Supporting Information

Tricyclanos: conformationally constrained nucleoside analogues with a new heterotricycle obtained from the D-ribofuranose unit

Máté Kicsák,^a Attila Mándi,^b Szabolcs Varga,^a Mihály Herczeg,^a Gyula Batta,^b Attila Bényei,^c Anikó Borbás^a and Pál Herczegh^a

^aDepartment of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary, ^bDepartment of Organic Chemistry, University of Debrecen, POB 20, H-4010 Debrecen, Hungary, ^cDepartment of Physical Chemistry, University of Debrecen

Table of Contents

141105
Si S

Relevant numbering of nucleosides and tricyclanos

Figure S1. Relevant numbering of nucleosides and tricyclanos

Experimental

Synthetic procedures

General Information

TLC was performed on Kieselgel 60 F₂₅₄ (Merck) with detection by UV-light (254 nm) and immersing into sulfuric acidic ammonium-molibdenate solution followed by heating. Column chromatography was performed on Silica gel 60 (Merck 0.040-0.063 mm). Organic solutions were dried over anhydrous Na₂SO₄, and concentrated in vacuum. The ¹H NMR (360, 400 and 500 MHz) and ¹³C NMR (90, 100 and 125 MHz) spectra were recorded with DRX-360, DRX-400, and Bruker Avance II 500 spectrometers at 25 °C. Chemical shifts are referenced to Me₄Si (0.00 ppm for ¹H), to the residual solvent signals (C_5D_5N : 7.22 or 8.74, D_2O : 4.79, DMSO-d₆: 2.50 ppm for ¹H) and to the residual solvent signals (CDCl₃: 77.16, DMSO-d₆: 39.52, C₅D₅N: 135.91 or 153.35, CD₃OD: 49.00 ppm for ¹³C). MALDI-TOF MS analyses of the compounds were carried out in the positive reflectron mode using a BIFLEX III mass spectrometer (Bruker, Germany) equipped with delayed-ion extraction. 2,5-Dihydroxybenzoic acid (DHB) was used as matrix and F₃CCOONa as cationising agent in DMF. ESI-TOF MS spectra were recorded by a microTOF-Q type QqTOFMS mass spectrometer (Bruker) in the positive ion mode using MeOH as the solvent. X-ray data collection was performed using a Synergy, Dualflex diffractometer equipped with microfocus sealed X-ray tube and Pilatus 200K detector (Rigaku Oxford Diffraction) at 293 K using Cu-K α radiation (λ =1.5418 Å). Numerical multi-scan absorption collection using spherical harmonics was performed using CrysAlisPro software The structure was solved with direct methods and refined by full-matrix least squares on F² SHELXL-2016/4¹ under WinGX.² Crystallographic calculations were done using PLATON³ and Mercury,⁴ the cif file was edited using publCIF⁵ and manually. Elemental analysis (C, H, N) was performed on an Elementar Vario MicroCube instrument.

Preparation of periodate resin⁶

To a solution of NaOH (40 g) in water (3 L) Amberlite IRA-400 (200 g, 20-50 mesh anion Cl-Form) resin was added and stirred for 2 hours. The resin was neutralized by washing with water and added to a suspension of NaIO₄ (233 g) in water (4-5 L). After stirring overnight the resin was filtered, washed with water and dried in vacuum over P_2O_5 and KOH for a night. After drying the resin is required to store in dark.

5'-O-tert-butyldimethylsilyl-uridine (2a)Ref. 21 in the main text

Uridine 1 (6.0 g, 25.57 mmol) was dissolved in dry DMF (60 mL). Imidazole (3.35 g, 49.14 mmol, 2.0 equiv.) and *tert*-butyldimethylsilyl chloride (3.88 g, 25.74 mmol, 1.05 equiv) were added to the reaction mixture and stirred overnight. The solution was poured into ice-water, the solid phase was filtered off and dried in vacuum over P_2O_5 and KOH overnight. The crude

white solid was purified by flash column chromatography (CH₂Cl₂/MeOH 98:2 \rightarrow 95:5 \rightarrow 9:1) to yield **2a** (5.64 g, 64%) as a white foam. R_f= 0.45 (CH₂Cl₂/MeOH 9:1); ¹H NMR 360 MHz (CD₃OD) δ = 8.01 (d, *J* = 8.1 Hz, 1H, uracil C*H*-6), 5.91 (d, *J* = 3.8 Hz, 1H, H-1'), 5.63 (d, *J* = 8.1 Hz, 1H, uracil C*H*-5), 4.16 – 4.10 (m, 2H, H-2', H-3'), 4.04 (dd, *J* = 4.6, 2.3 Hz, 1H, H-4'), 3.99 (dd, *J* = 11.7 Hz, *J* = 2.3 Hz, 1H, H-5'a), 3.85 (dd, *J* = 11.7 Hz, *J* = 2.3 Hz, 1H, H-5'b), 0.96 (s, 9H, TBDMS *t*-Bu 3 x C*H*₃), 0.15 (2 x s, 6H, TBDMS 2 x Si-C*H*₃); ¹³C NMR 90 MHz (CD₃OD) δ = 175.2, 166.1 (2C, uracil CO-2, CO-4), 142.2 (1C, uracil CH-6), 102.2 (1C, uracil CH-5), 90.5, 86.0, 76.3, 71.0 (4C, C-1', C-2', C-3', C-4'), 63.7 (1C, C-5'), 26.4 (3C, TBDMS *t*-Bu 3 x CH₃), 19.3 (1C, TBDMS *t*-Bu C_q), -5.4. (2C, TBDMS 2 x Si-C*H*₃); ESI-TOF-MS: *m/z* calcd for C₁₅H₂₆N₂NaO₆Si [M+Na]⁺ 381.146, found 381.145.

5'-O-(4,4'-dimethoxytrityl)-uridine (2b)Ref. 10 in the main text

To the solution of uridine 1 (2.44 g, 10.00 mmol) in dry pyridine (30 mL) dry triethylamine (1.40 ml, 1.01 g, 10.00 mmol, 1.0 equiv.) and 4,4'-dimethoxytrityl chloride (3.38 g, 10.00 mmol, 1.0 equiv.) were added. After stirring for one hour the reaction was guenched with 5% aqueous NaHCO₃ solution (100 mL) and extracted with CH₂Cl₂. The organic phase was dried over Na₂SO₄, filtered and the solvent was evaporated under reduced pressure. The crude product was purified by flash column chromatography (CH₂Cl₂/MeOH 150:5 \rightarrow 15:1) to afford **2b** (4.43 g, 81%) as a white foam. $R_{f} = 0.21$ (CH₂Cl₂/MeOH 15:1); ¹H NMR 360 MHz $(CDCl_3) \delta = 10.43$ (s, 1H, NH), 8.02 (d, J = 8.1 Hz, 1H, uracil CH-6), 7.47 – 7.14 (m, 9H, 9 x DMTr Ar-H), 6.83 (d, J = 8.9 Hz, 4H, 4 x DMTr Ar-H), 5.90 (d, J = 2.2 Hz, 1H, H-1'), 5.54 (s, 1H), 5.34 (d, J = 8.1 Hz, 1H, uracil CH-5), 4.43 (s, 1H), 4.35 (s, 1H), 4.17 (d, J = 6.3 Hz, 1H), 3.76 (s, 6H, 2 x DMTr-OCH₃), 3.49 (d, J = 16.6 Hz, 3H); ¹³C NMR 125 MHz $(CDCl_3+DMSO-d_6) \delta = 162.9, 157.3, 150.1, 147.4, 139.4$ (7C, uracil CO-2, CO-4, 5 x DMTr Ar-C), 140.0 (1C, uracil CH-6), 128.3, 127.1, 126.5, 125.6 111.9 (13C, 13 x DMTr Ar-CH), 101.1 (1C, uracil CH-5), 88.3, 84.3, 73.7, 69.2 (4C, C-1', C-2', C-3', C-4'), 79.6 (1C, DMTr C_{q} , 60.3 (1C, C-5'), 54.2 (2C, 2 x DMTr-OCH₃); ESI-TOF-MS: m/z calcd for $C_{30}H_{30}N_2NaO_8$ [M+Na]⁺ 569.190, found 569.189.

5'-O-trityl-uridine (2c)⁷

To the solution of uridine 1 (2.50 g, 10.24 mmol) in dry pyridine (30 mL), triphenylmethyl chloride (4.28 g, 15.36 mmol, 1.5 equiv.) was added. The reaction mixture was stirred at overnight. The solvent was evaporated under reduced pressure and the crude product was dissolved in EtOAc and extracted with water. The organic phase was dried over anhydrous Na₂SO₄, filtered and the solvent was evaporated in *vacuo*. The residue was purified by flash column chromatography (CH₂Cl₂/MeOH 98:2 \rightarrow 95:5 \rightarrow 9:1 to yield **2c** (4.13 g, 83%) as a

white foam. $R_f = 0.33$ (CH₂Cl₂/MeOH 95:5); ¹H NMR 360 MHz (CDCl₃) $\delta = 10.48$ (s, 1H, N*H*), 7.98 (d, J = 8.1 Hz, 1H, uracil C*H*-6), 7.40 – 7.20 (m, 15H, 15 x Tr Ar-H), 5.89 (d, J = 2.4 Hz, 1H, H-1'), 5.56 (s, 1H, O*H*), 5.31 (d, J = 8.1 Hz, 1H, uracil C*H*-5), 4.45 – 4.42 (m, 1H), 4.35 (s, 1H, O*H*), 4.16 – 4.14 (m, 1H), 3.61 (d, J = 6.8 Hz, 1H), 3.50 (d, J = 1.5 Hz, 2H, H-5'a,b); ¹³C NMR 90 MHz (CDCl₃) $\delta = 164.1$, 151.4 (2C, uracil CO-2, CO-4), 143.4 (3C, 3 x Tr Ar-C), 140.5 (1C, uracil CH-6), 128.8, 128.2, 127.5 (15C, 15 x Tr Ar-CH), 102.4 (1C, uracil CH-5), 90.5 (1C, C-1'), 87.7 (1C, Tr C_q), 83.6, 75.5, 69.7 (3C, C-2', C-3', C-4'), 62.2 (1C, C-5'); ESI-TOF-MS: *m/z* calcd for C₂₈H₂₆N₂NaO₆ [M+Na]⁺ 509.169, found 509.167.

12'-O-tert-butyldimethylsilyl-uracil-tricyclano (3a)

To a solution of **2a** (3.00 g, 8.37 mmol) in MeOH (100 mL) IO_4 -form of anion exchange resin (12.0 g) was added and stirred overnight in dark. Next day the resin was filtered off through a short pad of Celite® and washed successively with MeOH and CH₂Cl₂. The solvents were evaporated in vacuum. The residue was dissolved in dry MeOH (200 mL) and 3 Å molecular sieves (3 g) were added to the reaction. After stirring for half an hour Tris (1.52 g, 12.56 mmol, 1.5 equiv.) was added to the mixture and stirred overnight. After stirring overnight the molecular sieves were filtered off through a short pad of Celite® and washed successively with MeOH and CH₂Cl₂. The solvents were evaporated in vacuum and the crude product was purified by flash column chromatography (CH₂Cl₂/MeOH 95:5) to give compound **3a** (2.64 g, 72%, over two steps) as a white foam. R = 0.31 (CH₂Cl₂/MeOH 95:5); ¹H NMR 400 MHz (CDCl₃) δ = 9.72 (s, 1H, NH), 7.56 (d, J = 8.1 Hz, 1H, uracil CH-6), 6.15 (d, J = 4.1 Hz, 1H, H-1'), 5.73 (d, J = 8.2 Hz, 1H, uracil CH-5), 4.78 (d, J = 5.2 Hz, 1H, H-8'), 4.68 (d, J = 4.2 Hz, 1H, H-2'), 4.08 – 4.05 (m, 1H, H-9'), 3.95 – 3.79 (m, 6H, H-4'a,b, H-6'a,b, H-12'a,b), 3.67 (s, 2H, H-13'a,b), 2.92 (s, 1H, OH), 0.90 (s, 9H, TBDMS t-Bu 3 x CH₃), 0.07 (2 x s, 6H, TBDMS 2 x Si-CH₃); ¹³C NMR 100 MHz (CDCl₃) δ = 163.5 (1C, uracil CO-4), 150.5 (1C, uracil CO-2), 140.0 (1C, uracil CH-6), 102.9 (1C, uracil CH-5), 90.5 (1C, C-2'), 87.6 (1C, C-8'), 77.8 (1C, C-1'), 75.3 (1C, C-5'), 74.7 (1C, C-9'), 72.0 (1C, C-6'), 71.4 (1C, C-4'), 63.7 (1C, C-13'), 62.8 (1C, C-12'), 25.9 (3C, TBDMS t-Bu 3 x CH₃), 18.4 (1C, TBDMS t-Bu C_a), -5.3 (2C, TBDMS 2 x Si-CH₃); MALDI-TOF-MS: m/z calcd for $C_{19}H_{31}N_3NaO_7Si$ [M+Na]⁺ 464.183, found 464.27; Elemental analysis: calcd (%) for C₁₉H₃₁N₃O₇Si: C 51.68, H 7.08, N 9.52, found C 51.71, H 7.10, N 9.51.

12'-O-(4,4'-dimethoxytrityl)-uracil-tricyclano (3b)

To a solution of **2b** (2.50 g, 4.57 mmol) in MeOH (100 mL) IO_4 -form of anion exchange resin (10.0 g) was added and stirred overnight in dark. Next day the resin was filtered off through a short pad of Celite® and washed successively with MeOH and CH₂Cl₂. The solvent was evaporated in vacuum. The residue was dissolved in dry MeOH (50 mL) and 3 Å molecular sieves (2.5 g) were added to the reaction. After stirring for half an hour Tris (831 mg, 6.86 mmol, 1.5 equiv.) was added to the mixture. After stirring overnight the molecular sieves were filtered off through a short pad of Celite® and washed successively with MeOH and CH₂Cl₂. The solvent was evaporated in vacuum and the crude product was purified by flash chromatography (CH₂Cl₂/MeOH 100:0 \rightarrow 95:5) to yield compound 11 (2.19 g, 76%, over two steps) as a white foam. R = 0.33 (EtOAc/MeOH 9:1); ¹H NMR 400 MHz (CDCl₃) δ = 9.21 (s, 1H, NH), 7.46 - 6.82 (m, 14H, 1 x uracil CH-6, 13 x DMTr Ar-H), 6.13 (d, J = 5.0Hz, 1H, H-1'), 5.69 (d, J = 8.1 Hz, 1H, uracil CH-5), 4.78 - 4.76 (m, 1H, H-8'), 4.65 (d, J =4.9 Hz, 1H, H-2'), 4.23 – 4.20 (m, 1H, H-9'), 3.89 – 3.80 (m, 4H, H-4'a,b, H-6'a,b), 3.79 (s, 6H, 2 x DMTr-OCH₃), 3.64 (d, J = 4.9 Hz, 2H, H-13'a,b), 3.38 (d, J = 4.2 Hz, 2H, H-12'a,b), 2.48 (s, 1H, OH); ¹³C NMR 100 MHz (CDCl₃) δ = 163.0, 158.7, 150.4, 144.6, 135.7 (7C, 2 x uracil CO uracil, 5 x DMTr Ar-C), 139.7 (1C, uracil CH-6), 130.2, 128.2, 128.0, 127.1, 113.3 (13C, 13 x DMTr Ar-CH), 103.1 (1C, uracil CH-5), 90.4 (1C, C-2'), 88.6 (1C, C-8'), 86.6 (1C, DMTr C_a), 77.6 (1C, C-1'), 75.3 (1C, C-5'), 74.0 (1C, C-9'), 72.1 (1C, C-4'), 71.2 (1C, C-6'), 63.7, 63.5 (2C, C-13', C-12'), 55.4 (2C, 2 x DMTr-OCH₃); ESI-TOF-MS: m/z calcd for C₃₄H₃₅N₃NaO₉ [M+Na]⁺ 652.227, found 652.225.

12'-O-trityl-uracil-tricyclano (3c)

To a solution of 2c (2.00 g, 4.13 mmol) in MeOH (100 mL) IO₄-form of anion exchange resin (8.0 g) was added and stirred overnight in dark. Next day the resin was filtered off through a short pad of Celite® and washed successively with MeOH and CH₂Cl₂. The solvent was evaporated in vacuum. The residue was dissolved in dry MeOH (100 mL) and 3 Å molecular sieves (2 g) were added to the reaction. After stirring for half an hour Tris (747 mg, 6.17 mmol, 1.5 equiv.) was added to the mixture. Next day another portion of Tris (249 mg, 2.06 mmol, 0.5 equiv.) was added to the reaction mixture. After stirring overnight the molecular sieves were filtered off through a short pad of Celite® and washed successively with MeOH and CH₂Cl₂. The solvent was evaporated in vacuum and the crude product was purified by flash column chromatography (CH₂Cl₂/MeOH 98:2 \rightarrow 98:3 \rightarrow 97:3) to yield compound **3c** (1.78 g, 76%, over two steps) as a white foam. R_f= 0.42 (CH₂Cl₂/MeOH 95:5); ¹H NMR (400 MHz, CDCl₃) δ = 9.77 (s, 1H, NH), 7.48 (d, *J* = 8.2 Hz, 1H, uracil CH-6), 7.43 (d, *J* = 7.3 Hz, 6H, 6 x Tr Ar-H), 7.29 (t, *J* = 7.4 Hz, 6H, 6 x Tr Ar-H), 7.23 (t, *J* = 7.2 Hz, 3H, 3 x Tr Ar-H), 6.14 (d, *J* = 4.7 Hz, 1H, H-1'), 5.67 (d, *J* = 8.2 Hz, 1H, uracil CH-5), 4.80 (d, *J* = 4.6 Hz, 1H, H-8'), 4.68 (d, *J* = 4.7 Hz, 1H, H-2'), 4.21 (q, *J* = 4.4 Hz, 1H, H-9'), 3.87 (d, *J* = 9.0 Hz, 2H, H-6'a, H-4'a), 3.78 (d, *J* = 8.9 Hz, 1H, H-6'b), 3.77 (d, *J* = 8.8 Hz, 1H, H-4'b), 3.64 (d, *J* = 5.5 Hz, 2H, H-13'a,b), 3.38 (d, *J* = 4.3 Hz, 2H, H-12'a,b), 2.90 (t, *J* = 5.8 Hz, 1H, OH); ¹³C NMR (100 MHz, CDCl₃) δ = 163.4 (1C, uracil CO-4), 150.5 (1C, uracil CO-2), 143.5 (3C, 3 x Tr Ar-C), 139.9 (1C, uracil CH-6), 128.7, 128.0, 127.3 (15C, 15 x Tr Ar-CH), 103.0 (1C, uracil CH-5), 90.3 (1C, C-2'), 88.4 (1C, C-8'), 87.1 (1C, Tr C_q), 77.7 (1C, C-1'), 75.3 (1C, C-5'), 73.9 (1C, C-9'), 72.0 (1C, C-4'), 71.3 (1C, C-6'), 63.7 (1C, C-13'), 63.6 (1C, C-12'); ESI-TOF-MS: *m/z* calcd for C₃₂H₃₁N₃NaO₇ [M+Na]⁺ 592.206, found 592.205.

Uracil-tricyclano (4) - Synthesis without protecting group

To a solution of 1 (244 mg, 1.00 mmol) in MeOH (20 mL) IO_4 -form of anion exchange resin (1.0 g) was added and stirred overnight in dark. Next day the resin was filtered off through a short pad of Celite® and washed with MeOH. The solvent was evaporated in vacuum. The residue was dissolved in dry MeOH (100 mL) and 3 Å molecular sieves (250 mg) were added to the reaction. After stirring for half an hour Tris (182 mg, 1.5 mmol, 1.5 equiv.) was added to the mixture. After stirring overnight the molecular sieves were filtered off through a short pad of Celite® and washed with MeOH. The solvent was evaporated in vacuum and the crude product was purified by flash column chromatography (EtOAc/MeOH 95:5) to yield 4 (190 mg, 58%, over two steps) as a white foam.

Uracil-tricyclano (4) - Deprotection of 3a

3a (167 mg, 0.38 mmol) was dissolved in dry THF (3 mL). Tetrabutylammonium fluoride solution (570 mL, 1.5 equiv., 1.0 M in THF) was added to the reaction mixture. After stirring for two hours the solvent was evaporated and the crude product was purified by flash column chromatography (EtOAc/MeOH 95:5) to afford **4** (59 mg, 48%) as a white foam.

Uracil-tricyclano (4) - Deprotection of 3b

3b (157 mg, 0.25 mmol) was dissolved in a mixture of hexafluoroisopropanol (2.5 mL), MeNO₂ (1.25 mL) and Et₃SiH (600 μ L, 1.88 mmol, 7.5 equiv.). Then ZnCl₂ (157 mg, 1.15 mmol, 4.6 equiv.) was added to the reaction mixture. After stirring for half an hour saturated NaHCO₃-solution was added and the solvents were evaporated. The crude product was purified by flash column chromatography (CH₂Cl₂/MeOH 95:5 \rightarrow 9:1 \rightarrow 8:2) to yield 4 (58 mg, 71%) as a white foam.

Uracil-tricyclano (4) - Deprotection of 3c

3c (342 mg, 0.60 mmol) was added to the mixture of ZnCl₂ (342 mg, 2.51 mmol, 4.2 equiv.), hexafluoroisopropanol (6 mL), MeNO₂ (3 mL) and Et₃SiH (600 µL, 3.76 mmol, 6.3 equiv.). After 2 hours saturated NaHCO₃-solution was added and the solvents were evaporated. The crude product was purified by flash column chromatography (CH₂Cl₂/MeOH 9:1 \rightarrow 8:1 \rightarrow 85:15 \rightarrow 8:2) to yield 4 (129 mg, 66%) as a white foam. R_f= 0.45 (CH₂Cl₂/MeOH 85:15); ¹H NMR (400 MHz, D₂O + CD₃OD) δ = 7.78 (d, *J* = 8.1 Hz, 1H, uracil C*H*-6), 6.04 (d, *J* = 5.0 Hz, 1H, H-1'), 5.88 (d, *J* = 8.1 Hz, 1H, uracil C*H*-5), 4.77 (d, *J* = 5.1 Hz, 1H, H-2'), 4.70 (d, *J* = 4.1 Hz, 1H, H-8'), 4.15 (dd, *J* = 3.9, 1.3 Hz, 1H, H-9'), 4.00 (d, *J* = 9.1 Hz, 1H, H-6'a), 3.93 – 3.86 (m, 2H, H-4'a,b), 3.85 – 3.71 (m, 3H, H-6'b, H-12'a,b), 3.69 (s, 2H, H-13'a,b); ¹³C NMR (100 MHz, D₂O + CD₃OD) δ = 166.6 (1C, uracil CO-4), 152.3 (1C, uracil CO-2), 142.6 (1C, uracil CH-6), 103.8 (1C, uracil CH-5), 90.8 (1C, C-2'), 89.1 (1C, C-8'), 79.1 (1C, C-1'), 75.9 (1C, C-9'), 75.6 (1C, C-5'), 73.0 (1C, C-4'), 72.2 (1C, C-6'), 63.6 (1C, C-13'), 62.7 (1C, C-12'); ESI-TOF-MS: *m/z* calcd for C₁₃H₁₇N₃NaO₇ [M+Na]⁺ 350.096, found 350.093.

5'-O-trityl-ribothymidine (6)Ref. 25 in the main text

To a solution of ribothymidine **5** (2.50 g, 9.68 mmol) in dry pyridine (20 mL) was added triphenylchloromethane (3.24 g, 11.62 mmol, 1.2 equiv.) and stirred overnight. The solvent

was evaporated in *vacuo*, the residue was dissolved in EtOAc (400 mL) and extracted with distilled water (2 x 50 mL) and brine (50 mL). The organic layer was dried over anhydrous Na₂SO₄. The solid phase was filtered and the solvent was evaporated under reduced pressure. The crude product was purified by flash column chromatography (CH₂Cl₂/MeOH 96:4 \rightarrow 9:1) to yield compound **6** (3.64 g, 75%) as a white solid. R_f= 0.27 (CH₂Cl₂/MeOH 95:5); ¹H NMR (400 MHz, DMSO-d₆) δ = 11.38 (s, 1H, NH), 7.51 (s, 1H, thymine CH-6), 7.41 (d, *J* = 7.5 Hz, 6H, 6 x Tr Ar-H), 7.35 (t, *J* = 7.5 Hz, 6H, 6 x Tr Ar-H), 7.28 (t, *J* = 7.1 Hz, 3H, 3 x Tr Ar-H), 5.83 (d, *J* = 5.1 Hz, 1H, H-1'), 5.48 (s, 1H, OH), 5.18 (s, 1H, OH), 4.21 (s, 1H), 4.14 (s, 1H), 3.99 (dd, *J* = 7.0, 4.2 Hz, 1H, H-4'), 3.28 (dd, *J* = 10.6, 4.3 Hz, 1H, H-5'a), 3.20 (dd, *J* = 10.5, 2.4 Hz, 1H, H-5'b), 1.45 (s, 3H, timin CH₃); ¹³C NMR (100 MHz, DMSO-d₆) δ = 163.7, 150.7 (2C, thymine CO-2, CO-4), 143.5 (3C, 3 x Tr Ar-C), 135.9 (1C, thymine CH-6), 128.3, 128.0, 127.2 (15C, 15 x Tr Ar-CH), 109.6 (1C, thymine C-5), 88.1, 82.8, 73.2, 70.1 (4C, C-1', C-2', C-3', C-4'), 86.5 (1C, Tr C_q), 63.8 (1C, C-5'), 11.7 (thymine CH₃); MALDI-TOF-MS: *m/z* calcd for C₂₉H₂₈N₂NaO₆ [M+Na]⁺ 523.185, found 523.23; Elemental analysis: calcd (%) for C₂₉H₂₈N₂O₆: C 69.59, H 5.64, N 5.60, found C 69.57, H 5.66, N 5.61.

12'-O-trityl-thymine-tricyclano (7)

To a solution of 6 (1.30 g, 2.60 mmol) in MeOH (100 mL) IO₄-form of anion exchange resin (5.2 g) was added and stirred overnight in dark. Next day the resin was filtered off through a short pad of Celite® and washed with MeOH. The solvent was evaporated in vacuum. The residue was dissolved in dry MeOH (70 mL) and 3 Å molecular sieves (1.3 g) were added to the reaction. After stirring for half an hour Tris (474 mg, 3.91 mmol, 1.5 equiv.) was added to the mixture. After stirring overnight the molecular sieves were filtered off through a short pad of Celite® and washed successively with MeOH and CH₂Cl₂. The solvent was evaporated in vacuum and the crude product was purified byflash column chromatography (CH₂Cl₂/MeOH $98:2 \rightarrow 97:3$) to yield 7 (976 mg, 64%, over two steps) as a white foam. R= 0.35 $(CH_2Cl_2/MeOH 95:5)$; ¹H NMR 400 MHz $(CDCl_3) \delta = 9.64$ (s, 1H, NH), 7.45 (d, J = 7.4 Hz, 6H, 6 x Tr Ar-H), 7.26 (dt, J = 24.4, 7.1 Hz, 10H, 9 x Tr Ar-H, 1 x thymine CH-6), 6.14 (d, J = 5.2 Hz, 1H, H-1'), 4.76 (d, J = 4.0 Hz, 1H, H-8'), 4.71 (d, J = 5.2 Hz, 1H, H-2'), 4.24 (q, J= 4.4 Hz, 1H, H-9', 3.88 (d, J = 8.9 Hz, 2H, H-4'a, H-6'a), 3.80 (d, J = 8.9 Hz, 1H, H-4'b), 3.76 (d, J = 8.9 Hz, 1H, H-6'b), 3.64 (d, J = 5.7 Hz, 2H, H-13'a,b), 3.36 (d, J = 4.6 Hz, 2H, H-12'a,b), 2.86 (t, J = 5.9 Hz, 1H, OH), 1.87 (s, 3H, thymine CH₃); ¹³C NMR 100 MHz $(CDCl_3) \delta = 163.8 (1C, thymine CO-4), 150.7 (1C, thymine CO-2), 143.6 (3C, 3 x Tr Ar-C)$ 135.4 (1C, thymine CH-6), 128.7, 128.0, 127.3 (15C, 15 x Tr Ar-CH), 111.5 (1C, thymine C-5), 90.3 (1C, C-2'), 88.7 (1C, C-8'), 87.0 (1C, Tr C_q), 77.7 (1C, C-1'), 75.3 (1C, C-5'), 74.0 (1C, C-9'), 72.0 (1C, C-4'), 71.3 (1C, C-6'), 63.8 (1C, C-12'), 63.6 (1C, C-13'), 12.6 (1C, thymine CH₃); MALDI-TOF-MS: m/z calcd for C₃₃H₃₃N₃NaO₇ [M+Na]⁺ 606.222, found

606.41; Elemental analysis: calcd (%) for $C_{33}H_{33}N_3O_7$: C 67.91, H 5.70, N 7.20, found C 67.88, H 5.72, N 7.23.

Thymine-tricyclano (8) - Synthesis without protecting group

To a solution of ribothymidine **5** (516 mg, 2.00 mmol) in MeOH (50 mL) IO_4 -form of anion exchange resin (2.0 g) was added and stirred overnight in dark. Next day the resin was filtered off through a short pad of Celite® and washed with MeOH. The solvent was evaporated in vacuum. The residue was dissolved in dry MeOH (50 mL) and 3 Å molecular sieves (600 mg) were added to the reaction. After stirring for half an hour Tris (363 mg, 3.00 mmol, 1.5 equiv.) was added to the mixture. After stirring overnight the molecular sieves were filtered off through a short pad of Celite® and washed with MeOH. The solvent was evaporated in vacuum and the crude product was purified by flash column chromatography (CHCl₃/MeOH 95:5) to yield compound **8** (362 mg, 53%, 2 steps) as a white foam.

Thymine-tricyclano (8) - Deprotection of 7

7 (350 mg, 0.60 mmol) was added to the mixture of ZnCl₂ (350 mg, 2.57 mmol, 4.3 equiv.), hexafluoroisopropanol (6 mL), MeNO₂ (3 mL) and Et₃SiH (600 µL, 3.76 mmol, 6.3 equiv.). After 1 hour saturated NaHCO₃-solution was added and the solvents were evaporated. The crude product was purified by flash column chromatography (CH₂Cl₂/MeOH 95:5 \rightarrow 9:1 \rightarrow 85:15) to yield **8** (112 mg, 55%) as a white foam. R_f= 0.50 (CH₂Cl₂/MeOH 85:15); ¹H NMR 400 MHz (D₂O + CD₃OD) δ = 7.59 (d, *J* = 1.0 Hz, 1H, thymine C*H*-6), 6.02 (d, *J* = 5.4 Hz, 1H, H-1'), 4.78 (d, *J* = 4.5 Hz, 1H, H-2'), 4.71 (d, *J* = 4.3 Hz, 1H, H-8'), 4.17 (dt, *J* = 5.2, 3.9 Hz, 1H, H-9'), 4.00 (d, *J* = 9.1 Hz, 1H, H-6'a), 3.90 (s, 2H, H-4'a,b), 3.81 (d, *J* = 9.2 Hz, 1H, H-6'b), 3.86 - 3.73 (m, 2H, H-12'a,b), 3.71 (s, 2H, H-13'a,b), 1.88 (d, *J* = 0.7 Hz, 3H, thymine C*H*₃); ¹³C NMR 100 MHz (D₂O + CD₃OD) δ = 167.0 (1C, thymine CO-4), 152.5 (1C, thymine CO-2), 138.0 (1C, thymine CH-6), 113.0 (1C, thymine C-5), 90.7 (1C, C-2'), 89.1 (1C, C-8'), 79.0 (1C, C-1'), 75.8 (1C, C-9'), 75.5 (1C, C-5'), 73.0 (1C, C-4'), 72.2 (1C, C-6'), 63.5 (1C, C-13'), 62.7 (1C, C-12'), 12.4 (1C, thymine CH₃); MALDI-TOF-MS: *m*/z

calcd for $C_{13}H_{17}N_3NaO_7$ [M+Na]⁺ 364.112, found 364.21; Elemental analysis: calcd (%) for $C_{13}H_{17}N_3O_7$: C 49.27, H 5.61, N 12.31, found C 49.29, H 5.58, N 12.30.

12',13'-di-O-acetyl-thymine-tricyclano (9)

8 (110 mg, 0.32 mmol) was dissolved in dry pyridine (1 mL). Then acetic anhydride (122 μ L, 1.28 mmol, 4.0 equiv.) was added to the reaction mixture and it was stirred overnight. After that saturated NaHCO₃ solution (100 mL) was added and stirred for half an hour. The solvent was evaporated and the residue was dissolved in CH₂Cl₂ (30 mL) and it was extracted with 10% NaHSO₄ solution (2 x 5 mL) then saturated NaHCO₃ solution (2 x 5 mL). The organic layer was dried over anhydrous Na₂SO₄. The solid phase was filtered off and solvent was evaporated in vacuum. The crude product was purified by flash chromatography (ihexane/acetone 7:3 \rightarrow 6:4) to yield compound 9 (100 mg, 73%) as a white foam. R_f= 0.51 (*i*hexane/acetone 1:1); ¹H NMR (400 MHz, CDCl₃) δ = 9.70 (s, 1H, NH), 7.17 (d, J = 1.0 Hz, 1H, thymine CH-6), 6.19 (d, J = 4.0 Hz, 1H, H-1'), 4.63 – 4.57 (m, 2H, H-2', H-8'), 4.32 – 4.17 (m, 4H, H-12'a,b, H-13'a, H-9'), 4.10 (d, J = 11.5 Hz, 1H, H-13'b), 3.98 (d, J = 9.0 Hz, 1H, H-6'a), 3.80 – 3.75 (m, 3H, H-4'a,b, H-6'b), 2.07 (2 x s, 6H, 2 x COCH₃), 1.91 (s, 3H, thymine CH₃); ¹³C NMR (100 MHz, CDCl₃) δ = 170.6 (1C, 12'-OCOCH₃), 170.5 (1C, 13'-OCOCH₃), 163.7 (1C, thymine CO-4), 150.5 (1C, thymin CO-2), 135.2 (1C, thymine CH-6), 112.0 (1C, thymine C-5), 90.7 (1C, C-2'), 87.7 (1C, C-8'), 77.4 (1C, C-1'), 72.8 (1C, C-5'), 72.3 (1C, C-9'), 72.3 (1C, C-4'), 72.1 (1C, C-6'), 65.1 (1C, C-13'), 63.5 (1C, C-12'), 20.8, 20.7 (2C, 2 x COCH₃), 12.5 (1C, thymine CH₃); MALDI-TOF-MS: m/z calcd for C₁₈H₂₃N₃NaO₉ [M+Na]⁺ 448.133, found 448.307; Elemental analysis: calcd (%) for C₁₈H₂₃N₃O₉: C 50.82, H 5.45, N 9.88, found C 50.81, H 5.48, N 9.87.

4-N,5'-O-bistrityl-cytidine (11a)

To a suspension of cytidine **10** (2.00 g, 8.22 mmol) in dry DMF (20 mL) trityl chloride (4.65 g, 16.68 mmol, 2.03 equiv.), 4-dimethylaminopyridine (0.02 g, 0.02 equiv.), Et₃N (2.8 mL, 19.98 mmol, 2.43 equiv.) were added and stirred at 50 °C. Et₃N (1.88 ml, 13.47 mmol, 1.64 equiv.) and triphenylchloromethane (1.81 g, 6.50 mmol, 0.79 equiv.) were added after two days, four days and seven days. After ten days the mixture was evaporated in *vacuo*, and the residue was dissolved in CH_2Cl_2 . The organic layer was washed with 10%-os NaHSO₄ solution, saturated NaHCO₃-solution and dried over anhydrous Na₂SO₄. The solid phase was filtered off and the solvent was evaporated under reduce pressure. The crude product was

purified by flash chromatography (CH₂Cl₂/MeOH 98:2 \rightarrow 97:3 \rightarrow 95:5) to afford **11a** (1.81g, 30%) as a tan solid. R_f= 0.36 (CH₂Cl₂/MeOH 95:5); ¹H NMR (400 MHz, DMSO-d₆) δ = 8.51 (s, 1H, N*H*), 7.62 (d, *J* = 7.3 Hz, 1H, cytosine *CH*-6), 7.48 – 7.09 (m, 30H, 30 x Tr Ar-H), 6.16 (d, *J* = 7.3 Hz, 1H, cytosine *CH*-5), 5.70 (d, *J* = 3.1 Hz, 1H, H-1'), 5.36 (d, *J* = 4.0 Hz, 1H), 5.04 (s, 1H), 4.03 (d, *J* = 2.4 Hz, 1H), 3.95 – 3.86 (m, 2H), 3.24 (s, 2H); ¹³C NMR (100 MHz, DMSO-d₆) δ = 163.3, 154.0 (2C, cytosine *C*O-2, C-4), 144.6, 143.5 (6C, 6 x Tr Ar-C), 128.8, 128.3, 128.0, 127.5, 127.1, 126.3 (30C, 30 x Tr Ar-CH), 96.2, 89.5, 81.8, 73.8, 70.2, (5C, cytosine *C*H-5, C-1', C-2', C-3', C-4') 86.3 (1C, OTr C_q), 70.4 (1C, NTr C_q), 63.3 (1C, C-5'); MALDI-TOF-MS: *m/z* calcd for C₄₇H₄₁N₃NaO₅ [M+Na]⁺ 750.294, found 750.208; Elemental analysis: calcd (%) for C₄₇H₄₁N₃O₅: C 77.56, H 5.68, N 5.77, found C 77.58, H 5.67, N 5.79.

4-N-(4,4'-dimethoxytrityl)-cytidine (11b)Ref. 26 in the main text

To a suspension of cytidine 10 (243 mg, 1.00 mmol) in dry C₅H₅N (5 mL) chlorotrimethylsilane (952 mL, 7.50 mmol, 7.5 equiv.) was added and stirred under argon atmosphere. After 1 hour dimethoxytrityl chloride (406 mg, 1.20 mmol, 1.2 equiv.) was added and the mixture was stirred overnight. Next day dry DMF (2 mL) and dimethoxytrityl chloride (102 mg, 0.30 mmol, 0.3 equiv.) were added and the mixture was stirred for 4 days. After that the reaction mixture was quenched by saturated NaHCO₃-solution and the volatiles were evaporated in vacuo. The crude product was purified by flash column chromatography $(CH_2Cl_2/MeOH 95:5 \rightarrow 93:7 \rightarrow 9:1 \rightarrow 8:2)$ to afford 11b (447 mg, 82%) as an off-white foam. $R_{f} = 0.18$ (CH₂Cl₂/MeOH 95:5); ¹H NMR (360 MHz, DMSO-d₆) $\delta = 8.39$ (s, 1H, NH), 7.74 (d, J = 7.5 Hz, 1H, cytosine CH-6), 7.24 (t, J = 8.3 Hz, 5H, 5 x DMTr Ar-H), 7.14 (d, J =8.7 Hz, 4H, 4 x DMTr Ar-H), 6.83 (d, J = 8.5 Hz, 4H, 4 x DMTr Ar-H), 6.25 (d, J = 7.3 Hz, 1H, cytosine CH-5), 5.67 (s, 1H), 5.25 (s, 1H), 5.08 (s, 2H), 3.91 (s, 2H), 3.77 (s, 1H), 3.72 (s, 6H, 2 x DMTr OCH₃), 3.54 (d, J = 20.1 Hz, 2H, H-5'a,b); ¹³C NMR (90 MHz, DMSO-d₆) $\delta =$ 163.3, 157.4, 154.3, 145.1, 137.0 (7C, cytosine CO-2, C-4, 5 x DMTR Ar-C), 140.1 (1C, cytosine CH-6), 129.9, 128.5, 127.4, 126.0, 112.7 (13C, 13 x DMTr Ar-CH), 96.3, 88.8, 84.3, 73.6, 69.7, (5C, cytosine CH-5, C-1', C-2', C-3', C-4'), 69.4 (1C, NDMTr C_a), 60.8 (1C, C-5'), 55.0 (2C, 2 x DMTr OCH₃); MALDI-TOF-MS: m/z calcd for C₃₀H₃₁N₃NaO₇ [M+Na]⁺ 568.206, found 568.492; Elemental analysis: calcd (%) for C₃₀H₃₁N₃O₇: C 66.04, H 5.73, N 7.70, found C 66.02, H 5.69, N 7.73.

4-N-(4,4'-dimethoxytrityl)-5'-O-trityl-cytidine (12b)

To a solution of **11b** (370 mg, 0.68 mmol) in dry C_5H_5N (4 mL) trityl chloride (246 mg, 0.88 mmol, 1.3 equiv.) was added and the mixture was stirred overnight. Next day trityl chloride

(132 mg, 0.48 mmol, 0.7 equiv.) and dry C₅H₅N (1 mL) were added and the mixture was stirred overnight. After that trityl chloride (189 mg, 0.68 mmol, 1.0 equiv.) and dry C₅H₅N (1 mL) were added and the mixture was stirred for 2 days. Then trityl chloride (189 mg, 0.68 mmol, 1.0 equiv.) and dry C₅H₅N (2 mL) were added and the mixture was stirred overnight. Next day trityl chloride (189 mg, 0.68 mmol, 1.0 equiv.) was added and the mixture was stirred overnight. The reaction mixture was quenched by saturated NaHCO₃-solution and the volatiles were evaporated in vacuo. The residue was dissolved in EtOAc and washed with water, extracted with 10% aqueous NaHSO₄ solution, aqueous saturated NaHCO₃ solution, brine and dried over anhydrous Na₂SO₄. The solid phase was filtered off and the crude product was purified by flash column chromatography (CH₂Cl₂/MeOH 97:3 \rightarrow 96:4 \rightarrow 95:5) to afford **12b** (365 mg, 68%) as a white foam. R = 0.24 (CH₂Cl₂/MeOH 95:5); ¹H NMR (360 MHz, CDCl₃ + CD₃OD) δ = 7.83 (d, J = 7.7 Hz, 1H, cytosine CH-6), 7.32 - 7.02 (m, 24H, 9 x DMTr, 15x Tr Ar-H), 6.77 (d, J = 8.9 Hz, 4H, 4 x DMTr Ar-H), 5.73 (d, J = 1.6 Hz, 1H, H-1'), 4.75 (d, J = 7.7 Hz, 1H cytosine CH-5), 4.34 (dd, J = 7.0, 5.2 Hz, 1H, H-3'), 4.17 (dd, J =5.0, 1.4 Hz, 1H, H-2'), 4.09 (d, J = 7.2 Hz, 1H, H-4'), 3.73 (s, 6H, 2 x DMTr OCH₃), 3.45 (ddd, J = 33.0, 11.1, 2.3 Hz, 1H, H-5'a,b); ¹³C NMR (90 MHz, CDCl₃ + CD₃OD) $\delta = 165.6$, 158.7, 156.3, 144.2, 143.2, 136.2, 135.7 (5C, cytosine CO-2, C-4, 5 x DMTr Ar-C), 140.9 (1C, cytosine CH-6), 130.0, 129.9, 128.6, 128.5, 128.3, 127.9, 127.4, 127.2, 113.6, 113.5 (28C, 13 x DMTr Ar-CH, 15 x Tr Ar-CH), 95.2, 91.7, 83.5, 75.5, 69.3, (5C, cytosine CH-5, C-1', C-2', C-3', C-4') 87.4 (1C, OTr C_a), 70.1 (1C, NDMTr C_a), 61.6 (1C, C-5'), 55.2 (2C, 2 x DMTr OCH₃); MALDI-TOF-MS: m/z calcd for C₄₉H₄₅N₃NaO₇ [M+Na]⁺ 810.316, found 810.15; Elemental analysis: calcd (%) for C₄₉H₄₅N₃O₇: C 74.70, H 5.76, N 5.33, found C 74.72, H 5.75, N 5.31.

4-N,5'-O-bistrityl-cytosine-tricyclano (13a)

11a (1.00 g, 1.37 mmol) was dissolved in a mixture of MeOH (75 mL) and CH₂Cl₂ (25 mL). Then IO₄-form of anion exchange resin (4 g) was added and stirred overnight in dark. Next day the resin was filtered off through a short pad of Celite® and washed successively with MeOH and CH₂Cl₂. The solvent was evaporated in vacuum. The residue was dissolved in dry MeOH (50 mL) and 3 Å molecular sieves (1 g) were added to the reaction. After stirring for half an hour Tris (249 mg, 2.06 mmol, 1.5 equiv.) was added to the mixture and stirred overnight. Next day Tris (166 mg, 1.37 mmol, 1.0 equiv.) was also added. After stirring overnight the molecular sieves were filtered off through a short pad of Celite® and washed successively with MeOH and CH₂Cl₂. The solvent was evaporated in vacuum and the crude product was purified by flash column chromatography (CH₂Cl₂/MeOH 98:2 \rightarrow 97:3) to afford **13a** (726 mg, 65%, over two steps) as a jonquil foam. R_f= 0.46 (CH₂Cl₂/MeOH 95:5); ¹H NMR (400 MHz, CDCl₃) δ = 7.35 (dd, *J* = 7.8, 1.4 Hz, 7H, 1 x cytosine C*H*-6, 6 x Tr Ar-H), 7.33 – 7.13 (m, 24H, 24 x Tr Ar-H), 6.18 (d, *J* = 3.7 Hz, 1H, H-1'), 5.00 (d, *J* = 7.7 Hz, 1H,

cytosine *CH*-5), 4.77 (d, J = 5.9 Hz, 1H, H-8'), 4.64 (d, J = 3.8 Hz, 1H, H-2'), 4.11 (dt, J = 5.8, 3.8 Hz, 1H, H-9'), 3.90 – 3.81 (m, 3H, H-6'a,b, H-4'a), 3.77 (d, J = 8.9 Hz, 1H, H-4'b), 3.66 – 3.57 (m, 2H, H-13'a,b), 3.37 – 3.27 (m, 2H, H-12'a,b), 3.24 – 3.05 (m, 1H), 2.17 – 1.95 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 165.6$ (1C, cytosine C-4), 155.3 (1C, cytosine CO-2), 143.9, 143.6 (6C, 6 x Tr Ar-C), 140.7 (1C, cytosine CH-6), 128.8, 128.7, 128.5, 127.9, 127.7, 127.2 (30C, 30 x Tr Ar-CH), 95.2 (1C, cytosine CH-5), 90.5 (1C, C-2'), 87.8 (1C, C-8'), 87.0 (1C, OTr C_q), 78.6 (1C, C-1'), 75.3 (1C, C-5'), 73.7 (1C, C-9'), 72.1 (1C, C-4'), 71.7 (1C, C-6'), 71.1 (1C, NTr C_q), 64.0 (1C, C-13'), 63.5 (1C, C-12'); MALDI-TOF-MS: *m/z* calcd for C₅₂H₄₆N₆NaO₆ [M+Na]⁺ 833.332, found 833.4; Elemental analysis: calcd (%) for C₅₂H₄₆N₆O₆: C 75.54, H 5.72, N 6.91, found C 75.57, H 5.71, N 6.92.

4-N-(4,4'-dimethoxytrityl)-5'-O-trityl-cytosine-tricyclano (13b)

12b (330 mg, 0.42 mmol) was dissolved in a mixture of MeOH (15 mL) and CH₂Cl₂ (15 mL). Then IO₄-form of anion exchange resin (1.3 g) was added and stirred overnight in dark. Next two days IO_4 -form of anion exchange resin (1.3 g) were also added daily and stirred overnight in dark. On the third day the resin was filtered off through a short pad of Celite® and washed successively with MeOH and CH₂Cl₂. The solvent was evaporated in vacuum. The residue was dissolved in dry MeOH (25 mL) and 3 Å molecular sieves (330 mg) were added to the reaction. After stirring for half an hour Tris (102 mg, 0.84 mmol, 2.0 equiv.) was added to the mixture and stirred overnight. After stirring overnight the molecular sieves were filtered off through a short pad of Celite® and washed successively with MeOH and CH₂Cl₂. The solvent was evaporated in vacuum and the crude product was purified by flash column chromatography (CH₂Cl₂/MeOH 98:2 \rightarrow 97:3 \rightarrow 96:4) to afford **13b** (258 mg, 71%, over two steps) as a white foam. $R_{f} = 0.44$ (CH₂Cl₂/MeOH 95:5); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.36$ (dd, J = 7.6, 2.1 Hz, 7H, cytosine CH-6, 6 x Tr Ar-H), 7.32 - 7.16 (m, 14H, 9 x Tr Ar-H, 5 x)DMTr Ph Ar-H), 7.12 (dd, J = 8.9, 2.1 Hz, 4H, DMTr H₃COC₆H₄- Ar-H), 6.80 (dd, J = 8.8, 0.8 Hz, 4H, DMTr H₃COC₆H₄- Ar-H), 6.20 (d, J = 3.8 Hz, 1H), 5.04 (d, J = 7.7 Hz, 1H, cytosine CH-5), 4.77 (d, J = 5.8 Hz, 1H, H-8'), 4.65 (d, J = 3.8 Hz, 1H, H-2'), 4.12 (dt, J =5.6, 3.9 Hz, 1H, H-9'), 3.89 – 3.82 (m, 3H, H-6'a,b, H-4'a), 3.77 (dd, J = 8.4, 3.9 Hz, 1H, H-4'b), 3.73 (s, 6H, 2 x DMTr OCH₃), 3.66 - 3.58 (m, 2H, H-13'a,b), 3.34 - 3.29 (m, 2H, H-12'a,b); ¹³C NMR (100 MHz, CDCl₃) δ = 165.5 (1C, cytosine C-4), 158.8 (2C, 2 x DMTr H₃COC₆H₄- Ar-C), 155.4 (1C, cytosine CO-2), 144.6 (1C, DMTr Ph Ar-C), 143.6 (3C, 3 x Tr Ar-C), 140.6 (1C, cytosine CH-6), 136.3, 136.1 (2C, 2 x DMTr H₃COC₆H₄- Ar-C), 130.0, 129.9 (4C, 4 x DMTr H₃COC₆H₄- Ar-CH), 128.7, 127.9, 127.2 (15C, 15 x Tr Ar-CH), 128.6, 128.4, 127.5 (5C, 5 x DMTr Ph Ar-CH), 113.7 (4C, 4 x DMTr H₃COC₆H₄- Ar-CH), 95.3 (1C, cytosine CH-5), 90.5 (1C, C-2'), 87.8 (1C, C-8'), 86.9 (1C, OTr C_a), 78.6 (1C, C-1'), 75.3 (1C, C-5'), 73.7 (1C, C-9'), 72.1 (1C, C-4'), 71.7 (1C, C-6'), 70.3 (1C, NDMTr C_a), 63.9 (1C,

C-13'), 63.5 (1C, C-12'), 55.3 (2C, 2 x DMTr OCH₃); ESI-TOF-MS: m/z calcd for C₅₃H₅₀N₄NaO₈ [M+Na]⁺ 893.353, found 893.347; Elemental analysis: calcd (%) for C₅₃H₅₀N₄O₈: C 73.09, H 5.79, N 6.43, found C 73.11, H 5.78, N 6.41.

4-N-trityl-cytosine-tricyclano (14a) - Deprotection of 13a

NHTr

13a (247 mg, 0.30 mmol) was dissolved in a mixture of hexafluoroisopropanol (3 mL), MeNO₂ (1.5 mL) and Et₃SiH (364 µL, 2.28 mmol, 7.6 equiv.) then ZnCl₂ (333 mg, 2.44 mmol, 8.0 equiv.) was added to the mixture. After 5 hours saturated NaHCO₃-solution was added and the solvents were evaporated. The crude product was purified by flash column chromatography (CH₂Cl₂/MeOH 95:5 \rightarrow 93:7) to yield 14a (97 mg, 56%) as an off-white foam. $R_{f} = 0.40$ (CH₂Cl₂/MeOH 9:1); ¹H NMR (400 MHz, CDCl₃ + CD₃OD) $\delta = 7.29$ (dt, J =23.5, 6.9 Hz, 16H, cytosine CH-6, 15 x Tr Ar-H), 6.09 (d, J = 3.9 Hz, 1H, H-1'), 5.16 (d, J =7.7 Hz, 1H, cytosine H-5), 4.62 (dd, J = 5.3, 2.4 Hz, 1H, H-2'), 4.57 (d, J = 4.6 Hz, 1H, H-8'), 4.04 (d, J = 3.8 Hz, 1H, H-9'), 3.88 (d, J = 8.8 Hz, 1H, H-6'a), 3.78 (ddd, J = 15.6, 13.5, 6.0 Hz, 4H, H-4'a,b, H-6'b, H-12'a), 3.65 (dd, J = 12.3, 4.5 Hz, 1H, H-12'b), 3.59 (s, 2H, H-13'a,b); ¹³C NMR (100 MHz, CDCl₃ + CD₃OD) δ = 165.5 (1C, cytosine C-4), 155.7 (1C, cytosine CO-2), 143.5 (3C, 3 x Tr Ar-C), 141.3 (1C, cytosine CH-6), 128.6, 128.3, 127.5 (15C, 15 x Tr Ar-CH), 95.9 (1C, cytosine CH-5), 90.5 (1C, C-2'), 88.1 (1C, C-8'), 79.3 (1C, C-1'), 74.8 (1C, C-9'), 74.7 (1C, C-5'), 71.9 (1C, C-4'), 71.3 (1C, C-6'), 70.9, 63.4 (1C, C-13'), 62.1 (1C, C-12'); ESI-TOF-MS: m/z calcd for C₃₂H₃₂N₄NaO₆ [M+Na]⁺ 591.222, found 591.224.

Cytosine-tricyclano (14b) - Deprotection of 13b

13b (244 mg, 0.28 mmol) was dissolved in a mixture of hexafluoroisopropanol (2.8 mL), MeNO₂ (1.4 mL) and Et₃SiH (340 μ L, 2.13 mmol, 7.6 equiv.) then ZnCl₂ (305 mg, 2.24 mmol, 8.0 equiv.) was added to the mixture. After 7 hours the reaction mixture was diluted with Et₂O and the solid was filtrated off. The crude product was purified by flash column chromatography (MeCN/MeOH/H₂O 90:5:5 \rightarrow 85:7.5:7.5 \rightarrow 8:1:1 + 0.1% of cc. NH₃-solution) to yield **14b** (24 mg, 26%) as an off-white solid. R_f= 0.25 (MeCN/MeOH/H₂O 8:1:1 + 0.1% of cc. NH₃-solution); ¹H NMR (400 MHz, DMSO-d₆) δ = 7.50 (d, *J* = 7.5 Hz, 1H, cytosine C*H*-6), 7.42 – 7.18 (m, 2H, NH₂), 5.93 (d, *J* = 1.7 Hz, 1H, H-1²), 5.75 (d, *J* = 7.5 Hz, 1H, cytosine C*H*-5), 5.01 (s, 1H, H-13'-O*H*), 4.92 (s, 1H, H-12'-O*H*), 4.27 (d, J = 1.7 Hz, 1H, H-2'), 4.15 (d, J = 1.5 Hz, 1H, H-8'), 4.08 (td, J = 5.9, 1.6 Hz, 1H, H-9'), 3.99 (dd, J = 12.5, 8.7 Hz, 2H, H-4'a,b or H-6'a,b), 3.62 (d, J = 5.8 Hz, 2H, H-12'a,b), 3.57 (d, J = 8.6 Hz, 2H, H-4'a,b or H-6'a,b), 3.54 (s, 2H, H-13'a,b); ¹³C NMR (100 MHz, DMSO-d₆) $\delta = 165.5$ (1C, cytosine C-4), 154.3 (1C, cytosine CO-2), 142.6 (1C, cytosine CH-6), 93.5 (1C, cytosine CH-5), 85.7 (2C, C-2', C-8'), 79.0 (1C, C-1'), 77.0 (1C, C-9'), 74.3 (2C, C-4', C-6'), 73.6 (1C, C-5'), 63.8 (1C, C-13'), 60.6 (1C, C-12'); ESI-TOF-MS: m/z calcd for C₁₃H₁₈N₄NaO₆ [M+Na]⁺ 349.112, found 349.112.

5'-O-tert-butyldimethylsilyl-inosine (16a)Ref. 27 in the main text

Inosine **15** (5.30 g, 19.76 mmol) was dissolved in dry DMF (60 mL). Imidazole (2.92 g, 42.89 mmol, 2.2 equiv.) and *tert*-butyldimethylsilyl chloride (3.16 g, 20.97 mmol, 1.06 equiv.) were added to the reaction mixture and stirred overnight. The solution was poured into ice-water, the solid phase was filtered and dried in vacuum over P₂O₅ and KOH overnight. The crude white solid was purified by flash column chromatography (CH₂Cl₂/MeOH 9:1) to yield **16a** (4.08 g, 54%) as a white foam. R_f= 0.63 (CH₂Cl₂/MeOH 9:1); ¹H NMR 360 MHz (CD₃OD) δ = 8.31 (s, 1H, hypoxanthine CH), 8.07 (s, 1H, hypoxanthine CH), 6.06 (d, *J* = 4.5 Hz, 1H, H-1'), 4.55 (t, *J* = 4.7 Hz, 1H), 4.35 (t, *J* = 4.8 Hz, 1H), 4.20 – 4.08 (m, 1H), 3.99 (dd, *J* = 11.5 Hz, *J* = 3.0 Hz, 1H, H-5'a), 3.87 (dd, *J* = 11.6 Hz, *J* = 3.0 Hz, 1H, H-5'b), 0.92 (s, 9H, TBDMS *t*-Bu 3 x CH₃), 0.11 (2 x s, 6H, TBDMS 2 x Si-CH₃); ¹³C NMR 90 MHz (CD₃OD) δ = 158.8, 149.9, 125.6 (3C, hypoxanthine CO-6, C-4, C-5), 146.9, (1C, hypoxanthine CH), 90.0, 86.6, 76.6, 71.5 (4C, C-1', C-2', C-3', C-4'), 63.9 (1C, C-5'), 26.5 (3C, TBDMS *t*-Bu 3 x CH₃), 19.3 (1C, TBDMS *t*-Bu C_q), -5.3 (2C, TBDMS 2 x Si-CH₃); ESI-TOF-MS: *m*/*z* calcd for C₁₆H₂₆N₄NaO₅Si [M+Na]⁺ 405.157, found 405.154.

5'-O-trityl-inosine (16b)Ref. 28 in the main text

Inosine **15** (2.15 g, 8.00 mmol) was suspended in a mixture of dry pyridine (25 mL) and dry DMF (25 mL) then trityl chloride (2.68 g, 9.60 mmol, 1.2 equiv.) was added to the reaction mixture. Next day dry DMSO (15 mL) and trityl chloride (0.67 g, 2.40 mmol, 0.3 equiv.) was added. After that trityl chloride (2.24 g, 8.00 mmol, 1.0 equiv.) was added in two portions and the mixture was warmed at 60 °C. The solvent was evaporated in *vacuo*, the residue was diluted with CH₂Cl₂. The organic layer was extracted with distilled water, brine and dried over anhydrous Na₂SO₄. The solid phase was filtered and the solvent was evaporated under reduced pressure. The crude product was purified by flash column chromatography (CH₂Cl₂/MeOH 15:1 \rightarrow 11:1 \rightarrow 9:1) to yield compound **16b** (1.58 g, 39%) as a jonquil foam. R_f= 0.32 (CH₂Cl₂/MeOH 9:1); ¹H NMR 360 MHz (DMSO-d₆) δ = 12.40 (s, 1H, NH), 8.23 (s, 1H, hypoxanthine CH), 8.02 (s, 1H, hypoxanthine CH), 7.47 – 7.19 (m, 15H, 15 x Tr Ar-H),

5.95 (d, J = 4.5 Hz, 1H, H-1'), 5.61 (s, 1H, O*H*), 5.26 (s, 1H, O*H*), 4.62 (s, 1H), 4.28 (s, 1H), 4.11 (dd, J = 8.9, 4.7 Hz, 1H), 3.31 – 3.20 (m, 2H); ¹³C NMR 90 MHz (DMSO-d₆) $\delta = 156.6$, 148.2, 124.6 (3C, hypoxanthine CO-6, C-4, C-5), 145.8 (1C, hypoxanthine CH), 143.6 (3C, 3 x Tr Ar-C), 128.3, 127.9, 127.0 (15C, 15 x Tr Ar-CH), 88.0, 83.1, 73.4, 70.2 (4C, C-1', C-2', C-3', C-4'), 86.1 (1C, Tr C_q) 64.0 (1C, C-5'); MALDI-TOF-MS: *m*/*z* calcd for C₂₉H₂₆N₄NaO₅ [M+Na]⁺ 533.180, found 533.4; Elemental analysis: calcd (%) for C₂₉H₂₆N₄O₅: C 68.22, H 5.13, N 10.97, found C 68.24, H 5.12, N 10.99.

12'-O-tert-butyldimethylsilyl-hypoxanthine-tricyclano (17a)

To a solution of 16a (1.90 g, 4.97 mmol) in MeOH (150 mL) IO₄-form of anion exchange resin (7.6 g) was added and stirred overnight in dark. Next day the resin was filtered off through a short pad of Celite® and washed with MeOH. The solvent was evaporated in vacuum. The residue was dissolved in dry MeOH (80 mL) and 3 Å molecular sieves (2 g) were added to the reaction. After stirring for half an hour Tris (903 mg, 7.46 mmol, 1.5 equiv.) was added to the mixture. After stirring overnight the molecular sieves were filtered off through a short pad of Celite® and washed with MeOH. The solvent was evaporated in vacuum and the crude product was purified by flash column chromatography (CH₂Cl₂/MeOH 95:5) to yield compound 17a (1.20 g, 52%, over two steps) as a white powder. $R_{f} = 0.31$ $(CH_2Cl_2/MeOH 9:1)$; ¹H NMR 500 MHz (DMSO-d₆) $\delta = 8.33$ (s, 1H, hypoxanthine CH), 8.09 (s, 1H, hypoxanthine CH), 6.01 (d, J = 6.3 Hz, 1H, H-1'), 5.20 (d, J = 6.3 Hz, 1H, H-2'), 5.10 (s, 1H, OH), 4.72 (d, J = 3.1 Hz, 1H, H-8'), 4.11 - 4.09 (m, 1H, H-9'), 3.88 - 3.74 (m, 6H, H-4'a,b, H-6'a,b, H-12'a,b), 3.53 (s, 2H, H-13'a,b), 0.84 (s, 9H, TBDMS t-Bu 3 x CH₃), 0.03 (2 x s, 6H, TBDMS 2 x Si-CH₃); ¹³C NMR 125 MHz (DMSO-d₆) δ = 156.5 (1C, hypoxanthine CO-6), 148.2 (1C, hypoxanthine C-4), 146.3 (1C, hypoxanthine CH-2), 138.3 (1C, hypoxanthine CH-8), 124.0 (1C, hypoxanthine C-5), 88.8 (1C, C-2'), 88.0 (1C, C-8'), 77.1 (1C, C-1'), 74.5 (1C, C-5'), 74.4 (1C, C-9'), 72.3 (1C, C-4'), 71.6 (1C, C-6'), 63.9 (1C, C-13'), 63.1 (1C, C-12'), 25.7 (3C, TBDMS t-Bu 3 x CH₃), 18.0 (1C, TBDMS t-Bu C_a), -5.4 (2C, TBDMS 2 x Si-CH₃); ESI-TOF-MS: *m/z* calcd for C₂₀H₃₁N₅NaO₆Si [M+Na]⁺ 488.194, found 488.192.

12'-O-trityl-hypoxanthine-tricyclano (17b)

To a solution of **16b** (1.00 g, 1.96 mmol) in MeOH (50 mL) IO₄-form of anion exchange resin (4.0 g) was added and stirred overnight in dark. Next day the resin was filtered off through a short pad of Celite® and washed with MeOH. The solvent was evaporated in vacuum. The residue was dissolved in dry MeOH (50 mL) and 3 Å molecular sieves (1 g) were added to the reaction. After stirring for half an hour Tris (357 mg, 2.95 mmol, 1.5 equiv.) was added to the mixture. After stirring overnight the molecular sieves were filtered off through a short pad of Celite® and washed successively with MeOH and CH₂Cl₂. The solvent was evaporated in vacuum and the crude product was purified by flash chromatography (CH₂Cl₂/MeOH 98:2 \rightarrow 95:5) to afford compound 17b (492 mg, 42%, over two steps) as a white solid. $R_f = 0.33$ (CH₂Cl₂/*i*-PrOH 8:2); ¹H NMR (500 MHz, C₅D₅N) $\delta =$ 8.67 (s, 1H, hypoxanthine CH-8), 8.42 (s, 1H, hypoxanthine CH-2), 7.67 (d, J = 7.5 Hz, 6H, 6 x Tr Ar-H), 7.34 (t, J = 7.7 Hz, 6H, 6 x Tr Ar-H), 7.25 (t, J = 7.3 Hz, 3H, 3 x Tr Ar-H), 6.93 (s, 1H), 6.71 (d, J = 5.2 Hz, 1H, H-1'), 5.56 (d, J = 5.2 Hz, 1H, H-2'), 5.24 (d, J = 4.2 Hz, 1H, H-8'), 4.98 (s, 1H), 4.67 (q, J = 4.6 Hz, 1H, H-9'), 4.27 (d, J = 8.6 Hz, 1H, H-4'a), 4.17 – 4.08 (m, 3H, H-4'b, H-6'a,b), 4.03 (q, J = 11.0 Hz, 2H, H-13'a,b), 3.68 - 3.61 (m, 2H, H-12'a,b); ¹³C NMR (125 MHz, C₅D₅N) δ = 158.4 (1C, hypoxanthine CO-6), 149.8 (1C, hypoxanthine C-4), 147.0 (1C, hypoxanthine CH-2), 144.9 (3C, 3 x Tr Ar-C), 129.7, 128.8, 128.0 (15C, 15 x Tr Ar-CH), 126.4 (1C, hypoxanthine C-5), 91.5 (1C, C-2'), 89.9 (1C, C-8'), 87.7 (1C, Tr C_a), 79.0 (1C, C-1'), 76.3 (1C, C-5'), 75.1 (1C, C-9'), 73.6 (1C, C-4'), 73.2 (1C, C-6'), 65.4 (1C, C-13'), 65.3 (1C, C-12'); MALDI-TOF-MS: m/z calcd for C₃₃H₃₁N₅NaO₆ [M+Na]⁺ 616.207, found 616.38; Elemental analysis: calcd (%) for C₃₃H₃₁N₅O₆: C 66.77, H 5.26, N 11.80, found C 66.75, H 5.27, N 11.79.

13'-O-acetyl-12'-O-trityl-hypoxanthine-tricyclano (18b)

17b (100 mg, 0.17 mmol) was dissolved in dry pyridine (2 mL). Acetic anhydride (31.8 μ L, 0.34 mmol, 2.0 equiv.) was added to the reaction mixture and it was stirred overnight. Next day the mixture was quenched with saturated NaHCO₃ solution and stirred one hour. The solvent was evaporated under reduced pressure and the crude product was purified by flash chromatography (CH₂Cl₂/MeOH 100:0 \rightarrow 98:2 \rightarrow 95:5) to yield compound **18b** (91 mg, 86%) as a white powder. R_f= 0.36 (CH₂Cl₂/MeOH 95:5); ¹H NMR (400 MHz, CDCl₃) δ = 8.21 (s, 1H, hypoxanthine CH-8), 8.01 (s, 1H, hypoxanthine CH-2), 7.49 – 7.43 (m, 6H, 6 x Tr Ar-H), 7.34 – 7.22 (m, 9H, 9 x Tr Ar-H), 6.16 (d, *J* = 6.2 Hz, 1H, H-1'), 5.01 (d, *J* = 6.1 Hz, 1H, H-2'), 4.83 (d, *J* = 2.9 Hz, 1H, H-8'), 4.37 (dd, *J* = 7.8, 4.8 Hz, 1H, H-9'), 4.21 (dd, *J* = 24.2, 11.4 Hz, 2H, H-13'a,b), 3.95 (d, *J* = 9.1 Hz, 1H, H-6'a) 3.93 (q, *J* = 9.1, 2H, H-4'a,b), 3.76 (d, *J* = 9.1 Hz, 1H, H-6'b), 3.44 – 3.34 (m, 2H, H-12'a,b), 2.05 (s, 3H, COCH₃); ¹³C NMR (100 MHz, CDCl₃) δ = 170.7 (1C, COCH₃), 159.3 (1C, hypoxanthine CO-6), 149.1 (1C, hypoxanthine C-4), 143.6, (3C, 3 x Tr Ar-C) 128.7, 128.0, 127.3 (15C, 15 x Tr Ar-CH), 124.5 (1C, hypoxanthine C-5), 90.8 (1C, C-2'), 89.5, (1C, C-8') 87.1 (1C, Tr C_q), 78.0 (1C,

C-1'), 74.1 (1C, C-9'), 72.9 (1C, C-5'), 72.7 (1C, C-4'), 71.9 (1C, C-6'), 66.0 (1C, C-13'), 63.9 (1C, C-12'), 20.8 (1C, COCH₃); MALDI-TOF-MS: m/z calcd for C₃₅H₃₃N₅NaO₇ [M+Na]⁺ 658.228, found 658.164; Elemental analysis: calcd (%) for C₃₅H₃₃N₅O₇: C 66.13, H 5.23, N 11.02, found C 66.15, H 5.26, N 11.01.

Hypoxanthine-tricyclano (19) - Synthesis without protecting group

To a solution of inosine **15** (268 mg, 1.00 mmol) in MeOH (50 mL) IO_4 -form of anion exchange resin (1.0 g) was added and stirred overnight in dark. Next day the resin was filtered off through a short pad of Celite® and washed with MeOH. The solvent was evaporated in vacuum. The residue was dissolved in dry MeOH (20 mL) and 3 Å molecular sieves (270 mg) were added to the reaction. After stirring for half an hour Tris (182 mg, 1.50 mmol, 1.5 equiv.) was added to the mixture. After stirring overnight the molecular sieves were filtered off through a short pad of Celite® and washed with MeOH. The solvent was evaporated in vacuum and the crude product was purified by flash column chromatography (CH₂Cl₂/*n*-PrOH 8:2 \rightarrow 7:3) to give **19** (132 mg, 38%, over two steps) as a white powder.

Hypoxanthine-tricyclano (19) - Deprotection of 17a

17a (153 mg, 0.33 mmol) was dissolved in dry THF (4 mL). Tetrabutylammonium fluoride solution (657 mL, 2.0 equiv., 1.0 M in THF) was added to the reaction mixture. After stirring overnight the solvent was evaporated and the crude product was purified by flash chromatography (EtOAc/MeOH 85:15) to afford **19** (65 mg, 56%) as a white powder.

Hypoxanthine-tricyclano (19) - Deprotection of 17b

17b (297 mg, 0.50 mmol) was added to the mixture of $ZnCl_2$ (297 mg, 2.18 mmol, 4.4 equiv.), hexafluoroisopropanol (10 mL), MeNO₂ (5 mL) and Et₃SiH (503 µL, 3.15 mmol, 6.3 equiv.). After 2 hours saturated NaHCO₃-solution was added and the solvents were

evaporated. The crude product was purified by flash column chromatography (CH₂Cl₂/MeOH 85:15 \rightarrow 8:2) to yield **19** (101 mg, 58%) as a white solid. R_f= 0.47 (CH₂Cl₂/MeOH 8:2); ¹H NMR (400 MHz, D₂O + CD₃OD) δ = 8.37 (s, 1H, hypoxanthine CH-8), 8.20 (s, 1H, hypoxanthine CH-2), 6.10 (d, *J* = 6.3 Hz, 1H, H-1'), 5.17 (d, *J* = 6.3 Hz, 1H, H-2'), 4.83 (d, *J* = 2.8 Hz, 1H, H-8'), 4.37 (dd, *J* = 7.4, 4.4 Hz, 1H, H-9'), 4.03 (dd, *J* = 15.7, 9.2 Hz, 3H, H-6'a, H-4'a,b), 3.93 – 3.80 (m, 3H, H-12'a,b, H-6'b), 3.81 – 3.72 (m, 2H, H-13'a,b); ¹³C NMR (100 MHz, D₂O + CD₃OD) δ = 159.2 (1C, hypoxanthine CO-6), 149.3 (1C, hypoxanthine C-4), 147.3 (1C, hypoxanthine CH-2), 124.7 (1C, hypoxanthine C-5), 90.5 (1C, C-2'), 89.6 (1C, C-8'), 79.6 (1C, C-1'), 76.0 (1C, C-9'), 75.6 (1C, C-5'), 73.1 (1C, C-4'), 72.1 (1C, C-5'), 63.7 (1C, C-13'), 62.9 (1C, C-12'); MALDI-TOF-MS: *m*/*z* calcd for C₁₄H₁₇N₅NaO₆ [M+Na]⁺ 374.108, found 374.12; Elemental analysis: calcd (%) for C₁₄H₁₇N₅O₆: C 47.86, H 4.88, N 19.93, found C 47.89, H 4.85, N 19.91.

6-N-benzoyl-adenosine (21)Ref. 29 in the main text

Adenosine 20 (10.00 g, 37.42 mmol) was coevaporated with dry pyridine then it was suspended in pyridine (200 mL) and stirred under argon atmosphere. Chlorotrimethylsilane (47.50 mL, 374.2 mmol, 10 equiv.) was added dropwise and after 1 hour benzoic anhydride (16.93 g, 74.84 mmol, 2.0 equiv.) was added and the mixture was stirred overnight. The reaction was cooled to 0 °C and quenched with water (100 mL). Then concentrated aqueous ammonia solution (80 mL) was added and the mixture was stirred at room temperature. The solvent was evaporated in vacuo and the residue was stirred with cold water and the precipitated product was filtered off. The crude product was washed with cold water then with ether and dried in vacuum over P_2O_5 and KOH overnight to afford compound 21 (13.39 g, 96%) as a white solid. R = 0.28 (CH₂Cl₂/MeOH 9:1); ¹H NMR 400 MHz (DMSO-d₆) δ = 11.22 (s, 1H, NH), 8.77 (s, 1H, adenine CH), 8.74 (s, 1H, adenine CH), 8.07 - 7.54 (m, 5H, 5 x Bz Ar-H), 6.06 (d, J = 5.8 Hz, 1H, H-1'), 5.58 (d, J = 6.0 Hz, 1H), 5.26 (d, J = 4.9 Hz, 1H), 5.15 (t, J = 5.5 Hz, 1H), 4.67 (dd, J = 11.1 Hz, J = 5.6 Hz, 1H), 4.21 (dd, J = 8.5 Hz, J = 4.6 Hz, 1H), 4.01 (q, J = 3.6 Hz, 1H), 3.74 – 3.57 (m, 2H, H-5'a,b); ¹³C NMR 100 MHz (DMSO d_6) $\delta = 165.7$ (1C, Bz CO), 152.3, 150.4, 133.4, 125.9 (4C, adenine C-4, C-5, C-6, Bz Ar-C), 132.5, 128.5 (5C, 5 x Bz Ar-CH), 151.7 (1C, adenin CH), 87.6, 85.7, 73.7, 70.4 (4C, C-1', C-2', C-3', C-4'), 61.4 (1C, C-5'); ESI-TOF-MS: m/z calcd for C₁₇H₁₇N₅NaO₅ [M+Na]⁺ 394.113, found 394.109.

6-N-benzoyl-5'-O-tert-butyldimethylsilyl-adenosine (22a)Ref. 30 in the main text

To a solution of **21** (5.00 g, 13.46 mmol) in dry pyridine (50 mL) 4 Å molecular sieves (5 g) and 4-(dimethylamino)pyridine (catalytic amount) were added. After one hour stirring at room temperature *tert*-butyldimethylchlorosilane (3.65 g, 24.22 mmol, 1.8 equiv.) was added

and the mixture was stirred overnight. The reaction mixture was filtered through a pad of Celite[®] and the filter cake was washed with CHCl₃. The solvent was evaporated under reduced pressure and the residue was dissolved in CHCl₃. The organic phase was extracted with 10% aqueous NaHSO₄ solution, aqueous saturated NaHCO₃ solution and dried over anhydrous Na₂SO₄ and filtered. The filtrate was evaporated in *vacuo* and the crude product was purified by flash column chromatography (CH₂Cl₂/EtOAc 6:4 \rightarrow 1:1, then $CH_2Cl_2/MeOH 9:1$) to give 22a (5.45 g, 83%) as a white foam. R₇= 0.52 (CH₂Cl₂/MeOH 9:1); ¹H NMR 400 MHz (CDCl₃) δ = 9.53 (s, 1H, CON*H*), 8.52 (s, 1H, adenine C*H*), 8.37 (s, 1H, adenine CH), 7.94 (d, J = 7.5 Hz, 2H, 2 x Bz Ar-H), 7.50 (t, J = 7.4 Hz, 1H, Bz Ar-H), 7.41 (t, J = 7.5 Hz, 2H, 2 x Bz Ar-H), 6.16 (d, J = 5.1 Hz, 2H, H-1', OH), 4.75 (s, 1H), 4.67 (s, 1H), 4.45 (s, 1H), 4.22 (d, J = 3.0 Hz, 1H), 3.93 - 3.76 (m, 2H, H-5'a,b), 3.54 (s, 1H, OH), 0.82 (s, 9H, TBDMS t-Bu 3 x CH₃), 0.02, 0.01 (2 x s, 6H, TBDMS 2 x Si-CH₃); ¹³C NMR 100 MHz $(CDCl_3) \delta = 165.1 (1C, Bz CO), 151.2, 149.1, 133.4, 122.5 (4C, adenine C-4, C-5, C-6, Bz$ Ar-C), 132.9, 128.7, 128.0 (5C, 5 x Bz Ar-CH), 89.0, 86.0, 75.9, 71.2 (4C, C-1', C-2', C-3', C-4'), 63.1 (1C, C-5'), 26.0 (3C, TBDMS t-Bu 3 x CH₃), 18.4 (1C, TBDMS t-Bu C_a), -5.3, -5.4 (2C, TBDMS 2 x Si-CH₃); ESI-TOF-MS: m/z calcd for C₂₃H₃₂N₅NaO₅Si [M+Na]⁺ 508.199, found 508.191; Elemental analysis: calcd (%) for C₂₃H₃₂N₅O₅Si: C 56.89, H 6.43, N 14.42, found C 56.88, H 6.45, N 14.44.

6-N.5'-O-bistrityl-adenosine (22b)Ref. 31 in the main text

To a suspension of adenosine 20 (1.34 g, 5.00 mmol) in dry pyridine (30 mL) triphenylmethyl chloride (4.18 g, 15.00 mmol, 3 equiv.) was added and the reaction mixture was heated to 60 °C and stirred overnight. The reaction mixture was concentrated in vacuo and coevaporated with toluene. The residue was dissolved in CH₂Cl₂ (300 mL) and extracted with 10% aqueous NaHSO₄ solution, aqueous saturated NaHCO₃ solution and dried over anhydrous Na₂SO₄. The solid phase was filtered and the solvent was evaporated under reduced pressure. The crude product was purified by flash column chromatography (CH₂Cl₂/acetone 9:1 \rightarrow 85:15) to yield compound **22b** (2.38 g, 63%) as a white solid. $R_f = 0.39$ (CH₂Cl₂/acetone 85:15); ¹H NMR 500 MHz (DMSO-d₆) δ = 8.37 (s, 1H, adenine CH), 7.85 (s, 1H, adenine CH), 7.47 (s, 1H, NH), 7.36 - 7.20 (m, 30H, 30 x Tr Ar-H), 5.95 (d, J = 4.6 Hz, 1H, H-1'), 5.51 (s, 1H, OH), 5.24 (s, 1H, OH), 4.77 (t, J = 4.8 Hz, 1H), 4.33 (d, J = 4.9 Hz, 1H), 4.09 (q, J = 4.2 Hz, 1H), 3.24 (d, J = 4.3 Hz, 2H, H-5'a,b); ¹³C NMR 125 MHz (DMSO-d₆) $\delta = 153.6$, 148.4, 144.9, 143.6, 121.0 (9C, adenine C-4, C-5, C-6, 6 x Tr Ar-C), 151.2, 140.6 (2C, adenine CH-2, CH-8), 128.6-126.6 (30C, 30 x Tr Ar-CH), 88.3 (1C, C-1'), 86.0 (1C, OTr C_q), 83.1, 72.7, 70.3 (3C, C-2', C-3', C-4'), 70.4 (1C, NTr C_a), 63.9 (1C, C-5'); ESI-TOF-MS: *m/z* calcd for C₄₈H₄₁N₅NaO₄ [M+Na]⁺ 774.306, found 774.302.

6-N-benzoyl-12'-O-tert-butyldimethylsilyl-adenine-tricyclano (23a)

To a solution of 22a (1.20 g, 2.47 mmol) in MeOH (15 mL) IO₄-form of anion exchange resin (4.8 g) was added and stirred overnight in dark. Next day the resin was filtered off through a short pad of Celite® and washed with MeOH. The solvent was evaporated in vacuum. The residue was dissolved in dry MeOH (30 mL) and 3 Å molecular sieves (270 mg) were added to the reaction. After stirring for half an hour Tris (449 mg, 3.71 mmol, 1.5 equiv.) was added to the mixture. After stirring overnight the molecular sieves were filtered off through a short pad of Celite® and washed with MeOH. The solvent was evaporated in vacuum and the crude product was purified by flash column chromatography (ihexane/acetone 7:3 \rightarrow 6:4) to yield compound 23a (337 mg, 24%, over two steps) as a white foam. $R_{f} = 0.50$ (CH₂Cl₂/MeOH 9:1); ¹H NMR 400 MHz (CDCl₃) $\delta = 9.46$ (s, 1H, NH), 8.78 (s, 1H, adenine CH), 8.26 (s, 1H, adenine CH), 8.02 (d, J = 7.4 Hz, 2H, 2 x Bz Ar-H), 7.58 (t, J = 7.4 Hz, 1H, Bz Ar-H), 7.50 (t, J = 7.6 Hz, 1H, Bz Ar-H), 6.30 (d, J = 5.1 Hz, 1H, H-1'), 5.05 (d, J = 5.1 Hz, 1H, H-2'), 4.84 (d, J = 4.2 Hz, 1H, H-8'), 4.20 (q, J = 4.6 Hz, 1H, H-9'),3.93 - 3.82 (m, 6H, H-4'a,b, H-6a,b, H-12'a,b), 3.66 (q, J = 11.4 Hz, 2H, H-13'a,b), 3.37 (s, 1H, OH), 0.89 (s, 9H, TBDMS t-Bu 3 x CH₃), 0.07, 0.06 (2 x s, 6H, TBDMS 2 x Si-CH₃); ¹³C NMR 100 MHz (CDCl₃) δ = 165.0 (1C, Bz CO), 153.0 (1C, adenine CH), 151.7, 149.7, 133.7, 122.8 (4C, adenine C-4, C-5, C-6, Bz Ar-C), 132.8, 128.8, 128.0 (5C, 5 x Bz Ar-CH), 90.7, 88.3, 78.2, 75.1 (4C, C-1', C-2', C-8', C-9'), 75.2 (1C, C-5'), 72.2, 71.6 (2C, C-4', C-6'), 63.4, 63.1 (2C, C-12', C-13'), 25.9 (3C, TBDMS t-Bu 3 x CH₃), 18.4 (1C, TBDMS t-Bu C_0 , -5.3 (2C, TBDMS 2 x Si-CH₃); ESI-TOF-MS: m/z calcd for $C_{27}H_{36}N_6NaO_6Si$ [M+Na]⁺ 591.236, found 591.234.

6-N,12'-O-bistrityl-adenine-tricyclano (23b)

To a solution of **22b** (2.00 g, 2.66 mmol) in a mixture of MeOH (30 mL) and CH₂Cl₂ (20 mL) IO_4 -form of anion exchange resin (4.0 g) was added and stirred overnight in dark. Next day the resin was filtered off through a short pad of Celite® and washed with MeOH. The solvent was evaporated in vacuum. The residue was dissolved in dry MeOH (50 mL) and 3 Å molecular sieves (2 g) were added to the reaction. After stirring for half an hour Tris (483 mg, 3.99 mmol, 1.5 equiv.) was added to the mixture. After stirring overnight the molecular sieves were filtered off through a short pad of Celite® and washed successively with MeOH and CH₂Cl₂. The solvent was evaporated in vacuum and the crude product was purified by flash

column chromatography (*i*-hexane/acetone 8:2 \rightarrow 7:3) to yield compound **23b** (1.55 g, 70%, over two steps) as a white foam. R_f= 0.33 (*i*-hexane/acetone 6:4); ¹H NMR (400 MHz, CDCl₃) δ = 8.06 (s, 1H, adenine CH-2), 7.97 (s, 1H, adenine CH-8), 7.48 – 7.41 (m, 6H, 6 x OTr Ar-H), 7.34 (dd, *J* = 8.1, 1.3 Hz, 6H, 6 x NTr Ar-H), 7.30 – 7.17 (m, 18H, 18 x Tr Art-H), 7.10 (s, 1H, NH), 6.12 (d, *J* = 6.0 Hz, 1H, H-1'), 5.11 (d, *J* = 6.0 Hz, 1H, H-2'), 4.75 (d, *J* = 3.1 Hz, 1H, H-8'), 4.33 (q, *J* = 4.7 Hz, 1H, H-9'), 3.87 (q, *J* = 8.9 Hz, 2H, H-4'a,b) 3.84 (d, *J* = 8.8 Hz, 1H, H-6'a), 3.69 (d, *J* = 8.9 Hz, 1H, H-6'b), 3.57 (qd, *J* = 11.5, 5.9 Hz, 2H, H-13'a,b), 3.41 – 3.31 (m, 2H, H-12'a,b), 2.81 (t, *J* = 5.9 Hz, 1H, OH); ¹³C NMR (100 MHz, CDCl₃) δ = 154.2 (1C, adenine C-6), 152.8 (1C, adenine CH-2), 148.9 (1C, adenine C-4), 145.0 (3C, 3 x NTr Ar-C), 143.7 (3C, 3 x OTr Ar-C), 129.1, 128.7, 128.0, 128.0, 127.3, 127.0 (30C, 30 x Tr Ar-CH), 120.8 (1C, adenine C-5), 90.4 (1C, C-2'), 89.2 (1C, C-8'), 87.0 (1C, OTr C_q), 78.2 (1C, C-1'), 75.1 (1C, C-5'), 74.2 (1C, C-9'), 72.1 (1C, C-4'), 71.5 (1C, C-6', NTr C_q), 64.1 (1C, C-12'), 63.4 (1C, C-13'); MALDI-TOF-MS: *m*/z calcd for C₅₂H₄₆N₆NaO₅ [M+Na]⁺ 857.343, found 857.33; Elemental analysis: calcd (%) for C₅₂H₄₆N₆O₅: C 74.80, H 5.55, N 10.07, found C 74.77, H 5.56, N 10.10.

6-N-benzoyl-adenine-tricyclano (24a)

23a (350 mg, 0.33 mmol) was dissolved in dry THF (3 mL). Tetrabutylammonium fluoride solution (495 mL, 1.5 equiv., 1.0 M in THF) was added to the reaction mixture. After stirring for two hours the solvent was evaporated and the crude product was purified by flash column chromatography (CH₂Cl₂/MeOH 98:2 \rightarrow 9:1) to afford **24a** (257 mg, 92%) as a white foam. R_{*j*}= 0.32 (CH₂Cl₂/MeOH 9:1); ¹H NMR 400 MHz (C₅D₅N) δ = 12.37 (s, 1H, CON*H*), 9.01 (s, 1H, adenine C*H*), 8.98 (s, 1H, adenine C*H*), 8.35 (d, *J* = 7.0 Hz, 2H, 2 x Bz Ar-H), 7.53 (t, *J* = 7.3 Hz, 1H, 1 x Bz Ar-H), 7.47 (t, *J* = 7.3 Hz, 2H, 2 x Bz Ar-H), 6.77 (d, *J* = 5.6 Hz, 1H, H-1'), 5.69 (d, *J* = 5.6 Hz, 1H, H-2'), 5.34 (d, *J* = 3.7 Hz, 1H, H-8'), 5.12 (s, 1H, O*H*), 4.68 (dd, *J* = 8.9, 5.0 Hz, 1H), 4.30 (d, *J* = 8.6 Hz, 1H), 4.22 – 4.12 (m, 5H), 4.03 (q, *J* = 11.1 Hz, 2H, H-13'a,b), 3.56 – 3.48 (m, 1H, O*H*); ¹³C NMR 100 MHz (C₅D₅N) δ = 167.9 (1C, Bz CO), 153.5, 152.3, 135.9, 126.2 (4C, adenine C-4, C-5, C-6, Bz Ar-C), 133.0, 129.7, 129.3 (5C, 5 x Bz Ar-CH), 91.3, 90.0, 79.4, 77.1 (4C, C-1', C-2', C-8', C-9'), 76.3 (1C, C-5'), 73.8, 73.2 (2C, C-4', C-6'), 65.3, 63.2 (2C, C-12', C-13'); ESI-TOF-MS: *m*/z calcd for C₂₁H₂₂N₆NaO₆ [M+Na]⁺ 477.150, found 477.146.

Adenine-tricyclano (25) - Deprotection of 24a

To a solution of **24a** (150 mg, 0.33 mmol) in MeOH (30 mL) cc. NH₃ solution (3 mL) was added and stirred overnight. The solvent was evaporated in *vacuo*. The crude product was purified by trituration with CH_2Cl_2 to yield **25** (109 mg, 95%) as a white solid.

Adenine-tricyclano (25) - Deprotection of 23b

23b (83 mg, 0.10 mmol) was dissolved in the mixture of MeNO₂ (1.5 mL), hexafluoroisopropanol (0.5 ml) and Et₃SiH (120 µL, 0.76 mmol, 7.6 equiv.) then ZnCl₂ (109 mg, 0.80 mmol, 8.0 equiv.) was added to the mixture. After 24 hours saturated NaHCO₃-solution was added and the solvents were evaporated. The crude product was purified by flash column chromatography (CH₂Cl₂/MeOH 95:5 \rightarrow 9:1 \rightarrow 85:15) to yield **25** (22 mg, 63%) as a white solid. R_f= 0.34 (CH₂Cl₂/MeOH 85:15); ¹H NMR 500 MHz (DMSO-d₆) δ = 8.40 (s, 1H, adenine CH-8), 8.15 (s, 1H, adenine CH-2), 7.35 (s, 2H, NH₂), 5.97 (d, *J* = 6.9 Hz, 1H, H-1'), 5.24 (d, *J* = 6.9 Hz, 1H, H-2'), 4.69 (d, *J* = 2.4 Hz, 1H, H-8'), 4.09 (td, *J* = 5.8, 2.3 Hz, 1H, H-9'), 3.88 – 3.83 (m, 3H, H-6'a, H-4'a,b,), 3.70 (d, *J* = 8.8 Hz, 1H, H-6'b), 3.56 (d, *J* = 5.8 Hz, 2H, H-12'a,b), 3.54 (d, *J* = 3.6 Hz, 2H, H-13'a,b); ¹³C NMR 125 MHz (DMSO-d₆) δ = 156.1 (1C, adenine C-6), 152.9, (1C, adenine CH-2), 149.3 (1C, adenine C-4), 139.0 (1C, adenine CH-8), 118.6 (1C, adenine C-5), 88.8 (2C, C-2', C-8'), 77.2 (1C, C-1'), 75.0 (1C, C-9'), 74.5 (1C, C-5'), 72.4 (1C, C-4'), 71.4 (1C, C-6'), 63.9 (1C, C-13'), 61.7 (1C, C-12'); ESI-TOF-MS: *m/z* calcd for C₁₄H₁₈N₆NaO₅ [M+Na]⁺ 373.124, found 373.121.

2-N,5'-O-bistrityl-guanosine (27)Ref. 32 in the main text

To a suspension of guanosine **26** (5.00 g, 17.65 mmol) in dry DMF (50 mL) triphenylmethyl chloride (10.00 g, 35.87 mmol, 2.0 equiv.), 4-dimethylaminopyridine (0.05 g, 0.41 mmol, 0.02 equiv.), Et₃N (6.00 mL, 43.05 mmol, 2.4 equiv.) were added and stirred at 50 °C. After two days Et₃N (4.00 mL, 29.00 mmol, 1.64 equiv.) was added to the mixture. After four days trityl chloride (10.00 g, 35.87 mmol, 2.0 equiv.) and Et₃N (6.00 mL, 43.05 mmol, 2.4 equiv.)

was also added. After one week Et₃N (10 mL) and MeOH (10 mL) was added to the mixture and stirred for 30-30 minutes. The solvent was evaporated under reduced pressure and the residue was coevaporated with dry toluene. The crude product was purified by flash column chromatography (CH₂Cl₂/MeOH 98:2 \rightarrow 95:5) to yield compound **27** (6.70 g, 49%) as a tan foam. R_f= 0.24 (CH₂Cl₂/MeOH 95:5); ¹H NMR (400 MHz, CDCl₃) δ = 11.13 (s, 1H, NH), 7.70 (s, 1H, guanine CH), 7.43 – 7.04 (m, 30H, 30 x Tr Ar-H), 5.32 (d, 1H, H-1'), 4.20 – 4.09 (m, 1H), 4.00 (s, 2H), 3.58 (s, 1H, OH), 3.25 (ddd, *J* = 15.3, 10.4, 4.4 Hz, 2H, H-5'a,b), 3.03 (s, 1H, OH), 2.01 (s, 1H, Tr NH); ¹³C NMR (100 MHz, CDCl₃) δ = 158.4, 151.6, 149.5, 117.9 (4C, guanine C-2, C-4, C-5, CO-6), 144.2, 143.7 (6C, 6 x Tr Ar-C), 128.9, 128.7, 128.0, 127.3, 127.1 (30C, 30 x Tr Ar-CH), 89.6 (1C, C-1'), 87.1 (1C, OTr C_q), 84.0, 74.4, 71.4 (3C, C-2', C-3', C-4'), 71.2 (1C, NTr C_q), 64.1 (1C, C-5'); ESI-TOF-MS: *m/z* calcd for C₄₈H₄₁N₅NaO₅ [M+Na]⁺ 790.301, found 790.290; Elemental analysis: calcd (%) for C₄₈H₄₁N₅O₅: C 75.08, H 5.38, N 9.12, found C 75.10, H 5.39, N 9.11.

2-*N*,5'-*O-bis*(4,4'-dimethoxytrityl)-gunaosine (27b)^{Ref. 33 in the main text and 2-*N*-(4,4'-dimethoxytrityl)-gunaosine (27c)}

To a suspension of guanosine 26 (2.12 g, 7.50 mmol) in dry C₅H₅N (40 mL) the reaction flask was flushed by argon gas. After that TMSCI (7.14 mL, 56.25 mmol, 7.5 equiv.) was added to the mixture. After stirring one hour DMTrCl (3.65 g, 9.00 mmol, 1.2 equiv.) was added and the reaction mixture was stirred overnight. Next day dry DMF (10 mL), TMSCl (7.14 mL, 56.25 mmol, 7.5 equiv.) and after one hour DMTrCl (762 mg 2.25 mmol, 0.3 equiv.) were added and strirred two days. Next day DMTrCl (1.27 g, 3.75 mmol, 0.5 equiv.) and abs. DMF (40 mL) were added. After stirring overnight saturated NaHCO₃-solution was added and stirred for two hours. Then the solvent was evaporated and the residue was dissolved in EtOAc. The organic layer was extracted with H₂O, 10% aqueous NaHSO₄-solution, saturated NaHCO₃-solution and brine. Then it was dried over anhydrous Na₂SO₄-the solid was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography $(CH_2Cl_2/MeOH 98:2 \rightarrow 97:3 \rightarrow 95:5 \rightarrow 93:7 \rightarrow 9:1 \rightarrow 8:2 \rightarrow 7:3)$ to yield compound **27b** (3.11 g, 47%) as a jonquil foam and compound **27b** (1.32 g, 30%) as an off-white foam. **27b**: $R_{f} = 0.35$ (CH₂Cl₂/MeOH 95:5); ¹H NMR (400 MHz, CDCl₃ + CD₃OD) $\delta = 7.60$ (s, 1H, guanine CH-8), 7.36 (d, J = 7.4 Hz, 2H, 2 x DMTr Ar-H), 7.26 (d, J = 8.8 Hz, 6H, 6 x DMTr Ar-H), 7.23 – 7.13 (m, 10H, 10 x DMTr Ar-H), 6.77 (t, J = 8.6 Hz, 8H, 8 x DMTr Ar-H), 5.36 (d, J = 4.4 Hz, 1H, H-1'), 4.11 (dd, J = 8.0, 4.2 Hz, 1H, H-4'), 4.09 – 4.04 (m, 1H, H-2'), 4.00 (t, J = 4.4 Hz, 1H, H-3'), 3.74 (s, 6H, 2 x DMTr OCH₃), 3.71 (2 x s, 6H, 2 x DMTr OCH₃) 3.31 (dd, J = 10.5, 3.3 Hz, 1H, H-5'a), 3.25 - 3.18 (m, 1H, H-5'b), 3.12 (s, 2H); ¹³C NMR

(100 MHz, $CDCl_3 + CD_3OD$) $\delta = 158.5$, 158.4, 157.7, 151.2, 149.9, 144.6, 144.4, 136.6, 136.3, 135.8, 117.7, (14C, guanine C-2, C-4, C-5, CO-6, 10 x DMTr Ar-C), 130.0, 129.9, 129.9, 128.5, 128.1, 128.0, 127.9, 127.1, 126.9, 113.3, 113.3, 113.2 (26C, 26 x DMTr Ar-CH), 89.1 (1C, C-1'), 86.5 (1C, ODMTr C_q), 84.0 (1C, C-4'), 74.4 (1C, C-2'), 71.2 (1C, C-CH), 89.1 (1C, C-1), 86.5 (1C, ODMTr C_q), 84.0 (1C, C-4'), 74.4 (1C, C-2'), 71.2 (1C, C-CH), 89.1 (1C, C-1'), 86.5 (1C, ODMTr C_q), 84.0 (1C, C-4'), 74.4 (1C, C-2'), 71.2 (1C, C-CH), 89.1 (1C, C-1'), 86.5 (1C, ODMTr C_q), 84.0 (1C, C-4'), 74.4 (1C, C-2'), 71.2 (1C, C-CH), 89.1 (1C, C-1'), 86.5 (1C, ODMTr C_q), 84.0 (1C, C-4'), 74.4 (1C, C-2'), 71.2 (1C, C-CH), 84.0 (1C, C-4'), 74.4 (1C, C-2'), 71.2 (1C, C-CH), 84.0 (1C, C-4'), 74.4 (1C, C-2'), 71.2 (1C, C-CH), 84.0 (1C, C-4'), 74.4 (1C, C-2'), 71.2 (1C, C-CH), 84.0 (1C, C-4'), 74.4 (1C, C-2'), 71.2 (1C, C-CH), 84.0 (1C, C-4'), 74.4 (1C, C-2'), 71.2 (1C, C-CH), 84.0 (1C, C-4'), 74.4 (1C, C-2'), 71.2 (1C, C-CH), 84.0 (1C, C-4'), 74.4 (1C, C-2'), 71.2 (1C, C-CH), 84.0 (1C, C-4'), 74.4 (1C, C-2'), 71.2 (1C, C-CH), 74.4 (1C, C-2'), 74.4 (1C, C-2'), 71.2 (1C, C-CH), 74.4 (1C, C-2'), 74.4 (1C, C

3'), 70.3 (1C, NDMTr C_q), 63.7 (1C, C-5'), 55.2 (4C, 4 x DMTr OCH₃); MALDI-TOF-MS: m/z calcd for C₅₂H₄₉N₅NaO₉ [M+Na]⁺ 910.343, found 910.653; Elemental analysis: calcd (%) for C₅₂H₄₉N₅O₉: C 70.34, H 5.56, N 7.89, found C 70.37, H 5.55, N 7.86.

27c: R_f = 0.36 (CH₂Cl₂/MeOH 10:1); ¹H NMR (400 MHz, CD₃OD) δ = 7.88 (s, 1H, guanine CH-8), 7.35 – 7.18 (m, 9H, 9 x DMTr Ar-H), 6.84 (d, *J* = 8.9 Hz, 4H, 4 x DMTr Ar-H), 5.34 (d, *J* = 4.7 Hz, 1H, H-1'), 4.00 (t, *J* = 4.9 Hz, 1H, H-2'), 3.90 (t, *J* = 5.2 Hz, 1H, H-3'), 3.86 (dd, *J* = 8.6, 4.8 Hz, 1H, H-4'), 3.75 (s, 6H, 2 x DMTr OCH₃), 3.59 (dd, *J* = 12.1, 3.4 Hz, 1H, H-5'a), 3.52 (dd, *J* = 12.1, 4.7 Hz, 1H, H-5'b); ¹³C NMR (100 MHz, CD₃OD) δ = 159.9, 159.3, 152.5, 151.6, 146.5, 138.2, 118.3, (9C, guanine C-2, C-4, C-5, CO-6, 5 x DMTr Ar-C), 138.8 (1C, guanine CH-8), 131.2, 129.8, 128.8, 127.9, 114.1 (13C, 13 x DMTr Ar-CH), 89.8 (1C, C-1'), 86.0 (1C, C-4'), 74.5 (1C, C-2'), 71.3 (1C, C-3'), 62.9 1C, C-5'), 55.7 (2C, 2 x DMTr OCH₃); MALDI-TOF-MS: *m/z* calcd for C₃₁H₃₁N₅NaO₇ [M+Na]⁺ 608.212, found 608.35; Elemental analysis: calcd (%) for C₃₁H₃₁N₅O₇: C 63.58, H 5.34, N 11.96, found C 63.61, H 5.33, N 11.94.

2-N,12'-O-bistrityl-guanine-tricyclano (28a)

27a (1.00 g, 1.30 mmol) and NaIO₄ (298 mg, 1.39 mmol, 1.07 equiv.) were dissolved in a mixture of MeOH (75 mL) and H₂O (25 mL). After stirring overnight in dark the MeOH was evaporated in vacuum and CH₂Cl₂ (250 mL) was added to the mixture. The organic layer was extracted with H₂O (2 x 100 mL) and brine (100 mL) then it was dried over anhydrous Na₂SO₄. After that the solid phase was filtered off and the solvent was evaporated. The residue was dissolved in dry MeOH (20 mL) and 3 Å molecular sieves (1 g) were added to the reaction. After stirring for half an hour Tris (236 mg, 1.95 mmol, 1.5 equiv.) was added to the mixture and stirred overnight. Next day Tris (79 mg, 0.65 mmol, 0.5 equiv.) was also added. After stirring overnight the molecular sieves were filtered off through a short pad of Celite® and washed successively with MeOH and CH₂Cl₂. The solvent was evaporated in vacuum and the crude product was purified by flash chromatography (CH₂Cl₂/MeOH 97:3 \rightarrow 96:4 \rightarrow 95:5) to yield 28 (806 mg, 73%, over two steps) as an off-white foam. $R_f = 0.46$ $(CH_2Cl_2/MeOH 9:1)$; ¹H NMR (400 MHz, CDCl₃) $\delta = 11.73$ (s, 1H, NH), 8.06 (s, 1H, NH), 7.48 – 7.40 (m, 6H, 6 x Tr Ar-H), 7.36 (d, J = 7.6 Hz, 6H, 6 x Tr Ar-H), 7.33 – 7.18 (m, 9H, 9 x Tr Ar-H), 7.04 (dt, J = 34.3, 7.3 Hz, 10H, 9 x Tr Ar-H, 1 x guanine CH-8), 5.36 (d, J = 6.9 Hz, 1H, H-1'), 4.61 (d, J = 2.0 Hz, 1H, H-8'), 4.54 (d, J = 6.9 Hz, 1H, H-2'), 4.19 (dd, J =6.8, 4.6 Hz, 1H, H-9'), 3.63 – 3.42 (m, 5H, H-6'a,b, H-4'a, H-13'a,b), 3.33 – 3.14 (m, 3H, H-12'a,b, H-4'b), 2.44 (s, 1H, OH); ¹³C NMR (100 MHz, CDCl₃) δ = 159.3 (1C, guanine CO-6), 151.3 (1C, guanine C-2), 150.5 (1C, guanine C-4), 144.8, 143.7 (6C, 6 x Tr Ar-C), 129.3, 128.7, 128.1, 127.7, 127.4, 126.5 (30C, 30 x Tr Ar-CH), 117.0 (1C, guanine C-5), 90.1 (1C, C-2'), 89.8 (1C, C-8'), 86.9 (1C, OTr C_q), 76.3 (1C, C-1'), 75.0 (1C, C-5'), 73.8 (1C, C-9'), 71.9 (1C, C-4'), 71.0 (1C, NTr C_a), 70.7 (1C, C-6'), 64.0 (1C-12'), 63.7 (1C, C-13');

MALDI-TOF-MS: m/z calcd for C₅₂H₄₆N₆NaO₆ [M+Na]⁺ 873.338, found 873.3; Elemental analysis: calcd (%) for C₅₂H₄₆N₆O₆: C 73.39, H 5.45, N 9.88, found C 73.41, H 5.42, N 9.91.

2-N,12'-O-bis(4,4'-dimethoxytrityl)-guanine-tricyclano (28b)

To a solution of 27b (1.80 g, 2.03 mmol) in a mixture of CH₂Cl₂ (30 mL) and MeOH (20 mL) IO₄-form of anion exchange resin (7.2 g) was added and stirred overnight in dark. Next day the resin was filtered off through a short pad of Celite® and washed successively with MeOH and CH₂Cl₂. The solvent was evaporated in vacuum. The residue was dissolved in dry MeOH (75 mL) and 3 Å molecular sieves (1.8 g) were added to the reaction. After stirring for half an hour Tris (491 mg, 4.05 mmol, 2.0 equiv.) was added to the mixture and stirred overnight. After stirring overnight the molecular sieves were filtered off through a short pad of Celite® and washed successively with MeOH and CH₂Cl₂. The solvent was evaporated in vacuum and the crude product was purified by flash chromatography (CH₂Cl₂/MeOH 98:2 \rightarrow 97:3 \rightarrow 95:5 \rightarrow 9:1) to yield **28b** (1,59 g, 80%, over two steps) as a white foam. R₇= 0.21 (CH₂Cl₂/MeOH 95:5); ¹H NMR (400 MHz, CDCl₃) δ = 7.45 (d, J = 7.5 Hz, 2H, 2 x DMTr Ar-H), 7.35 – 7.15 (m, 18H, 18 x DMTr Ar-H), 7.07 (t, J = 7.1 Hz, 2H, 2 x DMTr Ar-H), 6.81 (d, J = 8.9 Hz, 4H, 4 x DMTr Ar-H), 5.48 (d, J = 6.3 Hz, 1H, H-1'), 4.64 (d, J = 2.1 Hz, 1H, H-8'), 4.60 (d, J= 5.7 Hz, 1H, H-2'), 4.22 (d, J = 2.7 Hz, 1H, H-9'), 3.73 (s, 6H, 2 x DMTr OCH₃), 3.66 -3.38 (m, 11H, 2 x DMTr OCH₃, H-13'a,b, H-6'a,b, H-4'a), 3.35 – 3.19 (m, 3H, H-12'a,b,H-4'b); ¹³C NMR (100 MHz, CDCl₃) δ = 158.7, 144.7, 135.8, 135.8 (10C, 10 x DMTr Ar-C), 158.0 (1C, guanine CO-6), 151.4 (1C, guanine C-2), 150.5 (1C, guanine C-4), 130.5, 130.1, 128.7, 128.2, 128.0, 127.8, 127.1, 113.3, 113.0 (26C, 26 x DMTr Ar-CH), 117.0 (1C, guanine C-5), 90.3 (1C, C-2'), 89.6 (1C, C-8'), 86.4 (1C, ODMTr C_q), 76.5 (1C, C-1'), 75.0 (1C, C-5'), 73.9 (1C, C-9'), 71.8 (1C, C-4'), 70.9 (1C, C-6'), 70.2 (1C, NDMTr C_g), 63.9 (1C, C-12'), 63.8 (1C, C-13'), 55.3, 55.1, 55.0 (4C, 4 x DMTr OCH₃); MALDI-TOF-MS: m/z calcd for C₅₆H₅₄N₆NaO₁₀ [M+Na]⁺ 993.379, found 993.38; Elemental analysis: calcd (%) for C₅₆H₅₄N₆O₁₀: C 69.26, H 5.61, N 8.65, found C 69.28, H 5.60, N 8.67.

Guanine-tricyclano (29) - Deprotection of 28b

28b (486 mg, 0.50 mmol) was dissolved in the mixture of hexafluoroisopropanol (5 mL), MeNO₂ (2.5 ml) and Et₃SiH (607 μ L, 3.8 mmol, 7.6 equiv.) then ZnCl₂ (545 mg, 4.0 mmol, 8.0 equiv.) was added to the mixture. After 5 hours the mixture was diluted with Et₂O and the

solid was filtered off. The crude product was purified by flash column chromatography (CH₂Cl₂/MeOH 9:1 \rightarrow 8:2 \rightarrow 7:3, then MeCN/H₂O 9:1 \rightarrow 85:15 \rightarrow 8:2) to yield **29** (37 mg, 20%) as an off-white solid. R_f= 0.38 (MeCN/H₂O 8:2); ¹H NMR 400 MHz (DMSO-d₆) δ = 10.77 (s, 1H, guanine CON*H*), 7.95 (s, 1H, guanine C*H*-8), 6.64 (s, 2H, N*H*₂), 5.75 (d, *J* = 6.7 Hz, 1H, H-1'), 5.11 (d, *J* = 6.7 Hz, 1H, H-2'), 5.04 (s, 2H, 2 x O*H*), 4.64 (d, *J* = 2.0 Hz, 1H, H-8'), 4.01 (td, *J* = 5.6, 2.3 Hz, 1H, H-9'), 3.88 (s, 2H, H-4'a,b,), 3.79 (d, *J* = 8.7 Hz, 1H, H-6'a), 3.68 (d, *J* = 8.7 Hz, 1H, H-6'b), 3.53 (s, 4H, H-13'a,b, H-12'a,b); ¹³C NMR 100 MHz (DMSO-d₆) δ = 156.8 (1C, guanine CO-6), 154.1, (1C, guanine C-2), 151.2 (1C, guanine C-4), 116.3 (1C, guanine C-5), 88.8 (1C, C-2'), 88.7 (1C, C-8'), 76.6 (1C, C-1'), 75.1 (1C, C-9'), 74.4 (1C, C-5'), 72.4 (1C, C-4'), 71.5 (1C, C-6'), 63.7 (1C, C-13'), 61.7 (1C, C-12'); ESI-TOF-MS: *m/z* calcd for C₁₄H₁₈N₆NaO₆ [M+Na]⁺ 389.119, found 389.121.

Computational section

Mixed torsional/low-frequency mode conformational searches were carried out by means of the Macromodel 10.8.011 software using the OPLS^{Ref. 38 in the main text} (Optimized Potentials for Liquid Simulations) force field with an implicit solvent model for CHCl₃.⁸ Geometry reoptimizations were carried out at the B3LYP/6-31+G(d,p) level in vacuo and NMR calculations were performed at the mPW1PW91/6-311+G(2d,p) level^{Ref. 39 in the main text} as implemented in the Gaussian 09 package.⁹ For compound **13a** an additional AM1 level optimization and declastering of the trityl phenyls was included before the DFT level reoptimization in order to decrease the number of the initial OPLS conformers (846). Boltzmann distributions were estimated from the B3LYP/6-31+G(d,p) energies. Computed C-NMR data were corrected with I = 185.4855 and S = -1.0306 and H-NMR data with I = 31.8996 and S = -1.0734.^{Ref. 40 in the main text} The VMD software package was used for visualization of the results.¹⁰

References

- (1) G. M. Sheldrick, Acta Crystallogr. Sect. A: 2008, 64, 112–122.
- (2) L. J. Farrugia, J. Appl. Crystallogr., 2012, 45, 849-854.
- (3) A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7–13.
- (4) C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler and J. van der Streek, *J. Appl. Crystallogr.*, 2006, **39**, 453–457.
- (5) S. P. Westrip, J. Appl. Crystallogr., 2010, 43, 920–925.
- (6) J. R. Sufrin, A. J. Spiess, C. J. Maresco Jr., S. L. Croft, D. Snowdon, V. Yardley and C. J. Bacchi, *Bioorg. Med. Chem. Lett.*, 1995, 5, 1961–1965.
- (7) A. M. Michelson and A. Todd, J. Chem. Soc., 1956, 3459–3463.
- (8) MacroModel; Schrödinger, LLC, 2015, http://www.schrodinger.com/MacroModel.
- (9) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford, CT, 2010.
- (10) W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graphics, 1996, 14, 33–38.

Figures for DFT calculations

Figure S2. Notations of the possible stereoisomers of the tricyclanos.

Figure S3. B3LYP/6-31+G(d,p) level global minima of **3c_D8**, **9_D8**, **13a_D8** and **18b_D8** along with their Boltzmann-populations.

Figure S4. Prevalent conformers of the core part of **18b_D8** obtained by Boltzmann weighting and clustering of the B3LYP/6-31+G(d,p) reoptimized 686 OPLS conformers for the heavy atoms of the tricycle and the connecting first non-hydrogen atoms. For better comparison only these atoms and the four key hydrogens connecting to C-1', C-2', C-8' and C-9' are shown.

¹H and ¹³C NMR spectra of the compounds

Figure S7. ¹H spectrum of compound 2b

Figure S8. ¹³C spectrum of compound 2b

Figure S9. ¹H spectrum of compound 2c

Figure S11. ¹H spectrum of compound 3a

Figure S14. ¹H-¹³C HSQC spectrum of compound 3a

Figure S15. ¹H-¹H ROESY spectrum of compound 3a

Figure S19. ¹H-¹³C HSQC spectrum of compound 3b

Figure S20. ¹H-¹H ROESY spectrum of compound 3b

Figure S21. ¹H spectrum of compound 3c

Figure S22. ¹³C spectrum of compound 3c

Figure S24. ¹H-¹³C HSQC spectrum of compound 3c

Figure S26. ¹H-¹H ROESY spectrum of compound 3c

Figure S27. ¹H spectrum of compound 4– Deprotection of compound 3c

Figure S28. ¹³C spectrum of compound 4 – Deprotection of compound 3c

Figure S29. ¹H-¹H COSY spectrum of compound 4 – Deprotection of compound 3c

Figure S30. ¹H-¹³C HSQC spectrum of compound 4 – Deprotection of compound 3c

Figure S31. ¹H-¹³C HMBC spectrum of compound 4 – Deprotection of compound 3c

Figure S32. ¹H-¹H ROESY spectrum of compound 4 – Deprotection of compound 3c

Figure S33. ¹H spectrum of compound 4 – Synthesis without protecting groups

Figure S34. ¹³C spectrum of compound 4 – Synthesis without protecting groups

Figure S35. ¹H spectrum of compound 6

Figure S40. ¹H-¹³C HSQC spectrum of compound 7

Figure S42. ¹H-¹H ROESY spectrum of compound 7

Figure S43. ¹H spectrum of compound 8

Figure S44. ¹³C spectrum of compound 8

Figure S46. ¹H-¹³C HSQC spectrum of compound 8

Figure S48. ¹H-¹H ROESY spectrum of compound 8

Figure S49. ¹H spectrum of compound 9

Figure S52. ¹H-¹³C HSQC spectrum of compound 9

Figure S54. ¹H-¹H ROESY spectrum of compound 9

Figure S55. ¹H spectrum of compound 11a

Figure S56. ¹³C spectrum of compound 11a

Figure S57. ¹H spectrum of compound 11b

Figure S58. ¹³C spectrum of compound 11b

Figure S59. ¹H spectrum of compound 12b

Figure S60. ¹³C spectrum of compound 12b

Figure S61. ¹H spectrum of compound 13a

Figure S62. ¹³C spectrum of compound 13a

Figure S64. ¹H-¹³C HSQC spectrum of compound 13a

Figure S66. ¹H-¹H ROESY spectrum of compound 13a

Figure S67. ¹H spectrum of compound 13b

Figure S68. ¹³C spectrum of compound 13b

Figure S70. ¹H-¹³C HSQC spectrum of compound 13b

Figure S72. ¹H-¹H ROESY spectrum of compound 13b

Figure S73. ¹H spectrum of compound 14a

Figure S74. ¹³C spectrum of compound 14a

Figure S76. ¹H-¹³C HSQC spectrum of compound 14a

Figure S78. ¹H-¹H ROESY spectrum of compound 14a

Figure S79. ¹H spectrum of compound 14b

Figure S82. ¹H-¹³C HSQC spectrum of compound 14b

Figure S84. ¹H-¹H ROESY spectrum of compound 14b

Figure S85. ¹H spectrum of compound 16a

Figure S86. ¹³C spectrum of compound 16a

Figure S87. ¹H spectrum of compound 16b

Figure S89. ¹H spectrum of compound 17a

Figure S92. ¹H-¹³C HSQC spectrum of compound 17a

Figure S94. ¹H-¹H ROESY spectrum of compound 17a

Figure S98. ¹H-¹³C HSQC spectrum of compound 17b

Figure S100. ¹H-¹H ROESY spectrum of compound 17b

Figure S101. ¹H spectrum of compound 18b

Figure S102. ¹³C spectrum of compound 18b

Figure S104. ¹H-¹³C HSQC spectrum of compound 18b

Figure S106. ¹H-¹H ROESY spectrum of compound 18b

Figure S107. ¹H spectrum of compound 19 – Deprotection of compound 17b

Figure S108. ¹³C spectrum of compound 19 – Deprotection of compound 17b

Figure S109. ¹H-¹H COSY spectrum of compound 19 – Deprotection of compound 17b

Figure S110. ¹H-¹³C HSQC spectrum of compound 19 – Deprotection of compound 17b

Figure S111. ¹H-¹³C HMBC spectrum of compound 19 – Deprotection of compound 17b

Figure S112. ¹H-¹H ROESY spectrum of compound 19 – Deprotection of compound 17b

Figure S113. ¹H spectrum of compound 19 – Synthesis without protecting group

Figure S114. ¹³C spectrum of compound 19 – Synthesis without protecting group

Figure S117. ¹H spectrum of compound 22a

Figure S118. ¹³C spectrum of compound 22a

Figure S119. ¹H spectrum of compound 22b

Figure S120. ¹³C spectrum of compound 22b

Figure S121. ¹H spectrum of compound 23a

Figure S123. ¹H spectrum of compound 23b

Figure S126. ¹H-¹³C HSQC spectrum of compound 23b

Figure S128. ¹H-¹H ROESY spectrum of compound 23b

Figure S129. ¹H spectrum of compound 24a

Figure S130. ¹³C spectrum of compound 24a

Figure S131. ¹H spectrum of compound 25

Figure S132. ¹³C spectrum of compound 25

Figure S134. ¹H-¹³C HSQC spectrum of compound 25

Figure S136. ¹H-¹H ROESY spectrum of compound 25

Figure S137. ¹H spectrum of compound 27a

Figure S139. ¹H spectrum of compound 27b

Figure S142. ¹H-¹³C HSQC spectrum of compound 27b

Figure S143. ¹H spectrum of compound 27c

Figure S144. ¹³C spectrum of compound 27c

Figure S146. ¹H-¹³C HSQC spectrum of compound 27c

Figure S147. ¹H spectrum of compound 28a

Figure S148. ¹³C spectrum of compound 28a

Figure S150. ¹H-¹³C HSQC spectrum of compound 28a

Figure S152. ¹H-¹H ROESY spectrum of compound 28a

Figure S153. ¹H spectrum of compound 28b

Figure S156. ¹H-¹³C HSQC spectrum of compound 28b

Figure S158. ¹H-¹H ROESY spectrum of compound 28b

Figure S159. ¹H spectrum of compound 29

Figure S160. ¹³C spectrum of compound 29

Figure S162. ¹H-¹³C HSQC spectrum of compound 29

Figure S164. ¹H-¹H ROESY spectrum of compound 29

X-ray data

 Table S1. Experimental details

Crystal data	
Chemical formula	$2(C_{35}H_{33}N_5O_7) \cdot 2(C_3H_8O)$
M _r	1391.51
Crystal system, space group	Orthorhombic, <i>P</i> 2 ₁ 2 ₁ 2 ₁
Temperature (K)	293
<i>a</i> , <i>b</i> , <i>c</i> (Å)	10.8476 (3), 17.3220 (4), 37.2345 (9)
$V(Å^3)$	6996.4 (3)
Ζ	4
Radiation type	Cu <i>K</i> α
μ (mm ⁻¹)	0.77
Crystal size (mm)	0.11 imes 0.03 imes 0.02
Data collection	
Diffractometer	Synergy, Dualflex, Pilatus 200K
Absorption correction	Multi-scan <i>CrysAlis PRO</i> 1.171.39.6a (Rigaku Oxford Diffraction, 2015) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
T_{\min}, T_{\max}	0.623, 1
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	43348, 14689, 11384
R _{int}	0.056
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.637
Refinement	
$\frac{R[F^2 > 2\sigma(F^2)]}{R[F^2 > 2\sigma(F^2)]} = \frac{WR(F^2)}{VR(F^2)} = \frac{S}{S}$	0.067 0.186 1.05
No of reflections	14689
No of parameters	933
No of restraints	8
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement

$\Delta_{\max}, \Delta_{\min} (e \text{ Å}^{-3})$	0.64, -0.44
Absolute structure	Flack x determined using 4034 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
Absolute structure parameter	0.03 (12)

C1—O10	1.403 (6)	C51—O60	1.410 (6)
C1—N14	1.441 (6)	C51—N64	1.447 (6)
C1—C2	1.516 (7)	C51—C52	1.516 (7)
С2—О3	1.406 (6)	С52—О53	1.399 (6)
C2—N11	1.468 (6)	C52—N61	1.475 (6)
C4—O3	1.431 (7)	C54—O53	1.431 (7)
C4—C5	1.524 (7)	C54—C55	1.529 (8)
C5—N11	1.489 (6)	C55—N61	1.493 (7)
C5—C13	1.514 (7)	C55—C63	1.495 (8)
C5-C6	1.524 (7)	C55—C56	1.523 (8)
С6—О7	1.429 (6)	C56—O57	1.412 (8)
С8—О7	1.433 (5)	C58—O57	1.446 (6)
C8—N11	1.461 (6)	C58—N61	1.469 (7)
С8—С9	1.529 (7)	C58—C59	1.508 (8)
С9—О10	1.442 (6)	C59—O60	1.439 (6)
C9—C12	1.516 (7)	C59—C62	1.518 (7)
C12—O24	1.422 (6)	С62—О74	1.414 (6)
C13—O44	1.433 (7)	С63—О94	1.475 (8)
C15—N16	1.307 (6)	C65—N66	1.300 (6)
C15—N14	1.380 (6)	C65—N64	1.380 (6)
C17—C23	1.369 (6)	С67—С73	1.373 (6)
C17—N16	1.390 (5)	C67—N66	1.388 (6)
C17—C18	1.424 (6)	C67—C68	1.417 (6)
C18—O19	1.229 (6)	C68—O69	1.225 (6)
C18—N20	1.396 (6)	C68—N70	1.411 (6)
C21—N22	1.310 (6)	C71—N72	1.302 (6)
C21—N20	1.356 (6)	C71—N70	1.367 (6)

Table S2. Selected bond length data (Å) for 18b

C23—N22	1.366 (6)	C73—N72	1.360 (5)
C23—N14	1.372 (5)	C73—N64	1.367 (6)
C25—O24	1.435 (6)	С75—О74	1.447 (5)
C25—C26	1.528 (7)	С75—С76	1.530 (7)
C25—C32	1.538 (7)	C75—C82	1.536 (7)
C25—C38	1.539 (7)	С75—С88	1.528 (6)
C26—C27	1.383 (8)	С76—С77	1.390 (7)
C26—C31	1.406 (7)	C76—C81	1.389 (7)
C27—C28	1.383 (8)	С77—С78	1.393 (8)
C28—C29	1.365 (9)	С78—С79	1.387 (9)
C29—C30	1.398 (10)	С79—С80	1.372 (9)
C30—C31	1.367 (9)	C80—C81	1.387 (7)
C32—C33	1.382 (8)	C82—C83	1.390 (8)
C32—C37	1.398 (8)	C82—C87	1.383 (9)
C33—C34	1.389 (8)	C83—C84	1.360 (10)
C34—C35	1.365 (12)	C84—C85	1.387 (14)
C35—C36	1.367 (12)	C85—C86	1.369 (14)
C36—C37	1.385 (9)	C86—C87	1.382 (9)
C38—C39	1.390 (7)	C88—C89	1.378 (7)
C38—C43	1.394 (7)	С88—С93	1.397 (7)
C39—C40	1.394 (7)	С89—С90	1.382 (7)
C40—C41	1.391 (9)	С90—С91	1.386 (9)
C41—C42	1.379 (9)	С91—С92	1.378 (9)
C42—C43	1.399 (7)	С92—С93	1.383 (8)
C45—O46	1.212 (9)	С95—О96	1.222 (11)
C45—O44	1.299 (8)	С95—О94	1.275 (9)
C45—C47	1.529 (11)	С95—С97	1.496 (12)
C110—O111	1.298 (15)	C100—O101	1.229 (16)
C110—C111	1.408 (14)	C100—C101	1.455 (14)
C110—C112	1.485 (14)	C100—C102	1.503 (19)
N20—H20	0.85 (3)	N70—H70	0.85 (3)

 Table S3. Selected bond angle and torsion angle data (°) for 18b
 18b

O10-C1-N14	108.4 (4)	С59—С58—Н58	108.5

O10-C1-C2	108.1 (4)	O60—C59—C58	114.4 (4)
N14—C1—C2	110.7 (4)	O60—C59—C62	107.9 (4)
O10—C1—H1	109.9	C58—C59—C62	112.7 (4)
N14—C1—H1	109.9	О60—С59—Н59	107.1
С2—С1—Н1	109.9	С58—С59—Н59	107.1
O3—C2—N11	105.9 (4)	С62—С59—Н59	107.1
O3—C2—C1	112.6 (4)	O74—C62—C59	106.4 (4)
N11—C2—C1	110.7 (4)	O74—C62—H62A	110.4
O3—C2—H2	109.2	С59—С62—Н62А	110.4
N11—C2—H2	109.2	О74—С62—Н62В	110.5
С1—С2—Н2	109.2	С59—С62—Н62В	110.4
O3—C4—C5	104.2 (4)	Н62А—С62—Н62В	108.6
O3—C4—H4A	110.9	O94—C63—C55	104.6 (5)
С5—С4—Н4А	110.9	О94—С63—Н63А	110.8
O3—C4—H4B	110.9	С55—С63—Н63А	110.8
С5—С4—Н4В	110.9	О94—С63—Н63В	110.8
Н4А—С4—Н4В	108.9	С55—С63—Н63В	110.8
N11—C5—C13	107.7 (4)	Н63А—С63—Н63В	108.9
N11—C5—C6	103.7 (4)	N66—C65—N64	113.0 (4)
C13—C5—C6	114.0 (4)	N66—C65—H65	123.5
N11—C5—C4	103.5 (4)	N64—C65—H65	123.5
C13—C5—C4	113.1 (5)	C73—C67—N66	109.4 (4)
C6—C5—C4	113.5 (4)	С73—С67—С68	120.5 (4)
O7—C6—C5	104.8 (4)	N66—C67—C68	130.1 (4)
07—С6—Н6А	110.8	O69—C68—N70	120.4 (4)
С5—С6—Н6А	110.8	O69—C68—C67	129.5 (4)
O7—C6—H6B	110.8	N70—C68—C67	110.2 (4)
С5—С6—Н6В	110.8	N72—C71—N70	125.6 (4)
Н6А—С6—Н6В	108.9	N72—C71—H71	117.2
O7—C8—N11	106.0 (4)	N70—C71—H71	117.2
O7—C8—C9	109.0 (4)	N72—C73—N64	125.3 (4)
N11—C8—C9	116.7 (4)	N72—C73—C67	127.6 (4)
O7—C8—H8	108.3	N64—C73—C67	107.1 (4)
N11—C8—H8	108.3	O74—C75—C88	101.7 (3)
С9—С8—Н8	108.3	O74—C75—C76	110.5 (4)

010 00 010	105 2 (4)		110 5 (1)
O10—C9—C12	107.3 (4)	<u>C88—C75—C76</u>	110.7 (4)
O10—C9—C8	113.7 (4)	O74—C75—C82	111.0 (4)
С12—С9—С8	111.3 (4)	C88—C75—C82	111.6 (4)
О10—С9—Н9	108.1	C76—C75—C82	111.0 (4)
С12—С9—Н9	108.1	C81—C76—C77	118.0 (5)
С8—С9—Н9	108.1	C81—C76—C75	121.6 (4)
O24—C12—C9	106.1 (4)	С77—С76—С75	120.3 (4)
O24—C12—H12A	110.5	С76—С77—С78	121.2 (5)
C9—C12—H12A	110.5	С76—С77—Н77	119.4
O24—C12—H12B	110.5	С78—С77—Н77	119.4
С9—С12—Н12В	110.5	С79—С78—С77	119.6 (5)
H12A—C12—H12B	108.7	С79—С78—Н78	120.2
O44—C13—C5	108.2 (4)	С77—С78—Н78	120.2
O44—C13—H13A	110.1	С80—С79—С78	119.7 (5)
С5—С13—Н13А	110.1	С80—С79—Н79	120.2
O44—C13—H13B	110.1	С78—С79—Н79	120.2
С5—С13—Н13В	110.1	С79—С80—С81	120.6 (5)
H13A—C13—H13B	108.4	С79—С80—Н80	119.7
N16—C15—N14	113.1 (4)	С81—С80—Н80	119.7
N16—C15—H15	123.5	C80—C81—C76	120.9 (5)
N14—C15—H15	123.5	С80—С81—Н81	119.6
C23—C17—N16	110.5 (4)	С76—С81—Н81	119.6
C23—C17—C18	119.2 (4)	C87—C82—C83	117.5 (5)
N16—C17—C18	130.2 (4)	C87—C82—C75	122.3 (5)
O19—C18—N20	121.5 (4)	C83—C82—C75	120.3 (5)
O19—C18—C17	128.0 (4)	C84—C83—C82	122.0 (8)
N20—C18—C17	110.4 (4)	С84—С83—Н83	119
N22—C21—N20	125.3 (4)	С82—С83—Н83	119
N22—C21—H21	117.4	C83—C84—C85	120.0 (8)
N20—C21—H21	117.4	С83—С84—Н84	120
N22—C23—C17	128.6 (4)	С85—С84—Н84	120
N22—C23—N14	125.0 (4)	C86—C85—C84	118.8 (6)
C17—C23—N14	106.4 (4)	С86—С85—Н85	120.6
O24—C25—C26	109.0 (4)	С84—С85—Н85	120.6
O24—C25—C32	103.9 (4)	C85—C86—C87	121.0 (8)

C26—C25—C32	110.6 (4)	С85—С86—Н86	119.5
O24—C25—C38	109.7 (4)	С87—С86—Н86	119.5
C26—C25—C38	114.8 (4)	C86—C87—C82	120.6 (7)
C32—C25—C38	108.3 (4)	С86—С87—Н87	119.7
C27—C26—C31	117.7 (5)	С82—С87—Н87	119.7
C27—C26—C25	124.2 (4)	C89—C88—C93	118.2 (5)
C31—C26—C25	117.9 (5)	C89—C88—C75	123.1 (4)
C28—C27—C26	120.9 (5)	C93—C88—C75	118.7 (4)
С28—С27—Н27	119.6	C88—C89—C90	121.3 (5)
С26—С27—Н27	119.6	С88—С89—Н89	119.3
C29—C28—C27	121.1 (6)	С90—С89—Н89	119.3
С29—С28—Н28	119.4	С89—С90—С91	120.1 (5)
С27—С28—Н28	119.4	С89—С90—Н90	119.9
C28—C29—C30	118.8 (5)	С91—С90—Н90	119.9
С28—С29—Н29	120.6	С92—С91—С90	119.2 (5)
С30—С29—Н29	120.6	С92—С91—Н91	120.4
C31—C30—C29	120.4 (6)	С90—С91—Н91	120.4
С31—С30—Н30	119.8	С91—С92—С93	120.6 (5)
С29—С30—Н30	119.8	С91—С92—Н92	119.7
C30—C31—C26	121.0 (6)	С93—С92—Н92	119.7
С30—С31—Н31	119.5	С92—С93—С88	120.5 (5)
С26—С31—Н31	119.5	С92—С93—Н93	119.7
C33—C32—C37	118.8 (5)	С88—С93—Н93	119.7
C33—C32—C25	120.8 (5)	O96—C95—O94	123.6 (8)
C37—C32—C25	120.4 (5)	O96—C95—C97	122.5 (8)
C32—C33—C34	120.1 (6)	O94—C95—C97	113.7 (8)
С32—С33—Н33	119.9	С95—С97—Н97А	109.5
С34—С33—Н33	119.9	С95—С97—Н97В	109.5
C35—C34—C33	120.7 (8)	Н97А—С97—Н97В	109.5
С35—С34—Н34	119.6	С95—С97—Н97С	109.5
С33—С34—Н34	119.6	Н97А—С97—Н97С	109.5
C34—C35—C36	119.6 (6)	Н97В—С97—Н97С	109.5
С34—С35—Н35	120.2	O101—C100—C101	108.3 (13)
С36—С35—Н35	120.2	O101—C100—C102	132.3 (15)
C35—C36—C37	120.8 (7)	C101—C100—C102	115.5 (10)

С35—С36—Н36	119.6	O101—C100—H100	96.4
С37—С36—Н36	119.6	С101—С100—Н100	96.4
C36—C37—C32	119.8 (7)	С102—С100—Н100	96.4
С36—С37—Н37	120.1	С100—С101—Н10А	109.5
С32—С37—Н37	120.1	C100—C101—H10B	109.5
C39—C38—C43	117.9 (5)	H10A—C101—H10B	109.5
C39—C38—C25	121.5 (5)	С100—С101—Н10С	109.5
C43—C38—C25	120.4 (4)	H10A—C101—H10C	109.5
C38—C39—C40	121.3 (5)	H10B—C101—H10C	109.5
С38—С39—Н39	119.3	C100—C102—H10D	109.5
С40—С39—Н39	119.3	С100—С102—Н10Е	109.5
C41—C40—C39	120.0 (5)	H10D—C102—H10E	109.5
С41—С40—Н40	120	C100—C102—H10F	109.5
С39—С40—Н40	120	H10D—C102—H10F	109.5
C42—C41—C40	119.4 (5)	H10E—C102—H10F	109.5
С42—С41—Н41	120.3	O111—C110—C111	121.7 (14)
C40—C41—H41	120.3	O111—C110—C112	115.8 (14)
C41—C42—C43	120.2 (5)	C111—C110—C112	118.6 (9)
С41—С42—Н42	119.9	O111—C110—H110	96.5
С43—С42—Н42	119.9	С111—С110—Н110	96.5
C38—C43—C42	121.1 (5)	С112—С110—Н110	96.5
С38—С43—Н43	119.5	С110—С111—Н11А	109.5
С42—С43—Н43	119.5	С110—С111—Н11В	109.5
O46—C45—O44	123.5 (6)	H11A—C111—H11B	109.5
O46—C45—C47	125.9 (7)	С110—С111—Н11С	109.5
O44—C45—C47	110.6 (7)	H11A—C111—H11C	109.5
С45—С47—Н47А	109.5	H11B—C111—H11C	109.5
С45—С47—Н47В	109.5	C110—C112—H11D	109.5
H47A—C47—H47B	109.5	C110—C112—H11E	109.5
С45—С47—Н47С	109.5	H11D—C112—H11E	109.5
Н47А—С47—Н47С	109.5	C110—C112—H11F	109.5
Н47В—С47—Н47С	109.5	H11D—C112—H11F	109.5
O60—C51—N64	106.7 (4)	H11E—C112—H11F	109.5
O60—C51—C52	109.1 (4)	C8—N11—C2	115.4 (4)
N64—C51—C52	112.6 (4)	C8—N11—C5	105.3 (4)

O60—C51—H51	109.4	C2—N11—C5	106.8 (4)
N64—C51—H51	109.4	C23—N14—C15	105.7 (3)
С52—С51—Н51	109.4	C23—N14—C1	124.7 (4)
O53—C52—N61	105.4 (4)	C15—N14—C1	128.9 (4)
O53—C52—C51	112.3 (4)	C15—N16—C17	104.4 (4)
N61—C52—C51	111.6 (4)	C21—N20—C18	125.4 (4)
О53—С52—Н52	109.2	C21—N20—H20	128 (10)
N61—C52—H52	109.2	C18—N20—H20	105 (10)
С51—С52—Н52	109.2	C21—N22—C23	110.8 (4)
O53—C54—C55	104.1 (4)	C58—N61—C52	114.2 (4)
O53—C54—H54A	110.9	C58—N61—C55	104.9 (4)
С55—С54—Н54А	110.9	C52—N61—C55	106.4 (4)
O53—C54—H54B	110.9	C73—N64—C65	105.4 (4)
С55—С54—Н54В	110.9	C73—N64—C51	126.5 (4)
H54A—C54—H54B	109	C65—N64—C51	127.9 (4)
N61—C55—C63	110.4 (4)	C65—N66—C67	105.2 (4)
N61—C55—C56	103.3 (5)	C71—N70—C68	124.5 (4)
C63—C55—C56	113.5 (5)	С71—N70—H70	113 (10)
N61—C55—C54	102.8 (4)	C68—N70—H70	121 (10)
C63—C55—C54	111.5 (5)	C71—N72—C73	111.6 (4)
C56—C55—C54	114.3 (5)	C2—O3—C4	106.5 (4)
O57—C56—C55	105.5 (4)	С6—О7—С8	102.8 (4)
O57—C56—H56A	110.6	С1—О10—С9	113.1 (4)
С55—С56—Н56А	110.6	C12—O24—C25	117.9 (4)
О57—С56—Н56В	110.6	C45—O44—C13	116.5 (5)
С55—С56—Н56В	110.6	C52—O53—C54	105.3 (4)
Н56А—С56—Н56В	108.8	С56—О57—С58	102.0 (4)
O57—C58—N61	105.8 (4)	C51—O60—C59	115.0 (4)
O57—C58—C59	109.6 (4)	C62—O74—C75	120.0 (4)
N61—C58—C59	115.8 (4)	C95—O94—C63	118.0 (6)
О57—С58—Н58	108.5	С100—О101—Н101	124 (3)
N61—C58—H58	108.5	С110—О111—Н111	118 (3)
O10-C1-C2-O3	-179.5 (4)	C83—C84—C85—C86	1.3 (11)
N14—C1—C2—O3	-60.9 (5)	C84—C85—C86—C87	-1.3 (11)

O10—C1—C2—N11	62.1 (5)	C85—C86—C87—C82	0.0 (11)
N14—C1—C2—N11	-179.3 (4)	C83—C82—C87—C86	1.1 (9)
O3—C4—C5—N11	22.9 (5)	C75—C82—C87—C86	-179.4 (6)
O3—C4—C5—C13	-93.4 (5)	O74—C75—C88—C89	146.1 (5)
O3—C4—C5—C6	134.7 (4)	C76—C75—C88—C89	28.6 (6)
N11—C5—C6—O7	23.1 (5)	C82—C75—C88—C89	-95.5 (6)
C13—C5—C6—O7	140.0 (4)	O74—C75—C88—C93	-35.8 (6)
C4—C5—C6—O7	-88.5 (5)	C76—C75—C88—C93	-153.3 (4)
O7—C8—C9—O10	-91.4 (5)	C82—C75—C88—C93	82.6 (5)
N11—C8—C9—O10	28.6 (6)	C93—C88—C89—C90	-3.0 (8)
O7—C8—C9—C12	147.3 (4)	С75—С88—С89—С90	175.1 (5)
N11—C8—C9—C12	-92.7 (5)	C88—C89—C90—C91	1.8 (9)
O10—C9—C12—O24	-74.9 (4)	C89—C90—C91—C92	0.2 (10)
C8—C9—C12—O24	50.0 (5)	С90—С91—С92—С93	-0.9 (10)
N11—C5—C13—O44	178.6 (4)	С91—С92—С93—С88	-0.3 (10)
C6—C5—C13—O44	64.1 (6)	C89—C88—C93—C92	2.3 (8)
C4—C5—C13—O44	-67.6 (6)	C75—C88—C93—C92	-175.9 (5)
C23—C17—C18—O19	-172.6 (5)	O7—C8—N11—C2	91.2 (4)
N16—C17—C18—O19	3.0 (8)	C9—C8—N11—C2	-30.3 (6)
C23—C17—C18—N20	6.1 (6)	O7—C8—N11—C5	-26.3 (4)
N16—C17—C18—N20	-178.3 (4)	C9—C8—N11—C5	-147.8 (4)
N16—C17—C23—N22	179.2 (4)	O3—C2—N11—C8	-135.9 (4)
C18—C17—C23—N22	-4.4 (7)	C1—C2—N11—C8	-13.5 (5)
N16—C17—C23—N14	0.7 (5)	O3—C2—N11—C5	-19.2 (5)
C18—C17—C23—N14	177.1 (4)	C1—C2—N11—C5	103.2 (4)
O24—C25—C26—C27	-111.9 (5)	C13—C5—N11—C8	-119.3 (4)
C32—C25—C26—C27	134.4 (5)	C6—C5—N11—C8	1.8 (5)
C38—C25—C26—C27	11.5 (7)	C4—C5—N11—C8	120.6 (4)
O24—C25—C26—C31	63.4 (6)	C13—C5—N11—C2	117.5 (4)
C32—C25—C26—C31	-50.2 (6)	C6—C5—N11—C2	-121.4 (4)
C38—C25—C26—C31	-173.2 (5)	C4—C5—N11—C2	-2.6 (5)
C31—C26—C27—C28	1.9 (8)	N22—C23—N14—C15	-179.1 (4)
C25—C26—C27—C28	177.3 (5)	C17—C23—N14—C15	-0.5 (5)
C26—C27—C28—C29	-2.2 (8)	N22—C23—N14—C1	10.0 (7)
C27—C28—C29—C30	1.8 (9)	C17—C23—N14—C1	-171.5 (4)

C28-	-C29-C30-	-C31	-1.2 (10)	N16—C15—N14—C23	0.2 (5)
C29–	-C30-C31-	-C26	1.0 (10)	N16—C15—N14—C1	170.6 (4)
C27–	-C26-C31-	-C30	-1.3 (9)	O10—C1—N14—C23	-130.4 (4)
C25-	-C26-C31-	-C30	-177.0 (6)	C2—C1—N14—C23	111.2 (5)
024–	-C25-C32-	-C33	16.7 (6)	O10—C1—N14—C15	60.8 (6)
C26–	-C25-C32-	-C33	133.5 (5)	C2—C1—N14—C15	-57.6 (6)
C38–	-C25-C32-	-C33	-99.9 (6)	N14—C15—N16—C17	0.2 (5)
024–	-C25-C32-	-C37	-163.7 (5)	C23—C17—N16—C15	-0.6 (5)
C26–	-C25-C32-	-C37	-46.9 (6)	C18—C17—N16—C15	-176.5 (5)
C38–	-C25-C32-	-C37	79.7 (6)	N22—C21—N20—C18	1.7 (8)
C37–	-C32-C33-	-C34	-1.2 (9)	O19—C18—N20—C21	173.7 (5)
C25–	-C32-C33-	-C34	178.3 (5)	C17—C18—N20—C21	-5.2 (7)
C32–	-C33-C34-	-C35	-1.4 (10)	N20—C21—N22—C23	1.0 (7)
C33–	-C34-C35-	-C36	3.1 (11)	C17—C23—N22—C21	0.4 (7)
C34–	-C35-C36-	-C37	-2.2 (10)	N14—C23—N22—C21	178.7 (4)
C35–	-C36-C37-	-C32	-0.4 (10)	O57—C58—N61—C52	89.7 (5)
C33–	-C32-C37-	-C36	2.1 (9)	C59—C58—N61—C52	-31.8 (6)
C25-	-C32-C37-	-C36	-177.5 (5)	O57—C58—N61—C55	-26.3 (5)
024–	-C25-C38-	-C39	179.9 (5)	C59—C58—N61—C55	-147.9 (4)
C26–	-C25-C38-	-C39	56.8 (6)	O53—C52—N61—C58	-138.1 (4)
C32–	-C25-C38-	-C39	-67.3 (6)	C51—C52—N61—C58	-16.0 (5)
024–	-C25-C38-	-C43	-4.7 (6)	O53—C52—N61—C55	-22.9 (5)
C26–	-C25-C38-	-C43	-127.8 (5)	C51—C52—N61—C55	99.2 (5)
C32–	-C25-C38-	-C43	108.1 (5)	C63—C55—N61—C58	-120.5 (5)
C43-	-C38-C39-	-C40	-0.2 (8)	C56—C55—N61—C58	1.2 (5)
C25–	-C38-C39-	-C40	175.3 (5)	C54—C55—N61—C58	120.4 (5)
C38–	-C39C40-	-C41	-0.6 (8)	C63—C55—N61—C52	118.2 (5)
C39–	-C40-C41-	-C42	1.3 (8)	C56—C55—N61—C52	-120.1 (4)
C40-	-C41-C42-	-C43	-1.2 (8)	C54—C55—N61—C52	-0.9 (5)
C39–	-C38-C43-	-C42	0.3 (7)	N72—C73—N64—C65	-179.7 (5)
C25-	-C38-C43-	-C42	-175.3 (5)	C67—C73—N64—C65	0.0 (5)
C41-	-C42-C43-	-C38	0.4 (8)	N72—C73—N64—C51	-5.4 (8)
O60–	-C51-C52-	-053	179.2 (4)	C67—C73—N64—C51	174.3 (4)
N64-	-C51-C52-	-053	-62.5 (5)	N66—C65—N64—C73	0.3 (6)
O60–	-C51-C52-	-N61	61.2 (5)	N66—C65—N64—C51	-173.9 (4)

N64-	-C51-	-C52-	-N61	179.5 (4)	O60—C51—N64—C73	-121.0 (5)
053–	-C54-	-C55-	-N61	23.7 (6)	C52—C51—N64—C73	119.3 (5)
053–	-C54-	-C55-	-C63	-94.6 (5)	O60—C51—N64—C65	52.0 (6)
053–	-C54-	-C55-	-C56	134.9 (5)	C52—C51—N64—C65	-67.7 (6)
N61-	-C55-	-C56-	-057	24.8 (5)	N64—C65—N66—C67	-0.5 (6)
C63-	-C55-	-C56-	-057	144.4 (5)	C73—C67—N66—C65	0.5 (6)
C54-	-C55-	-C56-	-057	-86.1 (6)	C68—C67—N66—C65	178.1 (5)
057–	-C58-	-C59-	-060	-81.6 (5)	N72—C71—N70—C68	0.6 (8)
N61-	-C58-	-C59-	-060	37.9 (6)	O69—C68—N70—C71	-179.5 (5)
057–	-C58-	-C59-	-C62	154.6 (4)	C67—C68—N70—C71	-0.1 (7)
N61-	-C58-	-C59-	-C62	-85.9 (5)	N70—C71—N72—C73	0.0 (8)
O60–	-C59-	-C62-	-074	-67.0 (5)	N64—C73—N72—C71	178.6 (5)
C58–	-C59-	-C62-	-074	60.3 (5)	C67—C73—N72—C71	-1.0 (7)
N61-	-C55-	-C63-	-094	173.4 (5)	N11—C2—O3—C4	34.9 (5)
C56–	-C55-	-C63-	-094	58.0 (6)	C1—C2—O3—C4	-86.3 (5)
C54-	-C55-	-C63-	-094	-72.9 (6)	C5—C4—O3—C2	-36.2 (5)
C73–	-C67-	-C68-	-069	178.5 (5)	С5—С6—О7—С8	-39.5 (5)
N66-	-C67-	-C68-	-069	1.1 (9)	N11—C8—O7—C6	41.4 (4)
C73–	-C67-	-C68-	-N70	-0.8 (6)	С9—С8—О7—С6	167.7 (4)
N66-	-C67-	-C68-	-N70	-178.2 (5)	N14—C1—O10—C9	174.4 (3)
N66-	-C67-	-C73-	–N72	179.4 (5)	C2—C1—O10—C9	-65.5 (5)
C68–	-C67-	-C73-	-N72	1.5 (8)	C12—C9—O10—C1	143.8 (4)
N66-	-C67-	-C73-	-N64	-0.3 (5)	C8—C9—O10—C1	20.3 (5)
C68–	-C67-	-C73-	-N64	-178.1 (4)	C9—C12—O24—C25	171.2 (4)
O74–	-C75-	-C76-	-C81	154.1 (4)	C26—C25—O24—C12	47.7 (5)
C88–	-C75-	-C76-	-C81	-94.0 (5)	C32—C25—O24—C12	165.6 (4)
C82—	-C75-	-C76-	-C81	30.5 (6)	C38—C25—O24—C12	-78.7 (5)
O74–	-C75-	-C76-	-C77	-29.9 (6)	O46—C45—O44—C13	8.2 (11)
C88–	-C75-	-C76-	–C77	82.1 (5)	C47—C45—O44—C13	-172.8 (6)
C82-	-C75-	-C76-	–C77	-153.4 (5)	C5—C13—O44—C45	-174.0 (5)
C81-	-C76-	- <u>C7</u> 7-	-C78	0.1 (8)	N61—C52—O53—C54	39.1 (5)
C75–	-C76-	-C77-	-C78	-176.1 (5)	C51—C52—O53—C54	-82.6 (5)
C76-	-C77-	- <u>C78</u> -	-C79	1.2 (8)	C55—C54—O53—C52	-39.3 (5)
C77–	-C78-	-C79-	-C80	-1.4 (8)	C55—C56—O57—C58	-41.0 (5)
C78–	-C79-	-C80-	-C81	0.2 (8)	N61—C58—O57—C56	42.3 (5)

С79—С80—С81—С76	1.2 (8)	C59—C58—O57—C56	167.8 (4)
С77—С76—С81—С80	-1.3 (7)	N64—C51—O60—C59	-178.5 (4)
C75—C76—C81—C80	174.8 (5)	C52—C51—O60—C59	-56.5 (5)
O74—C75—C82—C87	106.3 (6)	C58—C59—O60—C51	8.1 (6)
C88—C75—C82—C87	-6.4 (7)	C62—C59—O60—C51	134.4 (4)
C76—C75—C82—C87	-130.4 (5)	C59—C62—O74—C75	171.8 (4)
074—C75—C82—C83	-74.2 (6)	C88—C75—O74—C62	179.3 (4)
C88—C75—C82—C83	173.1 (5)	C76—C75—O74—C62	-63.1 (5)
C76—C75—C82—C83	49.1 (6)	C82—C75—O74—C62	60.5 (6)
C87—C82—C83—C84	-1.1 (9)	O96—C95—O94—C63	-4.6 (14)
C75—C82—C83—C84	179.4 (5)	C97—C95—O94—C63	179.4 (8)
C82—C83—C84—C85	-0.1 (10)	C55—C63—O94—C95	172.0 (7)

Figure S165. Conformation of N11-C2-O3-C4-C5 (envelope on O3) and N11-C8-O7-C6-C5 (envelope on O7) oxazolidine rings of **18b** with the calculated data

PLATON DATA

18b ("km-151 ") PLATON-

GEOMETRY Page 25

5-Membered Ring (1) O(3) --> C(2) --> N(11) --> C(5) --> C(4) -->

	sp3	sp3	sp3	sp3	sp3		
Dev. (Ang)	-0.20	8 1 0 .	1574 -	0.0466	-0.0820	0.1793	
Cs(I)-Asym-Par (I	Deg)	2.76	29.55	43.73	41.74	24.73	
C2(I)-Asym-Par (Deg)	58.46	45.08	14.52	21.65	49.50	
Ring Bond Angle	(Deg)	106.47	105.9	4 106.	78 103.	52 104.2	20
Tors(I-J) (Deg)		34.94	-19.24	-2.56	22.94	-36.17	
Cs(I-J)-Asym-Par	(Deg)	41.7	4 24	.73 2.	76 29.3	55 43.73	3
C2(I-J)-Asym-Par	· (Deg)	21.6	5 49	.50 58	8.46 45	.08 14.5	52
Ring Bond Distan	ce (Ang) 1.405	7(1) 1.4	4682(1)	1.4901(1)	1.5240(1)	1.4308(1)

Weighted Average Ring Bond Distance = 1.4638(0,210) Ang. - NOTE: 1st esd. Internal, 2nd esd External.

Weighted Average Abs. Torsion Angl. = 23.17(45,611) Deg. see: e.g. Domenicano et al., Acta Cryst.(1975), B31, 221-234.

Cremer & Pople Puckering Parameters [D. Cremer & J.A. Pople, J.Amer.Chem.Soc., 97, (1975), 1354-1358]

Q(2) = 0.3303 Ang., Phi(2) = 174.8858 Deg

* NOTE * - A Change of the Absolute Configuration Transforms Phi(2) into 180 + Phi(2).
- A Cyclic Forward Shift of the Pivot Atom from At1 to At2 Transforms Phi(2) into Phi(2) + 144.

- A Change of the Sense Transforms Phi(2) into 180 - Phi(2).

Pseudorotation Parameters P and Tau(M), (S.T.Rao, E.Westhof & M.Sundaralingam, Acta Cryst (1981), A37, 421-425)

P = 266.3 Degree, Tau(M) = 37.0 Deg. for Reference Bond N(11) --> C(5) [add 144 Deg. to P for each shift to next Bond]

[Ring-Sequence Change of Sense : P ----

>>> - P]

Note: DELTA [Defined in Altona,C., Geise,H.J. & Romers,C. (1968). Tetrahedron, 24, 13-32] = 2 * P = 532.6 Deg.

Closest Pucker Descriptor: Envelope on O(3)

5-Membered Ring (2) $O(7) \rightarrow C(6) \rightarrow C(5) \rightarrow N(11) \rightarrow C(8) \rightarrow C(8) \rightarrow C(6) \rightarrow$

	sp3	sp3	sp3	sp3	sp3			
Dev. (Ang)	0.242	23 -0.1	915 0	.0675	0.0822	-0.2006		
Cs(I)-Asym-Par (Deg)	2.62	32.65	49.72	48.83	28.68		
C2(I)-Asym-Par (Deg)	67.01	52.38	17.73	23.69	56.06		
Ring Bond Angle	(Deg)	102.79	104.77	103.6	7 105	.30 106.0)5	
Tors(I-J) (Deg)	-	39.44	23.16	1.80	-26.30	41.41		
Cs(I-J)-Asym-Par	(Deg)	48.83	3 28.6	58 2.6	32.	65 49.7	2	
C2(I-J)-Asym-Par	(Deg)	23.6	9 56.0	67.0	01 52	2.38 17.7	73	
Ring Bond Distan	ice (Ang)	1.4292	2(1) 1.52	243(1) 1.	.4901(1)	1.4607(1)	1.4337(1)
Weighted Averag esd External.	e Ring B	ond Dista	nce $= 1.4$	676(0,179	9) Ang	NOTE: 1st e	esd. Interna	ıl, 2nd
TT7 * 1 / 1 A	A1 T	• •	1 20	10/ 15 711) D	D	• •	1

Weighted Average Abs. Torsion Angl. = 26.42(45,711) Deg. see: e.g. Domenicano et al., Acta Cryst.(1975), B31, 221-234.

Cremer & Pople Puckering Parameters [D. Cremer & J.A. Pople, J.Amer.Chem.Soc., 97, (1975), 1354-1358]

······

Q(2) = 0.3833 Ang., Phi(2) = 358.1732 Deg

* NOTE * - A Change of the Absolute Configuration Transforms Phi(2) into 180 + Phi(2).
- A Cyclic Forward Shift of the Pivot Atom from At1 to At2 Transforms Phi(2) into Phi(2) + 144.

- A Change of the Sense Transforms Phi(2) into 180 - Phi(2).

Pseudorotation Parameters P and Tau(M), (S.T.Rao, E.Westhof & M.Sundaralingam, Acta Cryst (1981), A37, 421-425)

P = 87.3 Degree, Tau(M) = 42.4 Deg. for Reference Bond C(5) --> N(11) [add 144 Deg. to P for each shift to next Bond]

[Ring-Sequence Change of Sense : P ----

>>> - P]

Note: DELTA [Defined in Altona,C., Geise,H.J. & Romers,C. (1968). Tetrahedron, 24, 13-32] = 2 * P = 174.6 Deg.

Closest Pucker Descriptor: Envelope on O(7)

Figure S166. View (up)of C1-O10-C9 and C1-C2-N11-C8 planes for one of the molecules in structure **18b** and histogram (down) for the angle of C1-O10-C9 and C1-C2-N11-C8 planes of morpholine ring moiety in organic compounds deposited in Cambridge Structural Database

NMR Tables

Peak	Annot. pair	ROE (average)	X-ray		
1	Нх-Ну				
2	1,2	2.76±0.03	2.85		
3	1,4	2.85±0.16	2.75		
4	1,9	2.55±0.06	2.85		
5	2,4	2.89±0.1	3.1		
6	2,12	3.67±0.5	4.1		
7	4,13	2.81±0.23	2.5		
8	6a,6b	1.75±0.01	1.6		
9	6b,8	2.49±0.02	2.5		
10	6b,13	2.52±0.01	2.5		
11	8,9	2.53±0.07	2.45		
12	8,12	2.53±0.05	2.5		
13	8,13	3.33±0.2	3.1		
14	9,4	3.93±0.8	4.7		
15	9,12	2.31±0.02	2.3		

 Table S4. Interproton distances (Å) in compound 18b

ROE distances were determined from the two symmetric peaks around the diagonal and evaluated by two different integration methods yielding generally four peak volumes for distance determination and averaging (in case of CH_2 groups, the shorter (shortest) distance is given, and the overlap of the CH_2 peak integral is considered). As reference distance the anisochronous CH_2 group (6a, 6b = 1.75 Å) served. Evaluation was carried out as described in ref. 42 in the main text.

Figure S167. NMR-X-Ray correlation of 18b (for Table S4)

Figure S168. ZQF Easy-ROESY spectrum of 18b (for Table S4)

Figure S169. Detailed ROESY spectrum of 18b with the relevant NOE cross-peaks

Table S5. Comparison of the computed ¹³C NMR data of the eight possible stereoisomers of **3c** in the vicinity of the core part (C-1', C-2', C-4', C-5', C-6', C-8', C-9', C-12' and C-13') with the experimental data. Corrected mean absolute error values are listed for both the core part (CMAE_{Core}) and for all carbon atoms (CMAE). For better comparison $\Delta \delta$ values ≥ 2 are highlighted with yellow and ≥ 4 with red.

Numbering	Exp.	D1	Δδ1	D2	Δδ2	D3	Δδ3	D4	Δδ4	D5	Δδ5	D6	Δδ6	D7	Δδ7	D8	Δδ8
C-1'	77.7	77.77	0.07	85.11	7.41	78.88	1.18	79.19	1.49	77.48	0.22	78.28	0.58	82.09	4.39	76.14	1.56
C-2'	90.3	86.88	3.42	79.89	10.51	87.82	2.58	93.13	2.73	89.40	1.00	85.84	4.56	90.24	0.16	90.86	0.46
C-4'	72.0	73.33	1.33	70.41	0.89	74.00	2.70	73.33	2.03	72.22	0.92	76.53	5.23	75.11	3.81	71.21	0.09
C-5'	75.3	76.34	1.04	74.93	0.37	74.42	0.88	73.28	2.02	74.38	0.92	73.08	2.22	71.18	4.12	77.24	1.94
C-6'	71.3	73.40	2.10	69.77	2.23	72.12	0.12	77.16	5.16	74.27	2.27	73.46	1.46	74.71	2.71	69.27	2.73
C-8'	88.4	86.74	1.66	80.52	7.88	89.23	0.83	86.40	2.00	87.11	1.29	89.82	1.42	88.27	0.13	88.88	0.48
C-9'	73.9	76.14	2.24	83.01	9.11	76.11	2.21	75.57	1.67	78.78	4.88	75.90	2.00	83.76	9.86	74.83	0.93
C-12'	63.6	61.86	1.74	59.85	3.75	61.38	2.22	59.61	3.99	61.52	2.08	62.57	1.03	61.32	2.28	61.60	2.00
C-13'	63.7	63.07	0.63	63.45	0.15	60.85	2.75	62.26	1.34	60.48	3.12	61.98	1.62	67.95	4.35	62.05	1.55
CMAE _{Core}			1.58		4.70		1.72		2.49		1.85		2.24		3.53		1.31
CMAE			1.46		2.51		1.37		1.80		1.63		1.57		1.83		1.15

Table S6. Comparison of the computed ¹H NMR data of the eight possible stereoisomers of **3c** in the vicinity of the core part (belonging to C-1', C-2', C-4', C-6', C-8', C-9', C-12' and C-13') with the experimental data. Corrected mean absolute error values are listed for both the core part (CMAE_{Core}) and for all hydrogen atoms but the NH and OH hydrogens (CMAE). For better comparison $\Delta \delta$ values ≥ 0.3 are highlighted with yellow and ≥ 0.6 with red.

Numbering	Exp	D1	Δδ1	D2	Δδ2	D3	Δδ3	D4	Δδ4	D5	Δδ5	D6	Δδ6	D7	Δδ7	D8	Δδ8
H-1'	6.14	6.03	0.11	5.22	0.92	5.91	0.23	6.07	0.07	6.35	0.21	6.42	0.28	6.28	0.14	6.18	0.04
H-2'	4.68	4.20	0.48	5.00	0.33	4.15	0.52	4.46	0.21	4.48	0.19	4.54	0.13	4.40	0.27	4.44	0.23
H-4'a	3.87	3.74	0.13	3.58	0.24	3.74	0.08	3.79	0.03	3.82	0.00	3.86	0.04	3.80	0.02	3.63	0.19
H-4'b	3.77	3.74	0.03	3.92	0.10	4.48	0.66	3.30	0.52	3.37	0.45	4.58	0.76	4.01	0.19	3.59	0.23
H-6'a	3.78	3.72	0.06	3.49	0.33	3.77	0.05	3.92	0.10	3.77	0.05	3.74	0.08	3.74	0.08	3.59	0.23
H-6'b	3.87	3.71	0.16	3.99	0.17	3.39	0.43	4.64	0.82	4.41	0.59	3.30	0.52	3.80	0.02	3.74	0.08
H-8'	4.80	4.08	0.72	4.54	0.25	4.48	0.31	4.70	0.09	4.33	0.46	4.64	0.15	4.50	0.29	4.59	0.20
H-9'	4.21	3.96	0.25	3.83	0.38	3.97	0.24	4.35	0.14	3.89	0.32	4.00	0.21	3.93	0.28	4.25	0.04
H-12'a	3.38	3.14	0.24	3.64	0.26	3.35	0.03	3.74	0.36	3.26	0.12	3.19	0.19	3.23	0.15	3.25	0.13
H-12'b	3.38	3.50	0.12	3.02	0.36	3.36	0.02	2.96	0.42	3.08	0.30	3.20	0.18	3.04	0.34	3.18	0.20

H-13'a	3.64	3.40	0.24	3.67	0.03	3.56	0.08	3.08	0.56	3.10	0.54	3.49	0.15	3.56	0.08	3.29	0.35
H-13'b	3.64	3.40	0.24	3.83	0.19	3.13	0.51	3.44	0.20	3.53	0.11	3.04	0.60	3.55	0.09	3.45	0.19
CMAE _{Core}			0.23		0.30		0.26		0.29		0.28		0.27		0.16		0.17
CMAE			0.18		0.24		0.22		0.23		0.22		0.22		0.16		0.16

Table S7. Comparison of the computed ¹³C NMR data of the eight possible stereoisomers of **9** in the vicinity of the core part (C-1', C-2', C-4', C-5', C-6', C-8', C-9', C-12' and C-13') with the experimental data. Corrected mean absolute error values are listed for both the core part (CMAE_{Core}) and for all carbon atoms (CMAE). For better comparison $\Delta \delta$ values ≥ 2 are highlighted with yellow and ≥ 4 with red.

Numbering	Exp	D1	Δδ1	D2	Δδ2	D3	Δδ3	D4	Δδ4	D5	Δδ5	D6	Δδ6	D7	Δδ7	D8	Δδ8
C-1'	77.4	77.22	0.18	85.52	8.12	78.76	1.36	78.86	1.46	76.97	0.43	76.31	1.09	80.78	3.38	76.02	1.38
C-2'	90.7	86.52	4.18	78.63	12.07	88.05	2.65	93.97	3.27	91.14	0.44	86.09	4.61	82.96	7.74	91.49	0.79
C-4'	72.3	75.44	3.14	69.43	2.87	75.47	3.17	73.82	1.52	72.70	0.40	78.22	5.92	71.75	0.55	72.41	0.11
C-5'	72.8	72.73	0.07	73.50	0.70	72.07	0.73	70.83	1.97	71.32	1.48	70.20	2.60	69.52	3.28	74.30	1.50
C-6'	72.1	75.68	3.58	69.21	2.89	72.43	0.33	78.86	6.76	76.68	4.58	74.11	2.01	72.28	0.18	71.74	0.36
C-8'	87.7	85.76	1.94	79.26	8.44	90.01	2.31	85.94	1.76	87.13	0.57	91.40	3.70	81.65	6.05	88.06	0.36
C-9'	72.3	74.49	2.19	80.27	7.97	74.60	2.30	73.25	0.95	75.98	3.68	73.39	1.09	80.40	8.10	72.44	0.14
C-12'	63.5	63.85	0.35	60.93	2.57	62.62	0.88	61.69	1.81	63.09	0.41	64.45	0.95	61.86	1.64	63.77	0.27
C-13'	65.1	68.24	3.14	65.93	0.83	64.05	1.05	65.72	0.62	66.32	1.22	65.67	0.57	64.31	0.79	65.65	0.55
CMAE _{Core}			2.08		5.16		1.64		2.23		1.47		2.50		3.52		0.61
CMAE			1.81		3.09		1.46		1.93		1.47		1.94		2.35		1.04

Table S8. Comparison of the computed ¹H NMR data of the eight possible stereoisomers of **9** in the vicinity of the core part (belonging to C-1', C-2', C-4', C-6', C-8', C-9', C-12' and C-13') with the experimental data. Corrected mean absolute error values are listed for both the core part (CMAE_{Core}) and for all hydrogen atoms but the NH hydrogen (CMAE). For better comparison $\Delta \delta$ values ≥ 0.3 are highlighted with yellow and ≥ 0.6 with red.

Numbering	Exp	D1	Δδ1	D2	Δδ2	D3	Δδ3	D4	Δδ4	D5	Δδ5	D6	Δδ6	D7	Δδ7	D8	Δδ8
H-1'	6.19	5.97	0.22	5.01	1.18	5.90	0.29	6.13	0.06	6.26	0.07	6.34	0.15	5.63	0.56	6.23	0.04
H-2'	4.60	4.22	0.38	4.99	0.39	4.11	0.49	4.67	0.07	4.59	0.01	4.53	0.07	4.54	0.06	4.49	0.11
H-4'a	3.78	3.83	0.05	3.59	0.19	4.07	0.29	3.80	0.02	3.75	0.03	3.92	0.14	3.99	0.21	3.71	0.07
H-4'b	3.78	3.78	0.00	3.62	0.16	3.81	0.03	3.64	0.14	3.85	0.07	4.14	0.36	3.65	0.13	3.68	0.10
H-6'a	3.98	3.65	0.33	3.63	0.35	3.66	0.32	3.97	0.01	4.05	0.07	3.83	0.15	3.84	0.14	3.83	0.15

H-6'b	3.78	3.94	0.16	3.82	0.04	3.76	0.02	4.21	0.43	3.92	0.14	3.74	0.04	3.71	0.07	3.74	0.04
H-8'	4.60	4.15	0.45	4.77	0.17	4.57	0.03	4.67	0.07	4.19	0.41	4.57	0.03	4.48	0.12	4.44	0.16
H-9'	4.25	4.16	0.09	3.77	0.48	4.28	0.03	4.31	0.06	3.98	0.27	3.97	0.28	3.74	0.51	4.11	0.14
H-12'a	4.25	4.35	0.10	4.70	0.45	4.14	0.11	3.75	0.50	4.16	0.09	4.02	0.23	3.98	0.27	3.84	0.41
H-12'b	4.25	4.00	0.25	3.89	0.36	4.34	0.09	5.10	0.85	3.95	0.30	4.08	0.17	4.19	0.06	4.51	0.26
H-13'a	4.10	3.95	0.15	4.15	0.05	3.59	0.51	3.70	0.40	4.09	0.01	3.98	0.12	4.49	0.39	3.73	0.37
H-13'b	4.25	3.95	0.30	4.17	0.08	4.36	0.11	4.18	0.07	3.77	0.48	3.97	0.28	4.08	0.17	4.32	0.07
CMAE _{Core}			0.21		0.32		0.19		0.22		0.16		0.17		0.22		0.16
CMAE			0.15		0.21		0.15		0.15		0.13		0.14		0.16		0.11

Table S9. Comparison of the computed ¹³C NMR data of the assumed stereoisomer of **13a** in the vicinity of the core part (C-1', C-2', C-4', C-5', C-6', C-8', C-9', C-12' and C-13') with the experimental data. Corrected mean absolute error values are listed for both the core part (CMAE_{Core}) and for all carbon atoms (CMAE). $\Delta \delta$ values ≥ 2 are highlighted with yellow.

Numbering	Exp	D8	Δδ8
C-1'	78.64	76.22	2.42
C-2'	90.49	91.73	1.24
C-4'	72.12	71.30	0.82
C-5'	75.25	77.03	1.78
C-6'	71.71	68.73	2.98
C-8'	87.79	89.59	1.80
C-9'	73.71	74.90	1.19
C-12'	63.48	62.42	1.06
C-13'	63.95	62.76	1.19
CMAE _{Core}			1.61
CMAE			1.44

Table S10. Comparison of the computed ¹H NMR data of the assumed stereoisomer of **13a** in the vicinity of the core part (belonging to C-1', C-2', C-4', C-6', C-8', C-9', C-12' and C-13') with the experimental data. Corrected mean absolute error values are listed for both the core part (CMAE_{Core}) and for all hydrogen atoms but the NH and OH hydrogens (CMAE). $\Delta \delta$ values ≥ 0.3 are highlighted with yellow.

Numbering	Exp	D8	Δδ8
H-1'	6.18	6.28	0.10
H-2'	4.64	4.36	0.28
H-4'a	3.85	3.71	0.14
H-4'b	3.77	3.50	0.27
H-6'	3.85	3.68	0.17
H-6'	3.85	3.56	0.29
H-8'	4.77	4.36	0.41
H-9'	4.11	4.27	0.16
H-12'	3.32	3.08	0.24
H-12'	3.32	3.13	0.19
H-13'	3.61	3.43	0.18
H-13'	3.61	3.21	0.40
CMAE _{Core}			0.23
CMAE			0.16

Table S11. Comparison of the computed ¹³C NMR data of the assumed stereoisomer of **18b** in the vicinity of the core part (C-1', C-2', C-4', C-5', C-6', C-8', C-9', C-12' and C-13') with the experimental data. Corrected mean absolute error values are listed for both the core part (CMAE_{Core}) and for all carbon atoms but C-2 (CMAE).

Exp	D8	Δδ8
77.96	77.34	0.62
90.80	91.44	0.64
72.74	72.01	0.73
72.87	74.25	1.38
71.91	71.25	0.66
89.46	88.45	1.01
74.08	75.80	1.72
63.93	62.43	1.50
66.04	65.07	0.97
		1.02
		1.30
	Exp 77.96 90.80 72.74 72.87 71.91 89.46 74.08 63.93 66.04	ExpD877.9677.3490.8091.4472.7472.0172.8774.2571.9171.2589.4688.4574.0875.8063.9362.4366.0465.07

Table S12. Comparison of the computed ¹H NMR data of the assumed stereoisomer of **18b** in the vicinity of the core part (belonging to C-1', C-2', C-4', C-6', C-8', C-9', C-12' and C-13') with the experimental data. Corrected mean absolute error values are listed for both the core part (CMAE_{Core}) and for all hydrogen atoms but the NH hydrogen (CMAE). $\Delta \delta$ values ≥ 0.3 are highlighted with yellow.

Numbering	Exp	D8	Δδ8
H1'	6.16	6.08	0.08
H2'	5.01	5.06	0.05
H4'	3.93	3.77	0.16
H4'	3.93	3.70	0.23
H6'a	3.95	3.68	0.27
H6'b	3.76	3.65	0.11
H8'	4.83	4.70	0.13
H9'	4.37	4.17	0.20
H12'	3.34	3.01	0.33
H12'	3.44	3.38	0.06
H13'	4.21	4.02	0.19
H13'	4.21	4.09	0.12
CMAE _{Core}			0.16
CMAE			0.17