Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Extreme halophilic alcohol dehydrogenase mediated highly efficient syntheses of enantiopure aromatic alcohols

Diya Alsafadi, Francesca Paradisi and Safaa Alsalman

Electronic Supplementary Information

Table of Contents

1. Physico-chemical data of the products	2
2. HPLC chromatograms	6
3. IR spectroscopy study	14
4. Supporting references	
5. ¹ H NMR spectra images	

1. Physico-chemical data of the products

(S)-1a (1-phenylethanol): $[\alpha]^{20}_{D} = -41.6$ (c 1.1, CHCl₃), Lit. (1): $[\alpha]^{20}_{D} = -39.6$ (c 2.46 CHCl₃). ¹H NMR (500 MHz, CDCL₃) δ 1.54(3H, d, J = 6.4 Hz, CH₃), 2.06 (1H, br, s, OH), 4.93 (1H, q, J = 6.4 Hz, CH), 7.28-7.40(5H, m, Ar). The enantiomeric excess (% e.e) was determined by HPLC using OB-H column, λ 210, hexane: isopropanol 90:10, 0.6 ml/min and 25°C. Retention time for (S)-1-phenylethanol was 9.7 min.

(S)-2a (1-phenyl-2-propanol): $[\alpha]^{20}_{D} = +14.0$ (c 1.1, CHCl₃), Lit. (2): $[\alpha]^{20}_{D} = +42.0$ (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCL₃) δ 1.23 (3H, d, J = 6.3 Hz, CH₃), 1.96 (1H, br, s, OH), 2.77-2.65 (2H, m, CH₂), 4.01-3.97 (1H, m, CH), 7.32-7.17 (5H, m, Ar). The enantiomeric excess (% e.e) was determined by HPLC using OB-H column, λ 210, hexane: isopropanol 90:10, 1.0 ml/min and 25°C. Retention time for (S)-1-phenyl-2-propanol was 10.6 min.

(S)-**3a** (4-phenyl-2-butanone): $[\alpha]^{20}_{D} = +8$ (c 1.3, CHCl₃), Lit. (3): $[\alpha]^{20}_{D} = +17.4$ (c 1.8, CHCl₃). 1H NMR (500 MHz, CDCL₃) δ 1.23-1.20 (3H, d, J= 7.1 Hz, CH₃), 2.00 (1H, br, s, OH), 2.64(2H, m, CH₂), 2.71(2H, m, J = 7.1 Hz, CH₂), 3.53(1H, m, CH), 7.44- 7.132 (5H, m, Ar). The enantiomeric excess (% e.e) was determined by HPLC using OB-H column, λ 210, hexane: isopropanol 97:3, 1.0 ml/min and 25°C. Retention time for (S) 4-phenyl-2-butanol was 8.8 min.

(S)-4a (α -methyl-2-naphthalenemthanol): $[\alpha]^{20}_{D} = -19.0$ (c 1.5, ethanol), Lit. (4): $[\alpha]^{20}_{D} = -40.0$ (c 5.0, ethanol). ¹H NMR (500 MHz, CDCL₃) δ 1.55 (3H, d, *J*= 6.4 Hz, CH₃), 1.88 (1H, br, s, OH), 5 (1H, m, CH), 7.58-7.49 (3H, m, Ar), 7.87-7.80 (4H, m, Ar). The enantiomeric excess (% e.e) was determined by HPLC using OB-H column, λ 210, hexane: isopropanol 90:10, 1.0 ml/min and 25°C. Retention time for (S) α -methyl-2-naphthalenemthanol was 8.90 min.

(S)-**6b** (1-(4'-chlorophenyl)ethanol): $[\alpha]^{20}{}_{D} = -29.0$ (c 0.3, CHCl₃), Lit. (1): $[\alpha]^{20}{}_{D} = -50.1$ (c 7.11, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 1.50(3H, d, J= 6.1 Hz, CH₃), 2.07 (1H, br, s, OH), 4.91(1H, q, J = 6.4 Hz, CH), 7.28 (2H, d, J = 8.25 Hz, Ar), 7.34 (2H, d, J = 8.25 Hz, Ar). The enantiomeric excess (% e.e) was determined by HPLC using OB-H column, λ 210, hexane: isopropanol 98:2, 0.5 ml/min and 25°C. Retention time for (S)-1-(4'-chlorophenyl)ethanol was 27.9 min.

(S)-7b (1-(4'-fluorophenyl)ethanol): $[\alpha]^{20}_{D} = -50.0$ (c 0.2, CHCl₃), Lit. (5): $[\alpha]^{20}_{D} = -78.6$ (c 0.2, CHCl₃). 1H NMR (500 MHz, CDCl₃) δ 1.50(3H, d, J = 6.1 Hz, CH₃), 2.07 (1H, br, s, OH), 4.90 (1H, q, J = 6.4 Hz, CH), 7.03-7.07 (2H, m, , Ar), 7.35-7.39(2H, m, Ar). The enantiomeric excess (% e.e) was determined by HPLC using OB-H column, λ 210, hexane: isopropanol 95:5, 0.6 ml/min and 25°C. Retention time for (S)-1-(4'-fluorophenyl)ethanol was 12.8 min.

(S)-**8b** (1-(4'-bromophenyl)ethanol): $[\alpha]^{20}{}_{D} = -37.5$ (c 0.2, CHCl₃), Lit. (1): $[\alpha]^{20}{}_{D} = -46.2$ (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 1.49(3H, d, J= 5.9 Hz, CH₃), 2.06(1H, br, s, OH), 4.85(1H, q, J= 6.2 Hz, CH), 7.27 (2H, d, J = 8.1 Hz, Ar), 7.7.49 (2H, d, J = 7.7 Hz, Ar). The enantiomeric excess (% e.e) was determined by HPLC using OD-H column, λ 210, hexane: isopropanol 95:5, 1.0 ml/min and 25°C. Retention time for (S)-1-(4'-bromophenyl)ethanol was

9.0 min.

(S)-**9b** (1-(4'-methylphenyl)ethanol): $[\alpha]^{20}{}_{D} = -81.5$ (c 0.3, CHCl₃), Lit. (1): $[\alpha]^{20}{}_{D} = -39.4$ (c 2.72, CHCl₃). ¹H NMR (500 MHz, CDCL₃) δ 1.59 (3H, d, J = 6.4 Hz, CH₃), 1.76 (1H, br, s, OH), 2.37 (3H, s,CH₃), 4.89 (1H, q, J = 6.4Hz, CH), 7.19 (2H, d, J = 8.00 Hz, Ar), 7.29 (2H, d, J = 8.05 Hz, Ar. The enantiomeric excess (% e.e) was determined by HPLC using OB-H column, λ 210, hexane:isopropanol 90:10, 0.6 ml/min and 25°. Retention time for (S)-1-(4'-methylphenyl)ethanol was 9.8 min.

(S)-10b (1-(4'-nitrophenyl)ethanol): $[\alpha]^{20}_{D} = -75.7$ (c 0.3, CHCl₃), Lit. (5): $[\alpha]^{20}_{D} = -25.0$ (c 0.2, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 1.58 (3H, d, J = 6.5 Hz, CH₃), 2.01 (1H, br, s, OH), 5.04 (1H, q, J = 6.5 Hz, CH), 7.57 (2H, d, J = 8.5 Hz, Ar), 8.23 (2H, d, J = 8.55 Hz, Ar). The enantiomeric excess (% e.e) was determined by HPLC using OB-H column, λ 254, hexane: isopropanol 80:20, 0.5 ml/min and 25°C. Retention time for (S)-1-(4'-nitrophenyl)ethanol was 15.5 min.

(S)-12b (1-(3'-fluorophenyl)ethanol): $[\alpha]^{20}_{D} = -30.0$ (c 0.3, CHCl₃), Lit. (5): $[\alpha]^{20}_{D} = -25.6$ (c 0.2, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 1.51 (3H, d, J = 6.2 Hz, CH₃), 2.06 (1H, br, s, OH), 4.93 (1H, q, J = 5.9 Hz, CH), 6.95-6.99 (1H, m, Ar), 7.01-7.11 (2H,m,Ar), 7.14-7.35 (1H, m, Ar). The enantiomeric excess (% e.e) was determined by HPLC using OB-H column, λ 210, hexane: isopropanol 90:10, 0.6 ml/min and 25°C. Retention time for (S)-1-(3'-fluorophenyl)ethanol was 8.9 min.

(S)-13b (1-(3'- bromophenyl)ethanol): $[\alpha]^{20}{}_{D} = -40.0$ (c 0.4, CHCl₃), Lit. (1): $[\alpha]^{20}{}_{D} = -27.6$ (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 1.51(3H, d, J = 6.5 Hz, CH₃), 2.07(1H, br, s, OH), 4.89(1H, q, J = 6.4 Hz, CH), 7.22-7.28 (2H,m,Ar), 7.31-7.33 (1H, m, Ar), 7.41-7.56(1H, m, Ar). The enantiomeric excess (% e.e) was determined by HPLC using OB-H column, λ 210, hexane: isopropanol 90:10, 0.6 ml/min and 25°C. Retention time for (S)-1-(3'- bromophenyl)ethanol was 10.0 min.

(S)-14b (1-(3'-methylphenyl)ethanol): $[\alpha]^{20}{}_{D} = -41.9$ (c 0.3, CHCl₃), Lit. (1): $[\alpha]^{20}{}_{D} -30.2$ (c 0.58, EtOH). ¹H NMR (500 MHz, CDCL₃) δ 1.52 (3H, d, J = 6.5 Hz, CH₃), 2.07 (1H, br, s, OH), 2.19 (3H, s, CH₃), 4.90 (1H, q, J = 6.45 Hz, CH), 7.1-7.12 (1H, m, Ar), 7.18-7.22 (2H, m, Ar), 7.25-7.28(1H, m, Ar). The enantiomeric excess (% e.e) was determined by HPLC using OB-H column, λ 210, hexane: isopropanol 90:10, 0.6 ml/min and 25°C. Retention time for (S)- 1-(3'-methylphenyl)ethanol was 9.0 min.

(S)-15b (1-(3'-nitrophenyl)ethanol): $[\alpha]^{20}{}_{D} = -13.33$ (c 0.3, CHCl₃), Lit. (5): $[\alpha]^{20}{}_{D} -22.0$ (c 0.2, CHCl₃). ¹H NMR (500 MHz, CDCL₃) δ 1.56 (3H, d, J = 6.5 Hz, CH₃), 2.06 (1H, br, s, OH) 5.04 (1H, q, J = 6.5 Hz), 7.54 (1H, t, J = 6.4 Hz), 7.74 (1H, d, J = 6.4 Hz), 8.28(s, 1H). The enantiomeric excess (% e.e) was determined by HPLC using OB-H column, λ 254, hexane: isopropanol 80:20, 0.6 ml/min and 25°C. Retention time for (S)-1-(3'-nitrophenyl)ethanol was 12.7 min.

(S)-16b (1-(3'-aminophenyl)ethanol): $[\alpha]^{20}_{D} = -40.0$ (c 0.3, CHCl₃). ¹H NMR (500 MHz, CDCL₃) δ 1.49(3H, d, J = 6.45 Hz, CH₃), 2.07(1H, br, s, OH), 4.83(1H, q, J = 6.4 Hz, CH), 6.61-6.63 (1H, m, Ar), 6.75-6.78 (2H, m, Ar), 7.14-7.28 (1H, m, Ar). The enantiomeric excess (% e.e) was determined by HPLC using OD-H column, λ 239, hexane: isopropanol 75:25, 0.6 ml/min and 25°C. Retention time for (S)-(1-(3'-aminophenyl)ethanol) was 22.8 min.

(S)-17c (2-bromo-1-phenylethanol): $[\alpha]^{20}{}_{D} = +33.3$ (c 0.4, CHCl₃), Lit. (6): $[\alpha]^{20}{}_{D} + 42.3$ (c 1.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 2.00 (1H, br, s, OH), 4.09 (2H, m, CH₂) 4.85 (1H, m, CH), 7.46-7.60 (5H, m, Ar). The enantiomeric excess (% e.e) was determined by HPLC using OB-H column, λ 210, hexane: isopropanol 90:10, 0.6 ml/min and 25°C. Retention time for (S)-2-bromo-1-phenylethanol was 13.8 min.

(S)-18c (2-fluoro-1-phenylethanol): $[\alpha]^{20}{}_{D} = +14.3$ (c 0.3, CHCl₃), Lit. (7): $[\alpha]^{20}{}_{D} +55.6$ (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 2.01 (1H, br, s, OH), 4.37-4.59 (2H, m CH₂) 4.59-5.09 (1H, m, CH), 7.28-7.43(5H, m, Ar). The enantiomeric excess (% e.e) was determined by HPLC using OB-H column, λ 210, hexane: isopropanol 90:10, 0.6 ml/min and 25°C. Retention time for (S)-2-fluoro-1-phenylethanol was 15.3 min.

(S)-19c (2-chloro-1-phenylethanol): $[\alpha]^{20}{}_D = +37.9$ (c 0.3, CHCl₃), (R)-19 Lit. (4): $[\alpha]^{20}{}_D + 43$ (c 2.8, cyclohexane). ¹H NMR (500 MHz, CDCL₃) δ 2.69 (1H, s, OH), 3.65-3.8(2H, m, CH₂), 4.92-4.95 (1H, m, CH), 7.60-7.28 (5H, m, Ar). The enantiomeric excess (% e.e) was determined by HPLC using OB-H column, λ 210, hexane: isopropanol 95:5, 0.6 ml/min and 25°C. Retention time for (S)-2-chloro-1-phenylethanol was 20.1 min.

(S)-20c (2-chloro-1-(4'-fluorophenyl)ethanol): $[\alpha]^{20}{}_{D} = +47.6$ (c 0.2, CHCl₃), Lit. (8): $[\alpha]^{20}{}_{D} + 52.8$ (c 1.0, CHCl₃).¹H NMR (500 MHz, CDCl₃) δ 2.19 (1H, br, s, OH), 3.66 (1H, m, CH₂), 3.76 (1H, m, CH₂), 4.83 (1H, m, CH), 7.09(1H, m, Ar), 7.36 (1H, m, Ar). The enantiomeric excess (% e.e) was determined by HPLC using OB-H column, λ 210, hexane: isopropanol 95:5, 1.0 ml/min and 25°C. Retention time for (S)-2-chloro-1-(4'-fluorophenyl)ethanol was 14.4 min.

(S)-21c (2-chloro-1-(2',4'-difluorophenyl)ethanol): $[\alpha]^{20}{}_{D} = +78.3$ (c 0.2, CHCl₃), Lit. (8): $[\alpha]^{20}{}_{D} = +38.0$ (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 2.02 (1H, br, s, OH), 3.57-3.70 (2H, m, CH₂), 5.2 (1H, m,CH), 6.81-6.84 (1H, m, Ar), 6.85-7.28(1H, m, Ar), 7.52-7.58 (1H, m, Ar). The enantiomeric excess (% e.e) was determined by HPLC using OD-H column, λ 210, hexane: isopropanol 99:1, 0.5 ml/min and 25°C. Retention time for (S)-2-chloro-1-(2',4'-difluorophenyl)ethanol was 48.0 min.

(S)-22d (3-hydroxy-3-phenylpropanenitrile): $[\alpha]^{20}_D = -24.1$ (c 0.3, CHCl₃), Lit. (8): $[\alpha]^{20}_D = -61.3$ (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 1.96 (1H, br, s, OH), 2.67-2.69 (2H, m, CH₂) 4.93(1H, t, *J*= 6.1 Hz, CH), 7.23-7.47(5H, m, Ar). The enantiomeric excess (% e.e) was determined by HPLC using OD-H column, λ 210, methanol: isopropanol 90:10, 0.4 ml/min and 25°C. Retention time for (S)-3-hydroxy-3-phenylpropanenitrile was 8.2 min.

(S)-23d (3-(4-bromophenyl)-3-hydroxypropanenitrile): $[\alpha]^{20}{}_D = -22.2$ (c 0.3, CHCl₃), Lit. (8): $[\alpha]^{20}{}_D = -46.3$ (c 1.0, CHCl₃). (3-hydroxy-3-phenylpropanenitrile): ¹H NMR (500 MHz, CDCl₃) δ 2.19 (1H, d, J = 4.0 Hz CH), 2.78 (2H, d, J = 6.4 Hz CH₂), 5.05-5.06 (1H, m, OH), 7.28-7.35 (2H, m, Ar), 7.55-7.56 (2H, m, Ar). The enantiomeric excess (% e.e) was determined by HPLC using OD-H column, λ 210, methanol: isopropanol 85:15, 0.6 ml/min and 25°C. Retention time for (S)-3-(4-bromophenyl)-3-hydroxypropanenitrile was 5.5 min.

(S)-24e 1-(3,5-bis(trifluoromethyl)phenyl)ethanol: $[\alpha]^{20}_D = -33.3$ (c 0.5, CHCl₃), (R)-1-(3,5-bis(trifluoromethyl)phenyl) ethanol Lit. (9): $[\alpha]^{20}_D = +22.7$ (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCL₃) δ 1.52-1.51(3H, d, J = 6.5 Hz, CH₃), 1.99 (1H, br, s, OH), 5.04-5.00 (1H, q, J = 6.5 Hz, CH), 7.92- 7.78 (3H, s, Ar). The enantiomeric excess (% e.e) was determined by HPLC using OD-H column, λ 210, hexane: isopropanol 98:2, 0.5 ml/min and 25°C. Retention time for (S)-1-(3,5-bis(trifluoromethyl)phenyl)ethanol was 18.7 min.

(S)-26f 1-(pyrazin-2-yl)ethanol: $[\alpha]^{20}_{D} = -40.7$ (c 0.2, CHCl₃), Lit. (8): $[\alpha]^{20}_{D} = -29.4$ (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 1.49(3H, d, J= 5.8 Hz, CH₃), 2.00 (1H, br, s, OH), 4.92(1H, m, CH), 8.68 (2H, m, Ar), 9.14 (1H, s, Ar). The enantiomeric excess (% e.e) was determined by HPLC using OD-H column, λ 210, hexane: isopropanol 80:20, 0.6 ml/min and 25°C. Retention time for (S)-1-(pyrazin-2-yl)ethanol was 12.8 min.

(S)-27f 1-(3-methylpyrazin-2-yl)ethanol: $[\alpha]^{20}_{D} = -55.5$ (c 0.2, CHCl₃), Lit. (8): $[\alpha]^{20}_{D} - 86.9$ (c 1.0, CHCl₃) ¹H NMR (500 MHz, CDCl₃) δ 1.40(3H, d, J = 6.4 Hz, CH₃), 2.52(3H, s, CH₃), 1.98 (1H, br, s, OH), 4.99 (1H, m, CH), 8.42 (1H, m, Ar), 8.53 (1H, m, Ar). The enantiomeric excess (% e.e) was determined by HPLC using Chiralcel OD-H, λ 210, hexane: isopropanol 95:5, 0.6 ml/min and 25°C. Retention time for (S)-1-(3-methylpyrazin-2-yl)ethanol was 16.3 min.

2. HPLC chromatograms

The HPLC chromatograms for *rac*-alcohols and the biocatalyzed alcohols using *Hv*ADH2 are presented in Table S1.

Substrate	Product	<i>rac</i> -alcohol	Biocatalyzed alcohol using <i>Hv</i> ADH2
1	(S)-1a	9986 5 10 12	
2	(S)- 2 a	105	
3	(S)- 3 a	8.821	
Substrate	Product	rac-alcohol	Biocatalyzed alcohol using <i>Hv</i> ADH2

Table S1. The HPLC chromatograms for *rac*-alcohols and the biocatalyzed alcohols using *Hv*ADH2

3. IR spectroscopy study

IR absorption spectra of the ketones were recorded on fourier transform infrared (FT-IR) spectra using KCl disc.

Substrate	C=O band/cm ⁻¹
1	1681.9
2	1712.7
3	1712.8
4	1666.5
5	1681.9
6	1685.8
7	1681.9
8	1674.2
9	1678.1
10	1689.6
11	1647.0
12	1685.7
13	1681.9
14	1681.9
15	1685.9
16	1649.9
17	1689.6
18	1705.1
19	1685.8
20	1697.4
21	1701.2
22	1681.8
23	1678.1

4. Supporting references

- 1 M. L. Kantam, S. Laha, J. Yadav, P. R. Likhar, B. Sreedhar, S. Jha, S. Bhargva, M. Udaykiran and B. Jagadeesh, *Org. Lett.*, 2008, **10**, 2979–2982.
- 2 B. Erdélyi, A. Szabó, G. Seres, L. Birincsik, J. Ivanics, G. Szatzker and L. Poppe, *Tetrahedron: Asymmetry*, 2006, **17**, 268-274.
- 3 K. Nakamura, Y. Inoue, T. Matsuda and I Misawa, *J. Chem. Soc. Perkin. Trans.*, 1999, 1, 2397–2402.
- 4 Sigma aldrich catalog, <u>www.sigmaaldrich.com</u>
- M. L. Contente, I. Serra, L. Palazzolo, C. Parravicini, E. Gianazza, I. Eberini, A. Pinto,
 B. Guidi, F. Molinari and D. Romano, *Org. Biomol. Chem.*, 2016, 14, 3404–3408.
- 6 D. M. Du, T. Fang, J. X. Xu and S. W. Zhang, Org. Lett., 2006, 8, 1327–1330.
- 7 T. W. Shaw, J. A. Kalow and A. G. Doyle, Organic syntheses, 2012, 89, 9-18.
- 8 A. S. Rowan, T. S. Moody, R. M. Howard, T. J. Underwood, I. R. Miskelly, Y. He and B. Wang, *Tetrahedron: Asymmetry*, 2013, 24, 1369-1381.
- 9 W.-P. Liu, M.-L. Yuan, X.-H. Yang, K. Li, J.-H. Xie and Q.-L. Zhou, *Chem. Commun.*, 2015, **51**, 6123–6125.

