Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Cu-catalyzed asymmetric Friedel-Crafts propargylic alkylation of phenol derivatives

Long Shao, and Xiang-Ping Hu*

Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China xiangping@dicp.ac.cn

Copies of HPLC Spectra	S-2
Synthesis of (R) -3- $(2,4$ -dimethoxyphenyl)-3-phenylpropan-1-ol for the determined of the determined	rmination of
absolute stereochemistry of propargylic alkylation products	S-12
Copies of ¹ H NMR and ¹³ C NMR Spectra	S-14

3,5-dimethoxy-4-((*R*)-1-phenylprop-2-ynyl)phenol (3aa).

4-((S)-1-(2-chlorophenyl)prop-2-ynyl)-3,5-dimethoxyphenol (3ba).

4-((*R*)-1-(3-chlorophenyl)prop-2-yn-1-yl)-3,5-dimethoxyphenol (3ca).

4-((*R*)-1-(4-chlorophenyl)prop-2-ynyl)-3,5-dimethoxyphenol (3da).

4-((*R*)-1-(4-fluorophenyl)prop-2-ynyl)-3,5-dimethoxyphenol (3ea).

4-((*R*)-1-(4-bromophenyl)prop-2-ynyl)-3,5-dimethoxyphenol (3fa).

3,5-dimethoxy-4-((*R*)-1-p-tolylprop-2-ynyl)phenol (3ga).

3,5-dimethoxy-4-((*R*)-1-(4-methoxyphenyl)prop-2-ynyl) phenol (3ha).

VWD1 A, Wavelength=230 nm (SL\20160126000007.D)

4-((*R*)-1-(4-(trifluoromethyl)phenyl)prop-2-ynyl)-3,5-dimethoxyphenol (3ia).

3,5-dimethoxy-4-((*R*)-1-(naphthalen-3-yl)prop-2-ynyl)phenol (3ja).

c1u).

3,5-dimethoxy-4-((R)-1-(thiophen-2-yl)prop-2-ynyl)phenol (3ka).

3,5-dimethoxy-4-((*R*)-1-phenylbut-3-yn-2-yl)phenol (3la).

100/04 A 10/availab atb=254 pm (CI \2017074000 B

3,5-diethoxy-4-((*R*)-1-phenylprop-2-ynyl)phenol (3ab).

3,5-bis(benzyloxy)-4-((R)-1-phenylprop-2-ynyl)phenol (3ac).

3,5-diisopropoxy-4-((R)-1-phenylprop-2-ynyl)phenol (3ad).

3-ethoxy-5-methoxy-4-((*R*)-1-phenylprop-2-ynyl)phenol (3ae).

3-(benzyloxy)-5-methoxy-4-((R)-1-phenylprop-2-ynyl)phenol (3af).

3-isopropoxy-5-methoxy-4-((R)-1-phenylprop-2-ynyl)phenol (3ag).

3-methoxy-4-((*R*)-1-phenylprop-2-ynyl)phenol (3ai).

(S)-2,3-dihydro-5-methoxy-2-methylene-1-phenyl-1H-indene (5).

VWD1 A, Wavelength=230 nm (SL\2017081513.D)

3-methoxy-5-methyl-4-((*R*)-1-phenylprop-2-ynyl)phenol (3aj).

Synthesis of (*R*)-3-(2,4-dimethoxyphenyl)-3-phenylpropan-1-ol for the determination of absolute stereochemistry of propargylic alkylation products

MeI (1.1 equiv) was added to a solution of **3ai** (100 mg, 0.42 mmol) and Cs₂CO₃ (1.2 equiv) in 3 mL of acetone. After being stirred at room temperature for 12 h, the solvent was removed in vacuo and purified by silica gel column chromatography (hexanes/AcOEt, 50/1). The product was added to an autoclave with Pd/CaCO₃ and 2 mL EtOH, then the hydrogenation was performed at room temperature under 5 bar of H₂ pressure for 2 h. After concentration of the reaction mixture under reduced pressure, the residue was purified by silica gel chromatography (hexanes/AcOEt, 50/1) to afford **6** (67% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.27–7.25 (m, 2H), 7.21–7.14 (m, 3H), 7.01 (d, *J* = 9.0 Hz, 1H), 6.45–6.42 (m, 2H), 6.3–6.23 (m,

1H), 5.16 (d, J = 10.2 Hz, 1H), 5.06 (d, J = 6.6 Hz, 1H), 4.89 (d, J = 17.1 Hz, 1H), 3.77 (s, 3H), 3.71 (s, 3H). $[\alpha]^{21}D = +0.6$ (c = 1.00, CHCl₃, Lit. -1.0).^{ref. 1}

BH₃·SMe₂ (1.0 equiv) was added to a solution of **6** (1.0 equiv) in THF at 0 °C. The mixture was stirred for 10 min at 0 °C and for 1 h at room temperature. 15% NaOH*aq* (1.5 equiv) and 30% H₂O₂*aq* (2.0 equiv) were successively added to it at 0 °C, and the resulting mixture was stirred for 1 h at room temperature. The reaction was quenched with saturated NaCl*aq* and extracted with Et₂O. The organic layer was dried over MgSO₄, filtered, and concentrated under vacuum. The residue was purified by silica gel column chromatography to afford **7**(59% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.26 (d, *J* = 4.5 Hz, 4H), 7.16–7.15 (m, 1H), 7.04 (d, *J* = 9.1 Hz, 1H), 6.45–6.43 (m, 2H), 4.52–4.48 (m, 1H), 3.78 (s, 3H), 3.76 (s, 3H), 3.62–3.52 (m, 2H), 2.32–2.27 (m, 1H), 2.20–2.17 (m, 1H). [α]¹⁹_D = +32.5 (*c* = 1.00, CHCl₃, Lit. +48.0).^{ref. 1}

The absolute configuration of **3ai** was determined by the comparison with the known compound **7** after the derivatization, to which an *R*-absolute configuration is assigned.

Ref. 1. Y. Luan and S. E. Schaus, J. Am. Chem. Soc., 2012, 134, 19965.

SL-1050-1

SL-1673-1 PROTON CDC13 {D:\NMR400\02T2} nmr 32

	~157.79 ~156.09	-141.12	 127.68 127.41 125.85 	 93. 31 84. 91	—69. 26 —64. 27	-30.65	
SL-1673-1 C13CPD CDC13 {D:\	NMR400\02T2} n	umr 32					
	Ph, EtO						

OH

EtÓ 3ab

T 0100		-100. <i>od</i>	—141. 03		, 120. <i>a</i> U	-110. 60	- 93. 63 - 63	×92.73	84. 94		69. 23	64. 28	55. 91		8	-30.60	0 10 10	- 14. 03	
C13CPD CDC	13 {D:\NM	MR400\02T2}	nmr 22																
		MeO Ph C 3ae	OH DEt																
und asselber excitatoris		ýr fyliad U. kryvaðhernan v á dif	in the second second	disconcertainty of the lattice	uting with the state of the sta	والله والمراجعة والواحد والمراجعة والرابع	and rendering since	and week management	or generation of the state of the			AMI (14 5	مدينة التجاوز والمراجع	الأحتر المراجع والمراجع	A wije in with the second second	a dig water and a second advantation	-	Makerol System Science	nharbergay celles de
			i i							int.uduj	- I			1	1 .				
170	160	150	140	130	120	110	100	90 f1	80 (ppm)		70	60	5	i0 4	10	30	20	10	0

SL-2145 PROTON CDC13 {D:\NMR400\02T2} nmr 37

