, \(^{13}\)C and DEPT135 spectra of 11c in MeOD S50

Supplementary References S53
Supplementary Table 1 Crystal diffraction parameters for 9e.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C\textsubscript{17}H\textsubscript{26}N\textsubscript{2}O\textsubscript{5}S</td>
</tr>
<tr>
<td>F. W.</td>
<td>370.46</td>
</tr>
<tr>
<td>Crystalsystem</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P21/c</td>
</tr>
<tr>
<td>a [Å]</td>
<td>15.5689(12)</td>
</tr>
<tr>
<td>b [Å]</td>
<td>10.3588(6)</td>
</tr>
<tr>
<td>c [Å]</td>
<td>11.1945(7)</td>
</tr>
<tr>
<td>α[^°]</td>
<td>90</td>
</tr>
<tr>
<td>β[^°]</td>
<td>92.692(6)</td>
</tr>
<tr>
<td>γ[^°]</td>
<td>90</td>
</tr>
<tr>
<td>V [Å3]</td>
<td>1803.4(2)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Dcalc.[g/cm3]</td>
<td>1.364</td>
</tr>
<tr>
<td>μ [mm-1]</td>
<td>0.210</td>
</tr>
<tr>
<td>F(000)</td>
<td>792</td>
</tr>
<tr>
<td>θ range[^°]</td>
<td>2.68 – 25.68</td>
</tr>
<tr>
<td>Refls. Colled.</td>
<td>53810</td>
</tr>
<tr>
<td>Rint</td>
<td>0.1587</td>
</tr>
<tr>
<td>GOF on F2</td>
<td>0.893</td>
</tr>
<tr>
<td>Final R1</td>
<td>0.0398</td>
</tr>
<tr>
<td>Final wR2</td>
<td>0.0829</td>
</tr>
</tbody>
</table>
Supplementary Figures

Supplementary Figure 1 Chiral HPLC analysis of 9i.

Compound 9i (3.2 mg/mL in MeOH), vol. inj. 5 µL, CHIRAL ART Cellulose-SB column (4.6 mm*150 mm, 5 uM) with MeOH 0.1% DEA, Gradient 5-50%, Flow 5 ml/min.
Supplementary Figure 2: (a) 3Fo-2Fc electron density map of 9e contoured at 3σ, and relevant C-N bond angles and distances. (b) The hydrogen bond network of 9e molecules building up the crystal lattice is displayed. (c) The unit cell contains four molecules.
Despite the rigid construction of the tricyclic products, the inherent conformational flexibility of the cyclopentane ring led to great intermolecular variability in proton coupling constants, in accordance with Povarov literature (see Supplementary Figure 4). The nOe interactions observed in 8b, 8d and 8k matched 9e’s, and their structures were assigned by analogy to the crystal structure of 9e (Figure 2 and Supplementary Figure 2). Examples with a five-membered heterocycle as ring A, with or without a nitrogen bridgehead, displayed H²-H³ scalar couplings around 4 Hz. Interestingly, examples bearing a five-membered heterocycle ring A and a nitrogen bridgedhead, showed H²-H³ coupling constants ~4.5 Hz, whereas every other example showed spin couplings <2 Hz.

2D COSY and ¹H coupling constants (in blue)

H⁴: 1.85 m - H⁴: 1.82 ddd 13.2, 7.9, 2.0 H⁴: 1.85 m - H⁴: 1.62 ddd 13.8, 9.2, 4.0
H⁵: 1.43 ddd 14.0, 9.5, 5.0 H⁵: 1.48 ddd 13.8, 11.0, 4.6 H⁵: 1.72 app dt 13.1, 7.5 H⁵: 1.82 ddd 13.9, 10.1, 9.2
H²: 3.89 app dt 4.4, 4.0 H²: 3.93 app dt 2.6, 4.0 H²: 3.86 ddd 7.6, 6.8, 3.9 H²: 4.32 app dt 9.1, 4.4
H³: 3.75 app t 4.0 H³: 3.75 app t 4.1 H³: 3.99 dd 3.9, 1.9 H³: 3.97 dd 4.9, 1.1
H⁴: 4.26 dd 9.7, 4.1 H⁴: 4.22 dd 9.5, 4.4 H⁴: 3.18 dd 8.1, 1.7 H⁴: 3.54 app d 4.4
H⁵: 3.14 app q 9.3 H⁵: 2.90 app q 9.7 H⁵: 3.09 app q 7.8 H⁵: 3.04 app dt 4.6, 9.7

2D NOESY correlations (in red)
Supplementary Figure 4 1H NMR information on related tricyclic systems available in the literature.

Ref. 2

Ref. 4

Ref. 5
Supplementary Figure 5 2D NOESY summary for 11a, 11b and 11c.

11a

H² and H³ lack nOe interaction with benzylic and ethereal -CH₂ groups. H¹⁰ lacks nOe interaction with H³.

11b

H⁴ and H⁵ lack nOe interaction with benzylic and ethereal -CH₂ groups.

11c

H² and H³ lack nOe interaction with benzylic and ethereal -CH₂ groups.
Supplementary Figure 6 Comparison of some General Lead/Drug-Likeness Criteria between a theoretical DOLE set in dark blue (162 compounds), an in house primary screening set in light blue (LCBKI, ~11000 compounds), and approved drugs in light yellow (DrugBank, ~1700 compounds). No filters applied. (a) Molecular Shape Index, (b) Plane of Best Fit, (c) Fraction sp3, (d) Molecular weight, (e) Molecular Flexibility vs. Molecular Complexity, (f) cLogS vs. SLogP. Molecular Shape Index: Spherical < 0.5 < Linear; Molecular Flexibility: Low < 0.5 < High; Molecular Complexity: Low < 0.5 < High.
Crystallography Experimental Section

Crystallography Experimental Procedure

A crystal of 9e was recovered from an NMR tube containing a MeOD solution of 9e. The crystal was glued to a thin glass fiber and mounted on a Bruker D8 4-circle diffractometer equipped with a photon 100 detector. The detector distance was 50 mm and the data collection was carried out at 291K. Several different phiscans as well as omega scans were done to record all unique reflections. The intensity data were processed using CrysAlisPro (Rigaku) due to the problems with resolving the twinning with the APEX 3 software. Direct methods using SHELXS were used to solve the structure and refinement was performed using SHELXL.6 Hydrogen atoms were fixed on calculated positions using HFIX options in SHELXL. The 9e reflection data was measured to 0.83 Å resolution, but the number of significant reflections decreased below 1 Å resolution, a fact known from many sxtl investigations. The data set fulfilled “Sheldrick rule” that 50% of the reflections between 1.0 and 1.2 Å resolution should be significantly observed. The final structure is of high quality (Supplementary Table 1). The only aberration is the rather high internal R value, but this is partly related to the fact that the reflection data came from two individuals of the twinned crystal and partly to the rather high amount of nonsignificant reflections, 46% on average. This amount did of course increase below 1.0 Å resolution, thus contributing to the internal R-value. The structure was analysed and pictures were produced using Mercury, Coot and Pymol.7,9 The coordinates and structure factors have been deposited in the Cambridge Structural Database under CCDC number CCDC 1541016.

Computational Chemistry Experimental Section

Molecular Property Calculations

For each molecule, a single, neutralized, 3D minimized conformation was generated using Ligprep, as implemented in Schrödinger Suite (Schrödinger Release 2017-1: LigPrep, Schrödinger, LLC, New York, NY, 2017). The OPLS3 force field was used for minimizations. The Plane of Best Fit was then calculated for each 3D molecule using the Erlwood nodes as implemented in Knime 3.3.1 (https://www.knime.org/), while the other structural descriptors were calculated using DataWarrior 4.5.1 (http://www.openmolecules.org/datawarrior/index.html).
Synthetic Chemistry Experimental Section

General Information

All commercial reagents and solvents were used without further purification. All starting material ketones, amines and catalysts are commercially available. Cyclopentadiene was cracked and distilled prior to use. Analytical thin-layer chromatography was performed on silica gel 60 F-254 plates (E. Merck) and visualized under a UV lamp. Flash column chromatography was performed in a Biotage® SP4 MPLC system using Merck silica gel 60Å (40-63 mm mesh). 1H and 13C NMR spectra were recorded on a Bruker DRX-400 or a Bruker Avance III 600 MHz spectrometer. Chemical shifts are expressed in parts per million (ppm) and referenced to the residual solvent peak. Analytical LC-MS were performed on an Agilent MSD mass spectrometer connected to an Agilent 1100 system with: Method B1090A: Column ACE 3 C8 (50 x 3.0 mm); H$_2$O (+ 0.1% TFA) and MeCN were used as mobile phases at a flow rate of 1 mL/min, with a gradient time of 3.0 min; or Method 0597X3: Column Xterra MSC18 (50 x 3.0 mm); H$_2$O (containing 10 mM NH$_4$HCO$_3$; pH = 10) and MeCN were used as mobile phases at a flow rate of 1 mL/min, with a gradient time of 3.0 min. For LC-MS, detection was made by UV (254 or 214 nm) and MS (ESI+). All final compounds were assessed to be >95% pure by LC-MS analysis.

Typical procedure for the synthesis of products

Step 1
A solution of trifluoroacetic acid (0.6 mmol, 1 eq) in acetonitrile (1 mL) was added to a solution of heterocyclic amine (0.6 mmol, 1 eq) in acetonitrile (0.5 mL), followed by sequential addition of a solution of ketone (0.66 mmol, 1.1 eq) and yttrium (III) triflate (0.3 mmol, 0.5 eq) in acetonitrile (1 mL). The mixture was stirred at room temperature for one minute, followed by addition of a solution of cyclopentadiene (1.2 mmol, 2 eq) in acetonitrile (0.5 mL) (total reaction volume 3 mL), and subsequently stirred at the indicated temperature, until the amine starting material was consumed (determined by LC-MS). In some instances, additional ketone, yttrium (III) triflate and cyclopentadiene were added. The resulting mixture was concentrated in vacuo, passed through a silica pad and used in the next step without any further purification.

Step 2
The crude mixture from Step 1 was dissolved in acetone (2 mL) at 0 °C, treated with N-methylmorpholine N-oxide (1.2 mmol, 2 eq), followed by osmium tetroxide solution (2.5 wt. % in tert-butanol, 0.240 mmol, 0.4 eq) in water (2 mL). The reaction mixture was allowed to warm to room temperature, and stirred until the starting material was consumed (determined by LC-MS). In some instances, additional osmium tetroxide and N-methylmorpholine N-oxide were added. The reaction was quenched with QuadraPure® IMDAZ resin (3-fold excess in respect to the total amount of osmium used) and stirred at room temperature for 30 minutes. The resin was filtered off and the reaction mixture was concentrated in vacuo. The resulting residue was purified by flash column chromatography.
Product characterization

(5a'S,7'R,8'S,8a'S)-2'-Methyl-6',7',8',8a'-tetrahydro-5a'H-spiro[cyclobutane-1,5'-cyclopenta[e]isoxazolo[2,3-a]pyrimidine]-7',8'-diol
Step 1: Room temperature, 18 h.
Step 2: After 24 h, an additional portion of OsO4 and NMO was added. Total reaction time 48 h. The reaction mixture was purified by flash chromatography (5-10% MeOH/DCM). Obtained as an off-white amorphous solid (112 mg, 75% yield). 1H NMR (400 MHz, MeOD) δ = 6.13 (q, J = 0.8 Hz, 1H), 4.45 (dd, J = 7.8, 2.6 Hz, 1H), 4.07 (dd, J = 4.3, 2.7 Hz, 1H), 3.90 (dt, J = 6.0, 4.0, 1H), 3.35 (dt, J = 10.2, 8.2 Hz, 1H), 2.38 (d, J = 0.7 Hz, 3H), 2.30 – 2.14 (m, 3H), 2.11 – 2.01 (m, 1H), 1.95 – 1.81 (m, 3H), 1.48 (ddd, J = 13.8, 10.3, 6.1 Hz, 1H). 13C NMR (101 MHz, MeOD) δ = 174.5, 156.5, 95.6, 77.2, 72.5, 66.0, 57.0, 43.3, 36.7, 32.8, 31.9, 14.3, 12.6. LC-MS (ESI+) m/z: 251 [M+H]+. HRMS (ESI+): exact mass calculated for [M+H]+ (C13H10N2O2) requires m/z 251.1390, found m/z 251.1387.

(5a'S,7'R,8'S,8a'S)-2'-Tert-butyl)-6',7',8',8a'-tetrahydro-5a'H-spiro[cyclobutane-1,5'-cyclopenta[e]isoxazolo[2,3-a]pyrimidine]-7',8'-diol
Step 1: Room temperature, 18 h.
Step 2: Total reaction time 18 h. Obtained as an amorphous off-white solid (154 mg, 88% yield). 1H NMR (600 MHz, MeOD) δ = 5.58 (s, 1H), 4.26 (dd, J = 9.7, 4.1 Hz, 1H), 3.89 (app t, J = 4.4, 4.0 Hz, 1H), 3.75 (app t, J = 4.0 Hz, 1H), 3.14 (app q, J = 9.3 Hz, 1H), 2.31 – 2.08 (m, 3H), 1.99 – 1.80 (m, 4H), 1.43 (ddd, J = 14.0, 9.5, 5.0 Hz, 1H). 13C NMR (DEPT135, 101 MHz, MeOD) δ = 182.4 (-C), 162.3 (-C), 94.2 (-C), 77.8 (-CH), 73.5 (-CH), 67.5 (-CH), 60.0 (-C), 43.1 (-CH), 35.4 (-CH2), 34.2 (-C), 33.5 (-CH2), 33.3 (-CH2), 28.2 (-CH3), 15.4 (-CH3). LC-MS (ESI+) m/z: 293 [M+H]+. HRMS (ESI+): exact mass calculated for [M+H]+ (C16H14N2O2) requires m/z 293.1860, found m/z 293.1861.

(5a'S,7'R,8'S,8a'S,R)-1'-Methyl-4',5a',6',7',8',8a'-hexahydrospiro[cyclobutane-1,5'-cyclopenta[d]isoxazolo[5,4-b]pyridine]-7',8'-diol
Step 1: Room temperature, 18 h.
Step 2: Total reaction time 18 h. Obtained as an amorphous off-white solid (134 mg, 89% yield). 1H NMR (400 MHz, MeOD) δ = 4.07 (dd, J = 4.0, 1.5 Hz, 1H), 3.93 (ddd, J = 8.2, 6.8, 4.0 Hz, 1H), 3.12 – 3.05 (m, 1H), 3.03 (dd, J = 6.9, 1.0 Hz, 1H), 2.23 – 2.18 (m, 1H), 2.15 (s, 3H), 2.14 – 2.08 (m, 1H), 2.03 – 1.95 (m, 1H), 1.91 (dd, J = 11.4, 8.4 Hz, 1H), 1.86 – 1.78 (m, 2H), 1.75 – 1.69 (m, 2H). 13C NMR (101 MHz, MeOD) δ = 167.6, 159.7, 89.1, 77.7, 73.7, 59.9, 43.4, 39.6, 37.3, 33.4, 32.1, 13.9, 10.9. LC-MS (ESI+) m/z: 251 [M+H]+. HRMS (ESI+): exact mass calculated for [M+H]+ (C13H10N2O2) requires m/z 251.1390, found m/z 251.1387.

(5a'S,7'R,8'S,8a'S,R)-1'-Methyl-4',5a',6',7',8',8a'-hexahydrospiro[cyclobutane-1,5'-cyclopenta[d]isothiazolo[5,4-b]pyridine]-7',8'-diol
Step 1: After 24 h, an additional portion of ketone, yttrium (III) triflate and cyclopentadiene was added. Total reaction time 4 days.
Step 2: Total reaction time 18 h. Obtained as an amorphous beige solid (128 mg, 80% yield). 1H NMR (400 MHz, MeOD) δ = 3.99 (dd, J = 3.9, 1.9 Hz, 1H), 3.86 (ddd, J = 7.6, 6.8, 3.9 Hz, 1H), 3.18 (dd, J = 8.1, 1.7 Hz, 1H), 3.18 (dd, J = 8.1, 1.7 Hz, 1H), 2.30 (s, 3H), 2.18 – 2.09 (m, 2H), 2.04 – 1.95 (m, 1H), 1.91 – 1.79 (m, 4H), 1.72 (app dt, J = 13.1, 7.5 Hz, 1H). 13C NMR (DEPT135, 101 MHz, MeOD) δ = 167.9 (-C), 165.8 (-C), 114.7 (-C), 79.4 (-CH), 73.5 (-CH), 60.4 (-C), 43.2 (-CH), 41.9 (-CH), 36.5 (-CH2), 33.6 (-CH2), 32.7 (-CH3), 18.4 (-CH3), 13.9 (-CH3). LC-MS (ESI+) m/z: 267 [M+H]+. HRMS (ESI+): exact mass calculated for [M+H]+ (C13H15N2O2S) requires m/z 267.1162, found m/z 267.1161.

(5a'S,7'R,8'S,8a'S,R)-1'-methyl-3'-phenyl-4',5a',6',7',8',8a'-hexahydro-3'H-spiro[cyclobutane-1,5'-cyclopenta[d]pyrazolo[3,4-b]pyridine]-7',8'-diol N-oxide
Step 1: After 24 h, an additional portion of ketone, yttrium (III) triflate and cyclopentadiene was added, followed by additional portions every 24 h. Total reaction time 4 days.
Step 2: After 24 h, an additional portion of OsO4 and NMO was added. Total reaction time 48 h. The reaction mixture was purified by flash chromatography (5-10% MeOH/DCM). Obtained as an amorphous off-white solid (197 mg, 96% yield). 1H NMR (400 MHz, MeOD) δ = 7.69 – 7.54 (m, 5H), 3.88 (app t, J = 3.1 Hz, 1H), 3.25 (app q, J = 8.1 Hz, 1H), 3.15 (app t, J = 9.8 Hz, 1H), 3.09 (dd, J = 9.9, 3.3 Hz, 1H), 2.59 – 2.46 (m, 1H), 2.37 (s, 1H), 2.33 – 2.24 (m, 1H), 2.05 (dd, J = 14.0, 8.1 Hz, 1H), 2.01 – 1.84 (m, 1H), 1.09 (ddd, J = 14.1, 10.8, 3.4 Hz, 1H). 13C NMR (101 MHz, MeOD) δ = 170.7, 163.8, 136.1, 131.3, 131.3, 125.6, 86.3, 76.4, 73.0, 64.6, 42.1, 40.9, 34.7, 31.1, 15.0, 13.0. LC-MS (ESI+) m/z: 342 [M+H]+. HRMS (ESI+): exact mass calculated for [M+H]+ (C16H15NO3) requires m/z 342.1812, found m/z 342.1814.

S10
(5a'S,7'R,8'S,9a'S)-Methyl 7',8'-dihydroxy-4',5a',6',7',8',9a'- hexahydrospiro[cyclobutane-1,5'-cyclopenta[d]thieno[3,2-b]pyridine]-3'-carboxylate

Step 1: Room temperature, 18 h.

Step 2: After 24 h, an additional portion of OsO₄ and NMO was added, followed by additional portions every 24 h. Total reaction time 4 days. The reaction mixture was purified by flash chromatography (5-10% MeOH / DCM). Obtained as an amorphous off-white solid (50 mg, 71% yield). ¹H NMR (400 MHz, MeOD) δ = 4.33 (q, J = 7.1 Hz, 2H), 3.95 (s, 3H), 3.85 (m, 1H), 3.83 (s, 1H), 3.24 (app d, J = 5.2 Hz, 1H), 2.81 (m, 3H), 2.03 – 1.92 (m, 2H). ¹³C NMR (101 MHz, MeOD) δ = 159.9, 144.5, 132.3, 119.6, 79.5, 73.7, 61.9, 59.9, 54.8. LC-MS (ESI+): exact mass calculated for [M+H]⁺ (C₁₅H₁₄NO₃S) requires m/z 322.1761, found m/z 322.1761.

(5a'S,7'R,8'S,9a'R)-Ethyl 7,8'-dihydroxy-1'-methyl-4',5a',6',7',8',9a'-hexahydro-1'H-spirocyclobutane-1,5'-cyclopenta[d]imidazo[4,5-b]pyridine-2'-carboxylate

Step 1: Room temperature, 18 h.

Step 2: Total reaction time 48 h. The reaction mixture was purified by flash chromatography (5-10% MeOH / DCM). Obtained as an amorphous off-white solid (124 mg, 64% yield). ¹H NMR (400 MHz, MeOD) δ = 4.33 (q, J = 7.1 Hz, 2H), 3.95 (s, 3H), 3.82 – 3.88 (m, 1H), 3.23 (m, 1H), 2.01 – 2.07 (m, 3H). ¹³C NMR (101 MHz, MeOD) δ = 159.9, 144.5, 132.3, 119.6, 79.5, 73.7, 61.9, 59.9, 54.8, 52.4. LC-MS (ESI+): exact mass calculated for [M+H]⁺ (C₁₆H₁₁NO₃S) requires m/z 308.1603, found m/z 308.1603.

(6a'S,8'S,R,9'S,9a'R)-8',9'-Dihydroxy-2',4'-dimethyl-5',6a',7',8',9a'-hexahydrospiro[cyclobutane-1,6'-cyclopenta[4,5]pyrido[2,3-d]pyrimidine]-1',3'(2'H,4'H)-dione

Step 1: 50 °C. After 24 h, an additional portion of ketone, yttrium (III) triflate and cyclopentadiene was added, followed by additional portions every 24 h. Total reaction time 2 days.

Step 2: Total reaction time 18 h. The reaction mixture was purified by flash chromatography (5-15% MeOH / DCM). Obtained as an amorphous off-white solid (131 mg, 71% yield). ¹H NMR (400 MHz, MeOD) δ = 4.33 (q, J = 4.5, 9.3 Hz, 1H), 4.21 (dd, J = 5.0, 1.2 Hz, 1H), 3.69 – 3.60 (m, 1H), 3.57 (app d, J = 4.5 Hz, 1H), 3.33 (s, 3H), 3.25 (s, 3H), 3.06 (dt, J = 4.6, 9.7 Hz, 1H), 2.50 – 2.39 (m, 1H), 2.03 – 1.92 (m, 2H). ¹³C NMR (101 MHz, MeOD) δ = 159.9, 144.5, 132.3, 119.6, 79.5, 73.7, 61.9, 59.9, 54.8, 40.4, 36.6, 34.3, 33.4, 32.4, 14.6, 13.8. LC-MS (ESI+): m/z: 322.1761, found m/z 322.1761.

(6a'S,8'S,R,9'S,9a'R)-8',9'-Dihydroxy-5',6a',7',8',9a'-hexahydrospiro[cyclobutane-1,6'-cyclopenta[4,5]pyrido[2,3-d]pyrimidine]-1',3'(2'H,4'H)-dione

Step 1: 50 °C. After 24 h, an additional portion of ketone, yttrium (III) triflate and cyclopentadiene was added, followed by additional portions every 24 h. Total reaction time 3 days.

Step 2: Total reaction time 18 h. The reaction mixture was purified by flash chromatography (5-25% MeOH / DCM). Obtained as an amorphous white solid (45 mg, 27% yield). ¹H NMR (400 MHz, MeOD) δ = 4.33 (dt, J = 4.4, 9.1 Hz, 1H), 3.97 (dd, J = 4.9, 1.1 Hz, 1H), 3.63 (dd, J = 11.7, 9.7, 5.2 Hz, 1H), 3.54 (app d, J = 4.4 Hz, 1H), 3.04 (app d, J = 4.6, 9.7 Hz, 1H), 2.46 – 2.36 (m, 1H), 2.03 – 1.89 (m, 2H). ¹³C NMR (101 MHz, MeOD) δ = 166.4 (-C), 152.3 (-C), 150.8 (-C), 87.4 (-C), 77.6 (-CH), 72.5 (-CH₂), 58.0 (-CH), 44.8 (-CH₂), 38.9 (-C), 37.0 (-CH₂), 35.0 (-CH₃), 28.8 (-CH₃), 15.5 (-CH₃). LC-MS (ESI+): m/z: 280.1292, found m/z 280.1293.

S11
(6a'S,8'R,9'S,9a'R)-3'-Amino-8',9'-dihydroxy-5',6a',7',8',9',9a'-hexahydrospiro[cyclobutane-1,6'-cyclopenta[4,5]pyrido[2,3-d]pyrimidin]-1'(2'H)-one
Step 1: 50°C. After 24 h, an additional portion of ketone, yttrium (III) triflate and cyclopentadiene was added, followed by additional portions every 24 h. Total reaction time 3 days.

Step 2: Total reaction time 18 h. The reaction mixture was purified by flash chromatography (5-25% MeOH / DCM). Obtained as an amorphous white solid (53 mg, 32% yield). 1H NMR (400 MHz, MeOD) δ = 4.32 (dt, J = 4.4, 8.4 Hz, 1H), 4.01 (app d, J = 4.6 Hz, 1H), 3.70 (app q, J = 9.9 Hz, 1H), 3.54 (d, J = 3.9 Hz, 1H), 3.01 (dt, J = 4.5, 9.4 Hz, 1H), 2.38 (app q, J = 9.7 Hz, 1H), 2.01 – 1.89 (m, 2H), 1.83 – 1.68 (m, 3H), 1.64 – 1.53 (m, 1H). 13C NMR (101 MHz, MeOD) δ = 165.1, 160.7, 154.9, 90.0, 77.8, 72.8, 58.0, 44.8, 39.7, 37.1, 34.9, 29.0, 15.7. LC-MS (ESI+): exact mass calculated for [M+H]+ (C13H13N2O3) requires m/z 279.1452, found m/z 279.1447.

(5a'S,7'R,8'S,8a'S)-Tert-butyl 2'-(tert-butyl)-7',8'-dihydroxy-6',7',8',8a'-tetrahydro-5a'-H-spiro[azetidine-3,5'-cyclopenta[6,7'-octahydro-5a'H-spiro[cyclohexane-1,5'-cyclopenta[4,5]pyrido[2,3-d]pyrimidin]-5,4'-pyran]-7,8-diol
Step 1: Room temperature, 18 h.
Step 2: Total reaction time 18 h. The reaction mixture was purified by flash chromatography (0-5% MeOH / DCM). Obtained as an amorphous white solid (131 mg, 71% yield). 1H NMR (400 MHz, MeOD) δ = 5.56 (s, 1H), 4.23 (dd, J = 10.0, 4.5 Hz, 1H), 4.01 (dd, J = 17.0, 8.5 Hz, 2H), 3.94 – 3.86 (m, 2H), 3.68 (app t, J = 4.3 Hz, 1H), 3.63 – 3.55 (m, 1H), 3.15 (dd, J = 18.1, 9.0 Hz, 1H), 1.96 (ddd, J = 13.2, 8.4, 3.0 Hz, 1H), 1.44 (s, 9H). 13C NMR (101 MHz, MeOD) δ = 183.3, 165.6, 158.1, 94.4, 81.1, 78.2, 73.4, 67.3, 66.4, 62.6, 55.7, 42.2, 34.1, 33.1, 28.6, 28.2. LC-MS (ESI+): m/z 394 [M+H]+. HRMS (ESI+): exact mass calculated for [M+H]+ (C19H24N3O3) requires m/z 394.2336, found m/z 394.2342.

(5a'S,7'R,8'S,8a'S,9'S)-2'-(Tert-butyl)-6,7,8,8a-tetrahydro-5a'H-spiro[cyclopenta[4,5]pyrido[2,3-d]pyrimidin]-5,4'-pyran-7,8-diol
Step 1: Room temperature, 18 h.
Step 2: Total reaction time 18 h. The reaction mixture was purified by flash chromatography (0-5% MeOH / DCM). Obtained as an amorphous white solid (178 mg, 92%). 1H NMR (400 MHz, MeOD) δ = 5.51 (s, 1H), 4.18 (dd, J = 9.5, 4.1 Hz, 1H), 3.91 (dd, J = 7.1, 4.4 Hz, 1H), 3.76 (app t, J = 4.1 Hz, 1H), 2.87 (dd, J = 18.4, 9.7 Hz, 1H), 1.80 – 1.67 (m, 3H), 1.65 – 1.39 (m, 10H), 1.30 (s, 9H). 13C NMR (101 MHz, MeOD) δ = 180.9, 161.0, 94.6, 77.8, 73.3, 67.4, 56.5, 43.3, 36.9, 34.0, 33.8, 33.0, 28.3, 27.2, 23.6, 23.1. LC-MS (ESI+): m/z 321 [M+H]+. HRMS (ESI+): exact mass calculated for [M+H]+ (C19H22N2O3) requires m/z 321.2173, found m/z 321.2173.

(5a'S,7'R,8'S,8a'S)-2'-(Tert-butyl)-2',3',5',6',7',8,8a-octahydro-5a'H-spiro[cyclopenta[4,5]pyrido[2,3-d]pyrimidin]-5,4'-pyran-7,8-diol
Step 1: Room temperature, 18 h.
Step 2: Total reaction time 18 h. The reaction mixture was purified by flash chromatography (0-5% MeOH / DCM). Obtained as an amorphous white solid (155 mg, 80% yield). 1H NMR (600 MHz, MeOD) δ = 5.51 (s, 1H), 5.64 (dd, J = 9.3, 4.3 Hz, 1H), 3.93 (dd, J = 11.2, 2.4 Hz, 1H), 3.90 (dd, J = 6.6, 4.0 Hz, 1H), 3.77 (dt, J = 11.4, 3.9 Hz, 1H), 3.73 (app t, J = 4.1 Hz, 1H), 3.68 (dd, J = 7.8, 2.8 Hz, 2H), 2.75 (dd, J = 18.3, 9.8 Hz, 1H), 1.86 (dd, J = 14.2, 4.9, 2.6 Hz, 1H), 1.79 (dd, J = 13.5, 8.0, 2.6 Hz, 1H), 1.71 – 1.61 (m, 3H), 1.56 (dd, J = 7.3, 5.1, 2.8 Hz, 1H), 1.47 (ddd, J = 14.0, 10.6, 4.6 Hz, 1H), 1.30 (s, 9H). 13C NMR (101 MHz, MeOD) δ = 181.5, 161.9, 94.6, 77.8, 73.2, 67.4, 65.4, 65.0, 54.3, 44.8, 36.6, 34.8, 34.1, 32.7, 28.3. LC-MS (ESI+): m/z 323 [M+H]+. HRMS (ESI+): exact mass calculated for [M+H]+ (C17H38N2O4) requires m/z 323.1965, found m/z 323.1961.
(5aS,7R,8S,8aS)-2-(Tert-butyl)-7,8-dihydroxy-2',3',5',6',6',7,7,8,8a-octahydro-5aH-spiro[cyclopenta[e]isoazolo[2,3-a]pyrimidine-5,4'-thiopyran] 1',1'-dioxide

Step 1: Room temperature, 18 h. Step 2: Total reaction time 18 h. The reaction mixture was purified by flash chromatography (0-10% MeOH / DCM). Obtained as an amorphous white solid (185 mg, 83% yield). A crystal of 9e was recovered from an NMR tube containing a MeOD solution of 9e. Mp: 210–215 °C (decomp). 1H NMR (600MHz, MeOD) δ = 5.55 (s, 1H), 4.22 (dd, J = 9.5, 4.4 Hz, 1H), 3.93 (app dt, J = 2.6, 4.0 Hz, 1H), 3.75 (app t, J = 4.1 Hz, 1H), 3.43 (ddd, J = 14.6, 11.5, 4.9 Hz, 1H), 3.19 (td, J = 14.0, 3.1 Hz, 1H), 2.99 (ddd, J = 11.9, 7.5, 3.6 Hz, 1H), 2.87 (app q, J = 9.7 Hz, 1H), 2.77 (dd, J = 18.4, 9.7 Hz, 1H), 2.47 (dt, J = 9.5, 5.0 Hz, 1H), 1.24 – 2.00 (m, 4H), 1.82 (ddd, J = 13.2, 7.9, 2.0 Hz, 1H), 1.48 (ddd, J = 13.8, 11.0, 4.6 Hz, 1H), 1.31 (s, 9H). 13C NMR (DEPT 135, 101MHz, MeOD) δ = 181.8 (-C), 132.7 (-C), 94.8 (-CH), 78.0 (-CH), 73.2 (-CH), 67.3 (-CH), 54.4 (-C), 48.6 (-CH2), 48.2 (-CH2), 44.0 (-CH), 34.4 (-CH2), 34.1 (-C), 33.4 (-CH2), 31.4 (-CH2), 28.2 (-CH2). LC-MS (ESI+) m/z: 371 [M+H]+. HRMS (ESI+): exact mass calculated for [M+H]+ (C17H25N3O6S) requires m/z 371.1635, found m/z 371.1631.

(5a'S,7'R,8'S,8a'S)-2-(Tert-butyl)-6',7',8',8a'-tetrahydro-5a'H-spiro[cycloheptane-1,5'-cyclopenta[e]isoazolo[2,3-a]pyrimidine]-7',8'-dion

Step 1: Total reaction time 18 h. Step 2: After 24 h, an additional portion of OsO2 and NMO was added. Total reaction time 48 h. The reaction mixture was purified by flash chromatography (2-7% MeOH / DCM). Obtained as an amorphous white solid (139 mg, 69% yield). 1H NMR (400MHz, MeOD) δ = 6.14 (s, 1H), 4.53 (dd, J = 7.4, 1.9 Hz, 1H), 4.21 (dd, J = 4.5, 2.3 Hz, 1H), 4.02 (dd, J = 5.2, 2.9 Hz, 1H), 3.19 (app dt, J = 11.4, 7.5 Hz, 1H), 1.95 – 1.78 (m, 5H), 1.74 – 1.53 (m, 9H), 1.39 (s, 9H). 13C NMR (101MHz, MeOD) δ = 183.7, 155.3, 92.8, 76.7, 72.2, 66.7, 59.7, 49.8, 44.9, 39.1, 37.8, 34.7, 33.1, 30.7, 30.6, 28.1, 22.8, 22.8. LC-MS (ESI+) m/z: 335 [M+H]+. HRMS (ESI+): exact mass calculated for [M+H]+ (C16H23N3O6S) requires m/z 335.2329, found m/z 335.2330.

(5a'S,7'R,8'S,8a'S)-2-(Tert-butyl)-6',7',8',8a'-tetrahydro-5a'H-spiro[cyclooctane-1,5'-cyclopenta[e]isoazolo[2,3-a]pyrimidine]-7',8'-dion

Step 1: After 24 h, an additional portion of ketone, yttrium (III) triflate and cyclopentadiene was added, and the temperature was raised to 60 °C, followed by additional portions every 24 h. Total reaction time 5 days. Step 2: After 24 h, an additional portion of OsO2 and NMO was added. Total reaction time 48 h. The reaction mixture was purified by flash chromatography (5-10% MeOH / DCM). Obtained as a yellow oil (111 mg, 53% yield). 1H NMR (400MHz, MeOD) δ = 6.18 (s, 1H), 4.54 (dd, J = 7.3, 2.0 Hz, 1H), 4.22 (dd, J = 4.6, 2.3 Hz, 1H), 4.02 (dd, J = 5.7, 3.2 Hz, 1H), 3.19 (app dt, J = 11.3, 7.6 Hz, 1H), 1.91 (ddd, J = 13.5, 7.5, 2.8 Hz, 1H), 1.86 – 1.80 (m, 4H), 1.74 – 1.52 (m, 1H), 1.37 (s, 9H). 13C NMR (101MHz, MeOD) δ = 183.7, 154.9, 92.8, 76.8, 72.3, 66.9, 59.4, 43.9, 34.8, 34.2, 33.2, 32.0, 29.5, 28.7, 28.2, 26.1, 22.8, 22.7. LC-MS (ESI+) m/z: 349 [M+H]+. HRMS (ESI+): exact mass calculated for [M+H]+ (C16H23N3O6S) requires m/z 349.2468, found m/z 349.2487.

(5a'S,7'R,8'S,8a'S)-2-(Tert-butyl)-6',7',8',8a'-tetrahydro-5a'H-spiro[cyclododecane-1,5'-cyclopenta[e]isoazolo[2,3-a]pyrimidine]-7',8'-dion

Step 1: After 24 h, an additional portion of ketone, yttrium (III) triflate and cyclopentadiene was added, and the temperature was raised to 60 °C, followed by additional portions every 24 h. Total reaction time 4 days. Step 2: After 24 h, an additional portion of OsO2 and NMO was added. Total reaction time 48 h. The reaction mixture was purified by flash chromatography (2-8% MeOH / DCM). Obtained as a brown oil (187 mg, 77% yield). 1H NMR (400MHz, MeOD) δ = 6.15 (s, 1H), 4.56 (dd, J = 7.6, 1.9 Hz, 1H), 4.16 (dd, J = 4.6, 2.4 Hz, 1H), 4.03 (dd, J = 5.1, 3.0 Hz, 1H), 3.08 (dt, J = 11.5, 7.6 Hz, 1H), 1.97 – 1.85 (m, 2H), 1.74 – 1.63 (m, 3H), 1.56 – 1.40 (m, 17H), 1.39 (s, 9H). 13C NMR (101MHz, MeOD) δ = 183.9, 155.3, 92.7, 76.8, 72.4, 66.9, 59.1, 43.5, 34.8, 32.8, 31.7, 31.4, 28.2, 28.2, 27.3, 27.0, 27.0, 23.5, 23.5, 23.0, 19.9, 19.6. LC-MS (ESI+) m/z: 405 [M+H]+. HRMS (ESI+): exact mass calculated for [M+H]+ (C22H30N4O8S) requires m/z 405.3112, found m/z 405.3112.
I-((5S,8R,9S,10S,13S,14S,17S)-2'-((Tert-butyl)-10,13-dimethyl-1,2,4,5,6,7,8,8a',9,10,11,12,13,14,15,16,17-octadecahydro-5a'H-spiro[cyclopenta[a]phenanthrene-3,5'-cyclopenta[e]isoxazolo[2,3-b]pyrimidin]-17-yl)ethanone (mixture of 2 diastereomers)

Step 1: Run at 0.2 mmol scale. Room temperature, 18 h. The reaction mixture was purified by flash chromatography (0-5% MeOH / DCM). Obtained as an amorphous yellow solid (91 mg, 90% yield). 1H NMR (400 MHz, MeOD) δ = 6.25 – 6.21 (m, 1H), 6.09 – 6.04 (m, 1H), 5.24 (app dt, J = 7.6, 1.9 Hz, 1H), 2.98 (app q, J = 8.1 Hz, 1H), 2.65 (t, J = 8.8 Hz, 1H), 2.57 – 2.49 (m, 1H), 2.29 – 2.20 (m, 1H), 2.17 – 2.13 (m, 1H), 2.12 (s, 1.3H), 2.12 (s, 1.7H), 2.09 – 2.02 (m, 1H), 2.00 – 1.84 (m, 1H), 1.80 – 1.38 (m, 13H), 1.36 (s, 8H), 1.34 – 0.93 (m, 7H), 0.91 (s, 1.3H), 0.90 (s, 1.7H), 0.62 (s, 3H). 13C NMR (DEPT 135, 101MHz, MeOD) δ = 212.3 (-C), 184.2 (-C), 157.0 (-C x 2), 140.7 (-C x 2), 126.2 (-CH), 92.9 (-CH), 65.4 (-CH x 2), 64.7 (-CH), 57.8 (-CH), 56.4 (-C x 2), 55.3 (-CH x 2), 49.9 (-CH), 45.3 (-C x 2), 45.3 (-C x 2), 42.5 (-CH), 41.8 (-CH), 40.0 (-CH2), 37.7 (-CH2), 36.8 (-CH2), 36.8 (-C), 36.7 (-CH), 36.7 (-CH), 34.9 (-C), 34.7 (-CH2), 34.3 (-CH2), 33.0 (-CH2), 32.9 (-CH2), 31.6 (-CH2), 30.9 (-CH2), 30.3 (-CH2), 29.3 (-CH2), 29.1 (-CH2), 28.1 (-CH), 25.3 (-CH2), 23.7 (-CH2), 22.1 (-CH2), 13.8 (-CH3), 11.3 (-CH3). LC-MS (ESI+): m/z: 505 [M+H]+. HRMS (ESI+): exact mass calculated for [M+H]+ (C33H43N2O2) requires m/z 505.3789, found m/z 505.3788.

((Cyclopentadien-1-ylmethoxy)methyl)benzene (mixture of 10a, 10b and 10e)
Chloromethyl benzyl ether (330 µL, 376 mg, 2.40 mmol) was added to a stirred solution of cyclopentadienyl sodium salt (2M in THF, 1.32 ml, 233 mg, 2.64 mmol) in DMF (3 ml) at -40 °C and stirred for 1.5 h. The reaction mixture was quenched 0 °C with water (5 ml), extracted with hexane (2x5 ml), washed with water (5 ml), dried (MgSO4) and evaporated under a stream of N2 to give the crude alkylated CPD as a mixture of regioisomers 10a, 10b and 10e. LC-MS (ESI+): m/z: 187 [M+H]+. The crude residue was dissolved in MeCN (3 ml) and used immediately in Step 1, or stored at -20 °C for 24 or 48 h, and used in Step 1.

Step 1: Room temperature, 7 h.

Step 2: After 24 h, an additional portion of OsO4 and NMO was added. Total reaction time 48 h. The reaction mixture was purified by flash chromatography (0-10% MeOH / DCM) and the following three compounds were isolated (See Scheme 3 for yields):

(5aS,6'R,7'S,8'R,8a'S)-6'-(benzoxylomethyl)-2'-(tert-butyl)-6',7',8',8a'-tetrahydro-5a'H-spiro[cyclobutene-1,5'-cyclopenta[e]isoxazolo[2,3-b]pyrimidin]-7',8'-diol

The combined fractions were concentrated in vacuo and triturated with hexane. Obtained as an amorphous white solid. 1H NMR (400 MHz, MeOD) δ = 7.39 – 7.26 (m, 5H), 6.18 (s, 1H), 4.58 (d, J = 8.2, 3.4 Hz, 1H), 4.56 (s, 2H), 4.13 (app t, J = 3.8 Hz, 1H), 3.88 (dd, J = 7.0, 4.1 Hz, 1H), 3.78 (dd, J = 9.5, 5.7 Hz, 1H), 3.69 (dd, J = 9.4, 6.5 Hz, 1H), 3.00 (app t, J = 7.8 Hz, 1H), 2.60 – 2.52 (m, 1H), 2.41 – 2.33 (m, 1H), 2.20 – 1.97 (m, 4H), 1.93 – 1.84 (m, 1H), 1.38 (s, 9H). 13C NMR (DEPT 135, 101MHz, MeOD) δ = 184.8 (-C), 157.7 (-C), 139.4 (-C), 129.5 (-CH), 129.1 (-CH), 128.9 (-CH), 92.9 (-CH), 76.0 (-CH), 74.4 (-CH2), 73.5 (-CH), 70.5 (-CH2), 66.0 (-CH), 58.8 (-C), 46.0 (-CH), 43.5 (-CH), 35.9 (-CH), 34.9 (-CH2), 31.9 (-CH2), 28.1 (-CH2), 15.3 (-CH3), 17.0 (-CH3). LC-MS (ESI+): m/z: 413 [M+H]+. HRMS (ESI+): exact mass calculated for [M+H]+ (C34H45N2O2) requires m/z 413.2435, found m/z 413.2434.

(5aS,7'R,8'R,8a'S)-7'-(benzoxylomethyl)-2'-((tert-butyl)-6',7',8',8a'-tetrahydro-5a'H-spiro[cyclobutene-1,5'-cyclopenta[e]isoxazolo[2,3-b]pyrimidin]-7',8'-diol

Obtained as a clear oil (See Scheme 3 for yields). 1H NMR (400 MHz, MeOD) δ = 7.34 – 7.26 (m, 3H), 7.25 – 7.21 (m, 2H), 6.17 (s, 1H), 4.59 (dd, J = 8.3, 3.0 Hz, 1H), 4.48 (s, 2H), 4.08 (d, J = 3.1 Hz, 1H), 3.43 (d, J = 9.2 Hz, 1H), 3.44 – 3.35 (m, 1H), 3.36 (d, J = 9.2 Hz, 1H), 2.35 – 2.29 (m, 3H), 2.18 (dt, J = 12.7, 8.8 Hz, 1H), 2.03 – 1.90 (m, 3H), 1.72 (dd, J = 13.6, 12.5 Hz, 1H), 1.30 (s, 3H). 13C NMR (DEPT 135, 101MHz, MeOD) δ = 184.6 (-C), 156.4 (-C), 139.5 (-C), 129.5 (-CH), 128.8 (-CH), 128.6 (-CH), 92.8 (-CH), 79.3 (-CH), 77.4 (-C), 74.4 (-CH), 73.1 (-CH2), 68.0 (-CH), 57.0 (-C), 42.5 (-CH), 36.4 (-CH3), 34.8 (-CH2), 34.8 (-C), 31.6 (-CH3), 28.1 (-CH2), 14.5 (-CH3). LC-MS (ESI+): m/z: 413 [M+H]+. HRMS (ESI+): exact mass calculated for [M+H]+ (C34H45N2O2) requires m/z 413.2435, found m/z 413.2437.
(5a'R,7'S,8'R,8a'R)-8a'-(2'-(tert-butyl)-6',7',8',8a'-tetrahydro-5a'H-spiro[cyclobutane-1,5'-cyclopenta][e]isoxazolo[2,3-alpyrimidine]-7',8'-diol

Obtained as a clear oil (See Scheme 3 for yields). 1H NMR (400 MHz, MeOD) $\delta = 7.35 - 7.25$ (m, 5H), 6.20 (s, 1H), 4.61 (d, $J = 11.9$, 1H), 4.53 (d, $J = 11.9$, 1H), 4.10 (d, $J = 10.7$, 1H), 4.00 – 3.93 (m, 2H), 3.82 (d, $J = 10.7$, 1H), 3.27 (dd, $J = 10.8$, 8.3, 1H), 2.63 – 2.55 (m, 1H), 2.43 – 2.34 (m, 1H), 2.26 – 2.16 (m, 1H), 2.07 – 1.96 (m, 3H), 1.92 – 1.80 (m, 1H), 1.52 (ddd, $J = 13.7$, 11.0, 5.1, 1H), 1.36 (s, 9H). 13C NMR (DEPT 135, 101MHz, MeOD) $\delta = 183.6$ (-C), 156.8 (-C), 137.5 (-C), 127.9 (-CH), 127.4 (-CH), 91.5 (-CH), 78.2 (-CH), 73.8 (-C), 72.9 (-CH$_3$), 70.5 (-CH$_2$), 69.6 (-CH$_2$), 57.9 (-C), 46.9 (-CH), 36.1 (-CH$_3$), 33.4 (-C), 31.5 (-CH$_2$), 31.1 (-CH$_2$), 26.6 (-CH$_3$), 13.5 (-CH$_3$). LC-MS (ESI+) m/z: 413 [M+H]$^+$. HRMS (ESI+); exact mass calculated for [M+H]$^+$ ($C_{24}H_{32}N_2O_4$) requires m/z 413.2435, found m/z 413.2435.
NMR spectra

1H and 13C NMR spectra of 8a in MeOD
1H, COSY, NOESY, 13C and DEPT135 spectra of 8b in MeOD
1H and 13C NMR spectra of 8c in MeOD
1H, COSY, NOESY, 13C and DEPT135 spectra of 8d in MeOD
1H and 13C NMR spectra of 8 in MeOD
1H and 13C NMR spectra of 8f in MeOD
1H and 13C NMR spectra of 8h in MeOD
1H and 13C NMR spectra of 8j in MeOD
$^1\text{H, COSY, NOESY, }^{13}\text{C and DEPT135 spectra of 8h in MeOD}$
1H and 13C NMR spectra of 81 in MeOD
^1H and ^13C NMR spectra of 9a in MeOD
1H and 13C NMR spectra of 9b in MeOD
1H and 13C NMR spectra of 9c in MeOD
1H and 13C NMR spectra of 9d in MeOD
1H, COSY, NOESY, 13C and DEPT135 spectra of 9e in MeOD
1H and 13C NMR spectra of 9f in MeOD
"H and \(^{13}\)C NMR spectra of 9g in MeOD

[Chemical Structure Image]

\[\text{Diagram of chemical structure} \]
1H and 13C NMR spectra of 9h in MeOD
1H, COSY, 13C and DEPT135 spectra of 9i in MeOD
1H, COSY, NOESY, 13C and DEPT135 spectra of 11a in MeOD
1H, COSY, NOESY, 13C and DEPT135 spectra of 11b in MeOD
\[^1\text{H}, \text{COSY}, \text{NOESY}, ^{13}\text{C} \text{ and DEPT135 spectra of 11c in MeOD}\]
Supplementary References

9. The PyMOL Molecular Graphics System, Version 1.5.0.4 Schrödinger, LLC.