Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Cationic phthalocyanine dendrimers as potential antimicrobial photosensitisers

Rubén Ruiz-González,^a Francesca Setaro,^b Òscar Gulías,^a Montserrat Agut,^a Uwe Hahn,^{*bc} Tomás Torres,^{*bde} and Santi Nonell^{*a}

^{b.} Departamento de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain. Fax: +34 91497 3966; Tel: +34 91497 4151.

^c Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, 67087 Strasbourg Cedex 2, France. Fax: +33 368 85 27 64; Tel: +33 368 85 27 64.

^d IMDEA-Nanociencia, c/ Faraday, 9, Cantoblanco, 28049 Madrid, Spain.

e-Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain.

* Corresponding authors santi.nonell@iqs.url.edu (Santi Nonell) tomas.torres@uam.es (Tomás Torres) u.hahn@unistra.fr (Uwe Hahn)

^{a.} Grup d'Enginyeria Molecular, Institut Químic de Sarriá, Universitat Ramon Llull, Barcelona, Spain. Fax: +34 932 056 266; Tel: +34 932 672 000; E-mail: santi.nonell@iqs.url.edu.

Part 1. Structural characterisation data.

Fig. S1a. ¹H NMR spectrum of 6 (CDCl₃, 300 MHz); *: solvent impurities.

Fig. S1b. ¹³C NMR spectrum of 6 (CDCl₃, 75 MHz).

Fig. S1c. ESI-TOF MS spectrum of 6.

Fig. S2a. ¹H NMR spectrum of 7 (CDCl₃, 300 MHz); *: solvent impurities.

Fig. S2b. ¹³C NMR spectrum of 7 (CDCl₃, 75 MHz).

Fig. S2c. MALDI-TOF MS spectrum of **7** (Top: experimental spectrum, bottom: simulated spectrum).

Fig. S3a. ¹H NMR spectrum of 9 (DMSO-d6, 300 MHz).

Fig. S3b. MALDI-TOF MS spectrum of **9** (Top: experimental spectrum, bottom: simulated spectrum).

Fig. S4. MALDI-TOF MS spectrum of **10** (Top: experimental spectrum, bottom: simulated spectrum).

Fig. S5a. ¹H NMR spectrum of 11 (CDCl₃, 300 MHz).

Fig. S5b. MALDI-TOF MS spectrum of **11** (Top: experimental spectrum, bottom: simulated spectrum).

Fig. S5c. MALDI-TOF MS spectrum of **11** (Top: experimental spectrum, bottom: simulated spectrum).

Fig. S6a. ¹H NMR spectrum of 12 (CDCl₃, 300 MHz).

Fig. S6b. MALDI-TOF MS spectrum of 12 (Top: experimental spectrum, bottom: simulated spectrum).

Fig. S7a. ¹H NMR spectrum of ZnPc1 (DMSO-d6, 300 MHz).

Fig. S7b. ESI-TOF MS spectrum of ZnPc1.

Fig. S7c. ESI -TOF MS spectrum of ZnPc1.

Fig. S8b. ESI -TOF MS spectrum of RuPc.

Fig. S8c. ESI -TOF MS spectrum of RuPc.

Fig. S8d. ESI -TOF MS spectrum of RuPc.

Fig. S8e. ESI -TOF MS spectrum of RuPc.

Fig. S9a. ¹H NMR spectrum of RuPc1 (DMSO-d6, 300 MHz).

Fig. S9b. ESI -TOF MS spectrum of RuPc1.

Fig. S10a. ¹H NMR spectrum of 3 (DMSO-d6, 300 MHz).

Fig. S10b. ESI-TOF MS spectrum of 3.