Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Fluorescent and Colorimetric Molecular Recognition Probe for

Hydrogen Bond Acceptors

Sarah J. Pike,*^{\dagger} Christopher A. Hunter^{\dagger}

[†]Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, U.K.

Email: sp816@cam.ac.uk

Contents	<i>S2</i>
General Experimental Section	<i>S3</i>
Standard Method for Titrations	<i>S3</i>
1. Representative UV/vis Spectroscopy Titration Curves in Chloroform	<i>S5</i>
2. Representative UV/vis Spectroscopy Titration Curves in Dichloromethane	<i>S</i> 7
3. Representative UV/vis Spectroscopy Titration Curves in Carbon Tetrachloride	<i>S9</i>
4. Representative Fluorescence Spectroscopy Titration Curves in Chloroform	<i>S11</i>
5. Representative Fluorescence Spectroscopy Titration Curves in Dichloromethane	S13
6. Summary of Association Constants for H-bonded complexes	S15
7. Summary of α , α_s and β_s Values of Solvents and Solutes	<i>S17</i>
8. Summary of ΔG° and β values for H-bonded complexes using UV/vis spectroscopy	<i>S18</i>
9. Summary of ΔG° and β values for H-bonded complexes using fluorescence	S19
10. Summary of average β values	S20
11. Graph showing correlation between calculated and experimental ΔG° values	S21
12. Comparison of log (K / M^{-1}) obtained using UV/vis and fluorescence spectroscopy	S22
13. Histogram of β values for hydrogen bond acceptors	S23
14. References	S24

General Experimental Section

All compounds were purchased from Sigma-Aldrich unless otherwise stated. Chloroform was purchased from Acros as 99+% for spectroscopic grade. Tributylphosphine oxide, TBACl, TBASCN, TBAN₃, and trioctylphosphine oxide were purchased from Aldrich. TBAOBz and triethyl phosphate were purchased from Fluka. Trimethylphosphine oxide and tricyclohexylphosphine oxide were purchased from Alfa Aesar. All compounds were used as received. The measurements of solids were carried out on a Precisa 125A balance. The following abbreviations are employed: Bu = Butyl, Cy = cyclohexyl, Et = ethyl, Hex = hexyl, Me = methyl, Oct = octyl, TBA = tetrabutylammonium.

Standard Method for UV/vis Absorption Titrations¹

Titrations were carried out using a Cary 3 Bio UV/vis spectrophotometer, using standard titration protocols. A 10 mL sample of the host, 1-naphthol (1) was prepared at a known concentration (typically between 0.16 mM and 0.20 mM in CHCl₃, between 0.14 mM and 0.21 mM in CH₂Cl₂ and between 0.10 mM and 0.14 mM in CCl₄). 2 mL of this solution was removed and added to a quartz cuvette and the UV-vis spectrum was recorded. The guest (2-12) was then dissolved in 1 mL or 2 mL of the host solution to avoid dilution of the host during the titration and aliquots of this solution were successively added to the cuvette and the UV/vis absorption spectrum was recorded after each addition. The changes in the UV/vis absorption spectra were analysed using a Microsoft Excel spreadsheet to fit the changes in the absorption at fixed wavelengths to a 1:1 binding isotherm or a 1:1 binding isotherm of the free and bound host using purpose written VBA macros.

All H-bond donors **1** display bathchromatic shifting of their characteristic UV/vis absorption bands upon complexation with hydrogen bond acceptors **2-12** in the studied solvents.²⁻⁵

Standard Method for Fluorescence Titrations

Titrations were carried out using a Cary Eclipse fluorescence spectrophotometer (Agilent). A 10 mL sample of the host, 1-naphthol (1) was prepared at a known concentration (typically between 0.04 mM and 0.09 mM in CHCl₃ and between 0.05 mM and 0.06 mM in CH₂Cl₂). 2 mL of this solution was removed and added to a quartz cuvette and the fluorescence spectrum was recorded. The guest (2-12) was then dissolved in 1 mL or 2 mL of the host solution to avoid dilution of the host during the titration and aliquots of this solution were successively added to the cuvette and fluorescence emission spectrum was recorded after each addition. The changes in the fluorescence emission spectra were analysed using a Microsoft Excel spreadsheet to fit the changes in the absorption at fixed wavelengths to a 1:1 binding isotherm or a 1:1 binding isotherm accounting for a non-specific interaction optimising the association constant and absorption of the free and bound host using purpose written VBA macros.

Association constants (K / M^{-1}) were determined for neutral H-bonded complexes 1·2-12 by fitting the titration data to either a 1:1 binding isotherm allowing for a second weaker non-specific binding event or by fitting to a 1:1 binding isotherm.⁴ In all cases, the [guest] was chosen to obtain a binding isotherm of \geq 50% saturation. The specific [guest] used in each experiment can be seen in the binding isotherm for each titration.

2. Titration Curves for 1-naphthol (1) in Chloroform

a) <u>Titration of 1-naphthol with phosphine oxide in chloroform</u>

Host: 1-naphthol = 0.16 mM Guest: phosphine oxide = 184 mM

Graph S1. UV/vis spectra of titration of phosphine oxide with 1-naphthol in chloroform.

Graph S2. Binding isotherm for titration using 1:1 fitting program for titration of phosphine oxide against 1-naphthol in chloroform. [1-naphthol] = 0.16 mM and [phosphine oxide] = 184 mM, $\Delta\lambda$ = 14 nm, Δ OD = 0.354.

$$K_{\rm a} = 77 \pm 8 \,{\rm M}^{-1}$$
 82% bound

b) Titration of 1-naphthol with TBACl in chloroform

Host: 1-naphthol = 0.16 mM Guest: TBACl = 92 mM

Graph S3. UV/vis spectra of titration of TBACl with 1-naphthol in chloroform.

Graph S4. Binding isotherm for titration using 1:1 fitting program for titration of TBACl against 1-naphthol in chloroform. [1-naphthol] = 0.16 mM and [TBACl] = 92 mM, $\Delta\lambda$ = 22 nm, Δ OD = 0.351.

$$K_{\rm a} = 260 \pm 40 {\rm M}^{-1}$$
 86% bound

2. Titration Curves for 1-naphthol (1) in Dichloromethane

a) <u>Titration of 1-naphthol with phosphine oxide in dichloromethane</u>

Host: 1-naphthol = 0.16 mM Guest: phosphine oxide = 82 mM

Graph S5. UV/vis spectra of titration of phosphine oxide with 1-naphthol in dichloromethane.

Graph S6. Binding isotherm for titration using 1:1 fitting program and accounting for a nonspecific interaction for titration of phosphine oxide against 1-naphthol in dichloromethane. [1-naphthol] = 0.16 mM and [phosphine oxide] = 82 mM, $\Delta\lambda$ = 28 nm, Δ OD = 0.501.

$$K_{\rm a} = 260 \pm 59 \ {\rm M}^{-1}$$
 82% bound

b) Titration of 1-naphthol with TBACl in dichloromethane

Host: 1-naphthol = 0.15 mM Guest: TBACl = 59 mM

Graph S7. UV/vis spectra of titration of TBACl with 1-naphthol in dichloromethane.

Graph S8. Binding isotherm for titration using 1:1 fitting program for titration of TBACl against 1-naphthol in dichloromethane. [1-naphthol] = 0.15 mM and [TBACl] = 59 mM, $\Delta\lambda$ = 28 nm, Δ OD = 0.518.

$$K_{\rm a} = 810 \pm 240 \, {\rm M}^{-1}$$
 77% bound

3. Titration Curves for 1-naphthol (1) in CCl₄

a) <u>Titration of 1-naphthol with Bu₃P(O) in CCl₄</u>

Host: 1-naphthol = 0.14 mM Guest: Bu₃P(O) = 18 mM

Graph S9. UV/vis spectra of titration of Bu₃P(O) with 1-naphthol in CCl₄.

Graph S10. Binding isotherm for titration using 1:1 fitting program interaction for titration of Bu₃P(O) against 1-naphthol in CCl₄. [1-naphthol] = 0.14 mM and [Bu₃P(O)] = 18 mM, $\Delta\lambda$ = 34 nm, Δ OD = 0.458.

$$K_{\rm a} = 2500 \pm 200 \,{\rm M}^{-1}$$
 71% bound

b) Titration of 1-naphthol with TBACl in CCl₄

Host: 1-naphthol = 0.14 mM Guest: TBACl = 39 mM

Graph S11. UV/vis spectra of titration of TBACl with 1-naphthol in CCl₄

Graph S12. Binding isotherm for titration using 1:1 fitting program for titration of TBACl against 1-naphthol in CCl₄. [1-naphthol] = 0.14 mM and [TBACl] = 39 mM, $\Delta\lambda$ = 22 nm, Δ OD = 0.325.

$$K_{\rm a} = 16000 \pm 5000 \,{\rm M}^{-1}$$
 86% bound

4. Fluorescence Titration Curves for 1-naphthol (1) in Chloroform

a) <u>Titration of 1-naphthol with phosphine oxide in chloroform</u>

Host: 1-naphthol = 0.041 mM Guest: phosphine oxide = 215 mM

Graph S13. Fluorescence spectra of titration of phosphine oxide with 1-naphthol in chloroform.

Graph S14. Binding isotherm for titration using 1:1 fitting program for titration of phosphine oxide against 1-naphthol in chloroform. [1-naphthol] = 0.041 mM and [phosphine oxide] = 215 mM.

$$K_{\rm a} = 74 \pm 7 \, {\rm M}^{-1}$$
 86% bound

b) Titration of 1-naphthol with TBACl in chloroform

Host: 1-naphthol = 0.039 mM Guest: TBACl = 87 mM

Graph S15. Fluorescence spectra of titration of TBACl with 1-naphthol in chloroform.

Graph S16. Binding isotherm for titration using 1:1 fitting program for titration of TBACl against 1-naphthol in chloroform. [1-naphthol] = 0.039 mM and [TBACl] = 87 mM.

$$K_{\rm a} = 270 \pm 21 \, {\rm M}^{-1}$$
 76% bound

5. Fluorescence Titration Curves for 1-naphthol (1) in Dichloromethane

a) <u>Titration of 1-naphthol with phosphine oxide in dichloromethane</u>

Host: 1-naphthol = 0.055 mMGuest: phosphine oxide = 126 mM

Graph S17. Fluorescence spectra of titration of phosphine oxide with 1-naphthol in dichloromethane.

Graph S18. Binding isotherm for titration using 1:1 fitting program for titration of phosphine oxide against 1-naphthol in dichloromethane. [1-naphthol] = 0.055 mM and [phosphine oxide] = 126 mM.

$$K_{\rm a} = 200 \pm 40 {\rm M}^{-1}$$
 66% bound

h) Titration of 1-naphthol with TBACl in dichloromethane

Host: 1-naphthol = 0.062 mM Guest: TBACl = 48 mM

Graph S19. Fluorescence spectra of titration of TBACl with 1-naphthol in dichloromethane.

Graph S20. Binding isotherm for titration using 1:1 fitting program for titration of TBACl against 1-naphthol in dichloromethane. [1-naphthol] = 0.062 mM and [TBACl] = 48 mM.

$$K_{\rm a} = 700 \pm 140 \,{\rm M}^{-1}$$
 59% bound

6. Summary of Association Constants (K / M^{-1}) for all Studied H-bonded Complexes in Carbon Tetrachloride, Dichloromethane and Chloroform

Hydrogen	Hydrogen	Spectroscopic		
Bond Donor	Bond Acceptor	Technique	Solvent	<i>K</i> (M ⁻¹) ^a
1-naphthol	Bu₃PO	Fluorescence	Chloroform	74 ± 7
1-naphthol	Bu₃PO	UV/Vis	Chloroform	77 ± 8
1-naphthol	Oct₃PO	Fluorescence	Chloroform	91 ± 15
1-naphthol	Oct₃PO	UV/Vis	Chloroform	81 ± 16
1-naphthol	Me₃PO	Fluorescence	Chloroform	52 ± 9
1-naphthol	Me₃PO	UV/Vis	Chloroform	58 ± 3
1-naphthol	Cy₃PO	Fluorescence	Chloroform	150 ± 60
1-naphthol	Cy₃PO	UV/Vis	Chloroform	136 ± 6
1-naphthol	EtO₃PO	Fluorescence	Chloroform	21 ± 5
1-naphthol	EtO₃PO	UV/Vis	Chloroform	29 ± 10
1-naphthol	TBACI	Fluorescence	Chloroform	270 ± 21
1-naphthol	TBACI	UV/Vis	Chloroform	260 ± 40
1-naphthol	TBASCN	Fluorescence	Chloroform	120 ± 42
1-naphthol	TBASCN	UV/Vis	Chloroform	110 ± 8
1-naphthol	TBAN ₃	Fluorescence	Chloroform	440 ± 100
1-naphthol	TBAOBz	Fluorescence	Chloroform	2700 ± 700
1-naphthol	Bu₃PO	Fluorescence	Dichloromethane	200 ± 40
1-naphthol	Bu₃PO	UV/Vis	Dichloromethane	260 ± 59
1-naphthol	Oct₃PO	Fluorescence	Dichloromethane	280 ± 42
1-naphthol	Oct₃PO	UV/Vis	Dichloromethane	340 ± 40
1-naphthol	Me ₃ PO	Fluorescence	Dichloromethane	140 ± 24
1-naphthol	Me ₃ PO	UV/Vis	Dichloromethane	180 ± 13
1-naphthol	Cy₃PO	Fluorescence	Dichloromethane	$\textbf{320}\pm\textbf{48}$
1-naphthol	Cy ₃ PO	UV/Vis	Dichloromethane	370 ± 14
1-naphthol	EtO₃PO	Fluorescence	Dichloromethane	52 ± 9
1-naphthol	EtO₃PO	UV/Vis	Dichloromethane	47 ± 8
1-naphthol	Bu ₂ SO	Fluorescence	Dichloromethane	55 ± 14
1-naphthol	Hex ₂ NC(O)Me	Fluorescence	Dichloromethane	43 ± 9
1-naphthol	TBACI	Fluorescence	Dichloromethane	$\textbf{700} \pm \textbf{140}$
1-naphthol	TBACI	UV/Vis	Dichloromethane	810 ± 240
1-naphthol	TBASCN	Fluorescence	Dichloromethane	210 ± 18
1-naphthol	TBASCN	UV/Vis	Dichloromethane	200 ± 60
1-naphthol	TBAN ₃	UV/Vis	Dichloromethane	1300 ± 400
1-naphthol	TBAOBz	UV/Vis	Dichloromethane	12200 ± 4400
1-naphthol	Bu₃PO	UV/Vis	Carbon tetrachloride	2500 ± 200
1-naphthol	Oct₃PO	UV/Vis	Carbon tetrachloride	3000 ± 110
1-naphthol	Me ₃ PO	UV/Vis	Carbon tetrachloride	1900 ± 550
1-naphthol	Cy ₃ PO	UV/Vis	Carbon tetrachloride	5400 ± 200
1-naphthol	EtO₃PO	UV/Vis	Carbon tetrachloride	340 ± 96
1-naphthol	Bu ₂ SO	UV/Vis	Carbon tetrachloride	290 ± 51

1-naphthol	Hex ₂ NC(O)Me	UV/Vis	Carbon tetrachloride	220 ± 76
1-naphthol	TBACI	UV/Vis	Carbon tetrachloride	16000 ± 5000

Table S1. Association constants for the H-bonded complexes formed between 1 and 2-12 in the different solvents at 298 K. ^{*a*}Experimental results are the average of at least two titrations and errors are quoted at the 95% confidence limit.

7. Summary of α , α_s and β_s values of solvents and solutes

Solute or solvent	α	α_s	β_s
1-naphthol	3.9	-	-
CCl_4	-	1.4^{3}	0.6^{3}
CH_2Cl_2	-	1.8	1.4
CHCl ₃	-	2.1	1.34

Table S2. Summary of α , α_s and β_s values of solvents and solutes employed in the study.

Dichloromethane has previously been identified to have a $\alpha_s = 1.7$ and $\beta_s = 1.5$ in ref 5 although it was noted that the experimental data employed to obtain the hydrogen bond parameters of dichloromethane led to a large range of possible values; $1.3 < \alpha_s < 2.0$ and $0.5 < \beta_s < 2.5$. In ref 6, a $\beta_s = 1.1$ is employed for dichloromethane. A α_s value of 2.2 is given for CHCl₃ in ref 4.

Calculation of β *value for hydrogen bond acceptors*:

$$\Delta \mathbf{G}^{\circ} (\mathrm{kJ} \mathrm{mol}^{-1}) = -\mathrm{RT} \ln K = -(\alpha - \alpha_{\mathrm{s}})(\beta - \beta_{\mathrm{s}}) + 6 \qquad (1)$$

The free energy of the system (ΔG°), *K* is the equilibrium constant for the formation of the hydrogen bonding interaction (Table 1), α is the hydrogen bond donor ability of the solute, α_s and βs is the hydrogen bond donor and acceptor parameters of the solvent respectively (Table *S2*).

Given a α value of the donor, the α_s and β_s parameters of the solvent, and experimentally determined association constants (*K*) (Table *S1*), the β value of a hydrogen bond acceptor can be readily calculated through rearrangement of eq 1 to give eq 2.

$$\beta = \beta_{\rm s} + (\text{RT ln } K + 6) / (\alpha - \alpha_{\rm s}) \qquad (2)$$

8. Summary of ΔG°_{exp} and β values for UV/Vis titrations of 1-naphthol with the studied anions in the chloroform

	Chloroform		Carbon Tetrachloride		Dichloromethane	
Hydrogen bond	$\Delta G^{\circ}_{exp} / kJ$	β value	$\Delta G^{\circ}_{exp} / \text{kJ}$	β value	ΔG°_{exp} /	β value
acceptor	mol ⁻¹		mol ⁻¹		kJ mol ⁻¹	
Bu₃PO	10.6 ± 0.3	10.6 ± 0.2	19.4 ± 0.2	10.7 ± 0.1	13.8 ± 0.6	10.8 ± 0.3
Cy₃PO	12.2 ± 0.1	11.3 ± 0.1	21.3 ± 0.4	11.5 ± 0.1	14.7 ± 0.1	11.3 ± 0.3
Oct₃PO	10.9 ± 0.5	10.7 ± 0.3	20.2 ± 0.5	11.0 ± 0.2	14.4 ± 0.3	11.0 ± 0.1
Me₃PO	10.1 ± 0.1	10.2 ± 0.1	18.9 ± 0.7	10.4 ± 0.3	12.9 ± 0.2	10.3 ± 0.1
EtO₃PO	8.3 ± 1.1	9.2 ± 0.6	14.4 ± 0.5	8.7 ± 0.2	9.5 ± 0.4	8.8 ± 0.2
Bu₂SO	-	-	14.0 ± 0.5	8.6 ± 0.2	-	-
Hex ₂ NC(O)Me	-	-	13.4 ± 0.9	8.3 ± 0.3	-	-
TBACI	13.8 ± 0.4	12.2 ± 0.2	24.0 ± 0.8	12.5 ± 0.3	16.6 ± 0.7	12.1 ± 0.3
TBASCN	11.6 ± 0.2	11.1 ± 0.1	-	-	13.1 ± 0.8	10.4 ± 0.4
TBAN ₃	-	-	-	-	17.8 ± 1.0	12.6 ± 0.5
TBAOBz	-	-	-	-	23.3 ± 0.8	15.3 ± 0.4

Table S3. Summary of ΔG°_{exp} and β values for the H-bonded complexes involving **1** for UV/Vis titrations performed in chloroform, dichloromethane and carbon tetrachloride. Where X = neutral acceptor and $X^{-} =$ charged acceptor

9. Summary of ΔG°_{exp} and β values for Fluorescence titrations of 1-naphthol with the studied anions in the chloroform

	Chloroform		Dichlorom	ethane
Hydrogen bond	ΔG°_{exp} / kJ mol ⁻¹	β value	ΔG°_{exp} / kJ mol ⁻¹	β value
acceptor	-		_	
Bu₃PO	10.6 ± 0.2	10.6 ± 0.1	13.2 ± 0.5	10.5 ± 0.2
Cy ₃ PO	12.4 ± 1.0	11.5 ± 0.5	14.2 ± 0.4	11.0 ± 0.2
Oct₃PO	11.2 ± 0.4	11.1 ± 0.2	13.8 ± 0.1	10.8 ± 0.1
Me ₃ PO	9.7 ± 0.5	10.0 ± 0.3	12.3 ± 0.4	10.1 ± 0.3
(OEt)₃PO	7.6 ± 0.5	8.8 ± 0.3	9.9 ± 0.4	9.0 ± 0.2
Hex ₂ NC(O)Me	-	-	9.3 ± 0.5	8.6 ± 0.3
Bu ₂ SO	-	-	9.9 ± 0.8	8.9 ± 0.4
TBACI	13.9 ± 0.2	12.3 ± 0.1	16.2 ± 0.5	11.9 ± 0.2
TBASCN	11.9 ± 1.0	11.2 ± 0.5	13.2 ± 0.2	10.5 ± 0.1
TBAN ₃	15.0 ± 0.6	12.9 ± 0.3	-	-
TBAOBz	19.5 ± 0.7	15.4 ± 0.4	-	-

Table S4. Summary of ΔG°_{exp} and β values for the H-bonded complexes involving **1** for fluorescence emission spectroscopy titrations performed in chloroform and dichloromethane. Where X = neutral acceptor and X⁻ = charged acceptor

Hydrogen bond acceptor	Average β value
TBAOBz	15.4 ± 0.1
$TBAN_3$	12.8 ± 0.4
TBACl	12.2 ± 0.4
TBASCN	10.8 ± 0.8
Cy ₃ PO	11.3 ± 0.4
Oct ₃ PO	10.9 ± 0.3
Bu ₃ PO	10.6 ± 0.3
Me ₃ PO	10.2 ± 0.2
(OEt) ₃ PO	8.9 ± 0.4
Bu ₂ SO	8.8 ± 0.4
Hex ₂ NC(O)Me	8.5 ± 0.4

10. Summary of average β values for the studied anions and neutral solutes

Table S5. Summary of average β values for the studied anions and neutral solutes.

11. Summary of ΔG°_{exp} and β values for titrations of 1 with the studied anions and neutral solutes in chloroform, dichloromethane and carbon tetrachloride

Graph S21. Graph showing comparison of experimental free energy on complexation (ΔG°_{exp}) with the values calculated using eq 2 $(\Delta G^{\circ}_{calc})$ for the H-bonded complexes (1·X, 2·X and 3·X) in the different solvents. The line represents $\Delta G^{\circ}_{calc} = \Delta G^{\circ}_{exp}$.

12. Comparison of log (K / M^{-1}) values obtained using UV/vis absorption spectroscopy and fluorescence emission spectroscopy

Graph S22. Comparison of the $\log(K / M^{-1})$ obtained for the H-bonded complexes $1 \cdot X$ when calculated from the experimental data obtained using fluorescence emission spectroscopy and UV/vis absorption spectroscopy. The line represents $\log(K / M^{-1})$ (fluorescence emission spectroscopy) = $\log(K / M^{-1})$ (UV/vis absorption spectroscopy).

13. Histogram of β values for hydrogen bond acceptors

Figure S1. β values for anions and neutral solutes (the charged acceptors are shown in grey and the neutral acceptors are shown in black).

14. References

1. V. Amenta, J. L. Cook, C. A. Hunter, C. M. R. Low, J. G. Vinter, J. Phys. Chem. B., 2012, 116, 1443-14440.

2. V. Amenta, J. L. Cook, C. A. Hunter, C. M. R. Low, J. G. Vinter, *Org. Biomol. Chem.*, **2011**, *9*, 7571-7578.

3. J. L. Cook, C. A. Hunter, C. M. R. Low, A. Perez-Velasco, J. G. Vinter, Angew. Chem. Int. Ed., 2007, 46, 3706-3709.

- 4. S. J. Pike, J. J. Hutchinson, C. A. Hunter, J. Am. Chem. Soc., 2017, 139, 6700-6706.
- 5. R. Cabot, C. A. Hunter and L. M. Varley, Org. Biomol. Chem., 2010, 8, 1455-1462.

6. R. Cabot and C. A. Hunter, Org. Biomol. Chem., 2010, 8, 1943-1950.