Electronic Supplementary Information (ESI)

Highly Selective Recognition of Al³⁺ and I⁻ ions using a Bi-functional

Fluorescent Probe

Zhao Li,‡^a Jiang-Lin Zhao,‡^b Yu-Tian Wu,^a Lan Mu,^a Xi Zeng,*^a Zongwen Jin,*^b Gang Wei,*^c Ning Xie^e and Carl Redshaw^d

^a Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, P.R. China

^b Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China.

^c CSIRO Manufacturing, PO Box 218, NSW 2070, Australia

^d Department of Chemistry, School of Mathematics & Physical Sciences, University of Hull, Hull HU6 7RX, U.K.

^e College of Life Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen 518060, China

[‡] Zhao Li and Jiang-Lin Zhao contributed equally to this work.

Figure S1. ¹H NMR spectrum of intermediate 1 (500 MHz, CDCl₃, 293 K).

Figure S2. ¹³C NMR spectrum of intermediate 1 (125 MHz, CDCl₃, 293 K).

Figure S3. ¹H NMR spectrum of probe L1 (500 MHz, CDCl₃, 293 K).

Figure S4. ¹³C NMR spectrum of probe L1 (125 MHz, CDCl₃, 293 K).

Figure S5. MALDI-TOF-MS spectrum of probe L1.

Figure S6. FT-IR spectrum of probe L1.

Figure S7. (a) Fluorescence spectra of probe L1; (b) Absorption spectra of probe L1 (10 μ M, H₂O/CH₃CN, 2/98, v/v, pH 7).

Figure S8. Spectral overlap between the energy donor naphthaline emission (black) and acceptor rhodamine absorption (red).

Figure S9. The plot of fluorescence intensity of probe L1 as a function of Al^{3+} concentration (a) and the Job's plot data (b).

Figure S10. Fluorescence response of probe L1 (10 μ M, H₂O/CH₃CN, 2/98, v/v, pH 7). Black bars: emission intensity of probe L1 at 585 nm with the addition of the respective metal ions (20 equiv.). Red bars: emission intensity of L1·2Al³⁺ complex at 585 nm with the addition of the respective competing ions (20 equiv.). Metal ions including Al³⁺, Li⁺, Na⁺, K⁺, Mg²⁺, Ca²⁺, Ba²⁺, Sr²⁺, Hg²⁺, Pb²⁺, Cd²⁺, Zn²⁺, Co²⁺, Ni²⁺, Cu²⁺, Ag⁺ and Fe³⁺, $\lambda_{ex} = 240$ nm.

Figure S11. Non-linear plot of probe L1 (50 μ M) assuming a 1:2 stoichiometry for association between probe L1 and Al³⁺ in CH₃CN/H₂O (v/v, 98/2, pH 7) solution by fluorescence spectroscopy; $\lambda_{ex}/\lambda_{em} = 240 \text{ nm}/585 \text{ nm.}^1$

The fluorescence spectrum association constants of Al³⁺ were calculated by nonlinear fitting using the following formula [Eq. (1)]:

$$\Delta F_{A1} = \frac{\kappa_{\Delta HG}[H_0] + \kappa_{\Delta HG_2}[H_0]K_1K_2[G]^2}{1 + K_1[G] + K_1K_2[G]^2}$$
(1)

where ΔF_{Al} is the change in the fluorescence intensity of the L1 upon gradual addition

of the Al³⁺, $\kappa_{\Delta HG}$ refers to the different proportionality constant of the complex HG and the free host, and $\kappa_{\Delta HG_2}$ refers to the different proportionality constant of the complex HG₂ and the free host. The total concentrations of host and guest are denoted by [H] and [G], respectively.

Equation(1) is noting also the relevant mass balance eqn (2), molar concentration of the 1 : 1 complex are denoted by [HG], [HG2] refers to 1 : 2 complex¹. [H0] = [H] + [HG] + [HG2] (2)

R = 0.9898, $K_1 = 777.45 (\pm 0.391) M^{-1}$, $K_2 = 3.099 \times 10^5 (\pm 0.391) M^{-2}$.

Reference:

Figure S12. Fluorescence intensity calibration curve of probe L1 (50 μ M) as a function of Al³⁺ concentration in CH₃CN/H₂O (v/v, 98/2, pH 7) solution; $\lambda_{ex}/\lambda_{em} = 240 \text{ nm}/585 \text{ nm}$. Y = 428.8 X - 177.8, R = 0.9935, LOD = 0.062 μ M.

Figure S13. (a)Absorption spectral changes of probe L1 (pH 7, 50 μ M, H₂O/CH₃CN, 2/98, v/v) solution upon addition of Al³⁺ (0 ~ 30 μ M); (b) the plot of absorbance at 558nm of probe L1 as a function of Al³⁺ concentration and (c) the Job's plot data.

Figure S14. MALDI-TOF-MS spectrum of L1·2Al complex.

Figure S15. Non-linear plot of probe L1 (50 μ M) assuming a 1:2 stoichiometry for association between probe L1 and Al³⁺ in CH₃CN/H₂O (v/v, 98/2, pH 7) solution by absorption spectroscopy. $\lambda_{max} = 558 \text{ nm.}^1$

The UV spectrum association constants of Al³⁺ were calculated by nonlinear fitting using the following formula [Eq. (3)]:

$$\Delta A_{A1} = \frac{\varepsilon_{\Delta HG}[H_0]K_1[G] + \varepsilon_{\Delta HG_2}[H_0]K_1K_2[G]^2}{1 + K_1[G] + K_1K_2[G]^2}$$
(3)

where ΔA_{A1} is the change in the UV absorption intensity of the L1 upon gradual addition of the Al³⁺, and $\epsilon_{\Delta HG}$ refers to the different molar absorptivity of the free host and the complex of one host and one guest, $\epsilon_{\Delta HG_2}$ refers to the different molar absorptivity of the free host and the complex of one host and two guests. The molar concentrations of the free guest are denoted by [H]and [G], respectively.

Equation(3) is noting also the relevant mass balance eqn (2), molar concentration of the 1 : 1 complex are denoted by [HG], [HG2] refers to 1 : 2 complex¹.

$$[H0] = [H] + [HG] + [HG2]$$
(2)

$$R = 0.9842, K_1 = 1225.8 (\pm 0.312) M^{-1}, K_2 = 2.654 \times 10^5 (\pm 0.312) M^{-2}.$$

Reference:

Figure S16. Absorbance calibration curve of probe L1 (50 μ M) at 558 nm as a function of Al³⁺ concentration in CH₃CN/H₂O (v/v, 98/2, pH 7) solution. Y = 1.184 X - 0.3483, R = 0.9055, LOD = 5.8 μ M.

Figure S17. Absorption spectral changes of probe L1 (10 μ M, H₂O/1,4-dioxane, 1/99, v/v) solution upon addition of I⁻ (0 ~ 50 equiv.)

Figure S19. Fluorescence spectral changes of probe L1 (10 μ M, 1,4-dioxane/H₂O, v/v, 99/1) solution upon addition of I⁻ (0 ~ 500 μ M); $\lambda_{ex}/\lambda_{em} = 315$ nm/415 nm.

Figure S21. (a) Absorption response of probe L1 (10 μ M, 1,4-dioxane/H₂O, v/v, 99/1). Black bars: the absorbance of probe L1 at 360 nm with the addition of the respective anions (50 eq.). White bars: the absorbance of probe L1 at 360 nm with the addition of the respective competing anions (50 eq.) and I⁻ (50 eq.); (b) Fluorescence response of probe L1 (10 μ M, 1,4-dioxane/H₂O, v/v, 99/1). Black bars: emission intensity of probe L1 at 415 nm with the addition of the respective anios (50 eq.). White bars: emission intensity of probe L1 at 415 nm with the addition of the respective anios (50 eq.). White bars: emission intensity of probe L1 at 415 nm with the addition of the respective anios (50 eq.). White bars: emission intensity of probe L1 at 415 nm with the addition of the respective competing anions (50 eq.) and I⁻ (50 eq.) and I⁻ (50 eq.). Anions including I⁻, F⁻, Cl⁻, Br⁻, NO₃⁻, H₂PO₄⁻, HSO₄⁻, ClO₄⁻, A_cO⁻ and PF₆⁻. $\lambda_{ex} = 315$ nm

Figure S22. Absorbance calibration curve of probe L1 (10 μ M) as a function of I⁻ concentration in 1,4-dioxane/H₂O (v/v, 99/1) solution; $\lambda_{max} = 360$ nm. Y = 0.00847 X - 0.00598, R = 0.9578, LOD = 0.42 μ M.

Figure S23. None-linear plot of probe L1 (of probe L1(10 μ M) assuming a 1:1 stoichiometry for association between probe L1 and I⁻ in 1,4-dioxane/H₂O (v/v, 99/1) solution by absorption spectroscopy. $\lambda_{max} = 360$ nm.

The UV spectrum association constants of I⁻ were calculated by nonlinear fitting using the following formula [Eq. (4)]:

$$\Delta F = \frac{\Delta \beta ([H]_0 + [G]_0 + \frac{1}{K_a}) \pm \sqrt{\Delta \beta^2 ([H]_0 + [G]_0 + \frac{1}{K_a})^2 - 4\Delta \beta^2 [H]_0 [G]_0}}{2}$$
(4)

where ΔI is the change in the fluorescence intensity of the L1 upon gradual addition of the I⁻, and $\Delta\beta$ refers to the different molar absorptivity of the free host and the interaction complex. The total concentrations of host and guest are denoted by [H]₀ and [G]₀, respectively¹.

 $R = 0.9975, K = 2.08 \times 10^5 (\pm 0.005) M^{-1}$

Reference:

Figure S24. Fluorescence intensity calibration curve of probe L1 (10 μ M) as a function of I⁻ concentration in 1,4-dioxane/H₂O (v/v, 99/1) solution; $\lambda_{ex}/\lambda_{em} = 315$ nm/415 nm.

Y = -1.793 X + 172.1, R = 0.9953, $LOD = 0.092 \mu M$.

Figure S25. None-linear plot of probeL1 (10 μ M) assuming a 1:1 stoichiometry for association between probe L1 and I⁻ in 1,4-dioxane/H₂O (v/v, 99/1) solution by fluorescence spectroscopy; $\lambda_{ex}/\lambda_{em} = 315$ nm/415 nm.

The fluorescence spectrum association constants of I⁻ were calculated by nonlinear fitting using the following formula [Eq. (5)]:

$$\Delta I = \frac{\Delta a([\mathrm{H}]_0 + [\mathrm{G}]_0 + \frac{1}{K_a}) \pm \sqrt{\Delta a^2([\mathrm{H}]_0 + [\mathrm{G}]_0 + \frac{1}{K_a})^2 - 4\Delta a^2[\mathrm{H}]_0[\mathrm{G}]_0}}{2}$$
(5)

where ΔI is the change in the fluorescence intensity of the L1 upon gradual addition of the I⁻, and $\Delta \alpha$ refers to the different constant of the free host and the interaction complex. The total concentrations of host and guest are denoted by [H]₀ and [G]₀, respectively¹.

 $R = 0.9910, K = 1.04 \times 10^4 (\pm 0.033) M^{-1}$

	Our work	Ref. [2]	Ref. [3]	Ref. [4]	Ref. [5]
Detection ions	Al ³⁺ , I ⁻	Al ³⁺	Al ³⁺	Al ³⁺	Al ³⁺
Detection	Al ³⁺ : CH ₃ CN/H ₂ O	C ₂ H ₅ OH/H ₂ O	CH ₃ OH/H ₂ O	C ₂ H ₅ OH/	C ₂ H ₅ OH
solvent (v/v)	(98/2)	(9/1)	(1/1)	H ₂ O(95/5)	
	I-: 1,4-				
	dioxane/H ₂ O				
$\mathbf{V}_{i=1}^{i=1}$	(99/1)	95.2	70.2	NTA	02.1
Y leid (%)	/0.3 A 1 ³⁺ 0.20	85.2 NA	/0.2	NA 0.102	93.1 NA
vield	AF 0.39	NA	0.070	0.102	MA
Detection	Al ³⁺ 0.073	1.04	0.39	NA	0.2
limit (µM)	I ⁻ 0.46				
Detection	Al ³⁺ : Ratiometric	Ratiometric	Single	Single	Single
Method	fluorescence	fluorescence	wavelength	wavelength	wavelength
	Stoke's shift (345	Stoke's shift (143	Stoke's shift	Stoke's	Stoke's shift
	nm);	nm)	(72 nm);	shift (65	(57 nm);
	FRET		ESIPT	nm);	PET
	I: Fluorescence			PET	
	quenching				
	PET				
Application	PC3 Cells	Test strips	HeLa cells	NA	NA
	Ref. [6]	Ref.[7]	Ref.[8]		
Detection ions	Al ³⁺ , F ⁻	Al ³⁺	Al ³⁺		
Detection	DMSO	CH ₃ CN	C ₂ H ₅ OH		
solvent (v/v)					
Yield (%)	85.0	86.1	53		
Quantum	Al ³⁺ : 0.0198	NA	NA		
yield	F-: 0.0182				
Detection	Al ³⁺ : 0.41	0.42	0.22		
limit(µM)	F ⁻ : 14.36				
Detection	Single wavelength	Ratiometric	Single		
Method	Al ³⁺ : ICT	fluorescence	wavelength;		
	F: hydrogen	Stoke's shift (/5	PEI		
	oonaea	ши), ІСТ			
Application	HeLa cells	HeLa cells	NA		
approation		110120 00115	1 1/2 1		

Table S1.	Comparison	of probe]	L1 and other	probes in	literature
-----------	------------	------------	--------------	-----------	------------

[2] Y. Zhang , Y. Fang , N. Z. Xu, M. Q. Zhang, G. Z. Wu and C. Yao, *Chinese Chemical Letters.*, 2016, 27, 1673–1678.

- [3] D. Sarkar, A. Pramanik, S. Biswas, P. Karmakar and T. K. Mondal, *RSC Adv.*, 2014, 4, 30666-30672.
- [4] S. Samanta, B. Nath and J. B. Baruah, Inorg. Chem. Commun., 2012, 22, 98-100.
- [5] J. C. Qin, X. Y. Cheng, K. C. Yu, R. Fang, M. F. Wang and Z. Y. Yang 2015, 7, 6799-6803.
- [6] H. Y. Jeong, S. Y. Lee, J. Han, M. H. Lim and C. Kim, *Tetrahedron.*, 2017, 73, 2690-2697.
- [7] R. Patil, A. Moirangthem, R. Butcher, N. Singh, A. Basu, K. Tayade, U. Fegade, D.
- Hundiwale and A. Kuwar, Dalton Trans., 2014, 43, 2895-2899.
- [8] J. W. Jeong, B. A. Rao and Y. A. Son, Sensor. Actuators B: Chem., 2015, 208, 75-84.