## **Electronic Supporting Information for**

## Solvent-sensitive Signs and Magnitudes of Circularly Polarised Luminescence and Circular Dichroim Spectra: Probing Two Phenanthrenes as Emitters Endowed with BINOL Derivatives

Shoma Nakanishi, a Nobuyuki Hara, a Natsuki Kuroda, a Nobuo Tajima, b

Michiya Fujikic\* and Yoshitane Imaia\*

 <sup>a</sup> Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
<sup>b</sup> Computational Materials Science Center, National Institute for Materials Science 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan.
<sup>c</sup> Graduate School of Materials Science, Nara Institute of Science and Technology, Takayama, Ikoma, Nara 630-0192, Japan.
Correspondence to: (Y.I.) y-imai@apch.kindai.ac.jp. (M.F.) fujikim@ms.naist.jp.

## Table of contents

| Fig. S1 Simulated CD spectra of (R)-2a in MeOH and in vacuo using TD-DFT | S3 |
|--------------------------------------------------------------------------|----|
| Fig. S2 CPL and PL spectra of (R)-2c in MeOH                             | S4 |
| Fig. S3 CPL and PL spectra of (R)-2d in DMF                              | S4 |
| Fig. S4 CPL and PL spectra of (R)-2a in co-solvents                      | S5 |
| Fig. S5 CD and UV absorption spectra of (R)-2a in co-solvents            | S6 |



**Fig. S1**. CD spectra of (*R*)-**2a** calculated with or without solvent effect, using the methods of calculations for obtaining Fig. 6. MeOH/vacuo (black line) means the CD spectrum is simulated with the solvent effect of MeOH, and this calculation uses the gas phase geometry. MeOH/MeOH (red line) and vacuo/vacuo (green line) means the CD spectra are simulated with or without MeOH solvent effect, respectively, with the molecular geometries determined for the respective media.



**Fig. S2**. CPL (upper blue plot) and PL (lower red plot) spectra of (*R*)-**2c** in MeOH.  $[Conc]_0 = 1.0 \times 10^{-4} \text{ M}$ .  $\lambda_{ex} = 300 \text{ nm}$ . Path length = 10 mm. The  $g_{em}$  value is 1.6 × 10<sup>-3</sup> at 361 nm.



**Fig. S3**. CPL (upper blue plot) and PL (lower red plot) spectra of (*R*)-**2d** in DMF. [Conc]<sub>0</sub> =  $1.0 \times 10^{-4}$  M.  $\lambda_{ex}$  = 300 nm. Path length = 10 mm. The  $g_{em}$  value is  $1.9 \times 10^{-3}$  at 361 nm.



**Fig. S4**. CPL (upper blue plot) and PL (lower red plot) spectra of (*R*)-**2a** in (a) CHCl<sub>3</sub>/DMF (2/1, v/v), (b) CHCl<sub>3</sub>/DMF (1/1, v/v), and (c) CHCl<sub>3</sub>/DMF (1/2, v/v). [Conc]<sub>0</sub> =  $1.0 \times 10^{-4}$  M.  $\lambda_{ex}$  = 300 nm. Path length = 10 mm. The  $g_{em}$  value is -1.0  $\times 10^{-4}$  at 358 nm for CHCl<sub>3</sub>/DMF (2/1, v/v), -0.2  $\times 10^{-4}$  at 362 nm for CHCl<sub>3</sub>/DMF (1/1, v/v), and -1.5  $\times 10^{-4}$  at 356 nm for CHCl<sub>3</sub>/DMF (1/2, v/v).



**Fig. S5**. CD (upper plot) and UV absorption (lower plot) spectra of (*R*)-**2a** in (a) CHCl<sub>3</sub>/DMF (2/1, v/v), (b) CHCl<sub>3</sub>/DMF (1/1, v/v), and (c) CHCl<sub>3</sub>/DMF (1/2, v/v). Conc. =  $1.0 \times 10^{-4}$  M. Path length = 1 mm.