Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting Information for

Regioselective Synthesis of 2,3'-Biindoles Mediated by an NBS-

Promoted Homo-coupling of Indoles

 Panpan Huang,^a Xiangjun Peng,^b Dan Hu,^a Huiwu Liao,^a Shaobin Tang,^{*a} Liangxian Liu^{*a}
^a Department of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, P. R. China
^b School of Pharmaceutical Science, Gannan Medical University, Ganzhou, Jiangxi 341000, P. R. China

E-mail: lxliu@xmu.edu.cn

CONTENTS

1. General Methods	2
2. Table S1 Condition Optimization for the Synthesis of 10	2
3. General Procedure and Spectroscopic Data of the Products 6, 9, 10 and 11	2
4. Copies of ¹ H and ¹³ C Spectra	11
5. Copies of HRESIMS Spectra for 6n	37
6. X-ray Data of Compound 10b	38
7. References	38

1. General Methods

¹H and ¹³C NMR spectra were recorded on a Bruker spectrometers at 400 and 100 MHz, respectively. Mass spectra were recorded with Bruker Dalton Esquire 3000 plus LC-MS apparatus. Elemental analysis were carried out on a Perkin-Elmer 240B instrument. HRFABMS spectra were recorded on a FTMS apparatus. Silica gel (300-400 mesh) was used for flash column chromatography, eluting (unless otherwise stated) with an ethyl acetate/petroleum ether (PE) (60-90 °C) mixture.

2. Table S1 Condition optimization of the NBS-promoted homo-coupling of indoles for the synthesis of 2-(5,12-dihydroindolo[3,2-*a*]carbazol-6-yl)anilines 10.^{*a*}

entry	catalyst (0.2 equiv)	solvent	temp. (°C)	yield (%) ^b
1	CuI	CHCl ₃	15	trace
2	CuSO ₄	CHCl ₃	15	trace
3	$Pd(OAc)_2$	CHCl ₃	15	10
4	NiSO ₄	CHCl ₃	15	13
5	FeCl ₂	CHCl ₃	15	trace
6	FeCl ₃	CHCl ₃	15	trace
7	-	DMSO	15	trace
8	-	DMF	15	trace
9	-	DCE	15	15
10	-	CH ₃ CO ₂ C ₂ H ₅	15	27
11	-	H ₂ O	15	trace
12	-	CH ₃ CN	15	35
13	-	Pyridine	15	trace
14	-	EtOH	15	trace
15	-	CHCl ₃	15	45
16	-	CH_2Cl_2	15	38
17	-	CHCl ₃	5	5
18	-	CHCl ₃	15	8
19	-	CHCl ₃	25	35
20	-	CHCl ₃	35	61
21	-	CHCl ₃	40	36
22	-	CHCl ₃	45	20

^{*a*} Conditions: **5** (0.3 mmol) and NBS (0.24 mmol), in CHCl₃ (1 mL), 12 h, under open air. ^{*b*}Isolated yield.

3.1 General Procedure for the Preparation of 6.

To a solution of indole (0.3 mmol) in CHCl₃ (1 mL) was added NBS (0.24 mmol) under an air atmosphere and the mixture was stirred at 15 °C for 6 h. The reaction mixture was concentrated

under reduced pressure. The residue was purified by flash chromatography on silica gel (eluent: EtOAc/PE = 1:1) to yield the corresponding product **6**.

3.2 Spectroscopic Data of the Products 6 and 9.

1*H*,1'*H*-2,3'-Biindole (**6a**)

Yellow amorphous solid. ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.38 (s, 1H), 11.18 (s, 1H), 8.00 (d, J = 7.5 Hz, 1H), 7.86 (d, J = 2.6 Hz, 1H), 7.48 (dd, J = 11.8, 7.6 Hz, 2H), 7.35 (d, J = 7.8 Hz, 1H), 7.19 – 7.14 (m, 2H), 7.02 (dd, J = 11.0, 4.0 Hz, 1H), 6.96 (dd, J = 10.8, 3.9 Hz, 1H), 6.75 (d, J = 1.5 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆): δ 137.1, 136.5, 134.6, 129.7, 125.1, 123.6, 122.2, 120.7, 120.2, 120.1, 119.5, 119.3, 112.4, 110.9, 108.9, 97.3. MS (ESI): 233 (M+H⁺, 100). These assignments matched with those previously published.¹

5,5'-Difluoro-1*H*,1'*H*-2,3'-biindole (**6b**)

Yellow amorphous solid. ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.56 (s, 1H), 11.31 (s, 1H), 7.94 (d, J = 2.6 Hz, 1H), 7.71 (dd, J = 10.3, 2.3 Hz, 1H), 7.48 (dd, J = 8.8, 4.7 Hz, 1H), 7.32 (dd, J = 8.6, 4.6 Hz, 1H), 7.22 (dd, J = 10.0, 2.4 Hz, 1H), 7.04 (dt, J = 2.4, 9.1 Hz, 1H), 6.85 (dt, J = 2.5, 9.4 Hz, 1H), 6.75 (d, J = 1.4 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆): δ 158.0 (d, J = 231.4 Hz), 157.5 (d, J = 230.5 Hz), 136.1, 133.8, 133.2, 130.0 (d, J = 10.5 Hz), 125.9, 125.1 (d, J = 10.2 Hz), 113.5 (d, J = 9.9 Hz), 111.6 (d, J = 9.9 Hz), 110.5 (d, J = 26.0 Hz), 108.9 (d, J = 4.6 Hz), 108.5 (d, J = 25.8 Hz), 104.8 (d, J = 24.0 Hz), 104.2 (d, J = 23.2 Hz), 97.6 (d, J = 4.5 Hz). MS (ESI): 269 (M+H⁺, 100). Anal calcd for C₁₆H₁₀F₂N₂: C, 71.64; H, 3.76; N, 10.44. Found C, 71.37; H, 4.13; N, 10.18.

5,5'-Dichloro-1*H*,1'*H*-2,3'-biindole (6c)

Yellow amorphous solid.¹H NMR (400 MHz, DMSO- d_6): δ 11.65 (s, 1H), 11.43 (s, 1H), 8.08-7.81 (m, 2H), 7.49 (d, J = 10.7 Hz, 2H), 7.35 (d, J = 8.5 Hz, 1H), 7.19 (dd, J = 8.6, 1.4 Hz, 1H), 7.02 (dd, J = 8.5, 1.6 Hz, 1H), 6.76 (s, 1H). ¹³C NMR (101 MHz, DMSO- d_6): δ 137.6, 137.0, 135.1, 128.4, 127.0, 125.4, 125.0, 123.8, 121.4, 120.8, 120.6, 119.7, 112.1, 110.5, 108.8, 97.7. MS (ESI): 301 (M+H⁺, 100), 303 (M+H⁺, 30). These assignments matched with those previously published.²

5,5'-Dibromo-1*H*,1'*H*-2,3'-biindole (**6d**)

Yellow amorphous solid. ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.66 (s, 1H), 11.43 (s, 1H), 8.10 (s, 1H), 7.92 (d, *J* = 2.6 Hz, 1H), 7.66 (d, *J* = 1.7 Hz, 1H), 7.45 (d, *J* = 8.6 Hz, 1H), 7.38-7.26 (m, 2H), 7.13 (dd, *J* = 8.5, 1.9 Hz, 1H), 6.75 (d, *J* = 1.2 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆): δ 135.9, 135.4, 135.3, 131.6, 126.7, 125.7, 124.9, 123.3, 122.1, 121.8, 114.5, 113.1, 112.9, 111.9, 108.2, 97.3. MS (ESI): 391 (M+H⁺, 100). These assignments matched with those previously published.² 5,5'-Diiodo-1*H*,1'*H*-2,3'-biindole (**6e**)

Yellow amorphous solid. ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.64 (s, 1H), 11.42 (s, 1H), 8.26 (s, 1H), 7.86 (d, *J* = 7.9 Hz, 2H), 7.45 (d, *J* = 8.5 Hz, 1H), 7.33 (d, *J* = 8.5 Hz, 1H), 7.28 (d, *J* = 8.3 Hz, 1H), 7.20 (d, *J* = 8.3 Hz, 1H), 6.71 (s, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆): δ 136.2, 135.7, 134.9, 132.5, 130.4, 128.8, 128.2, 128.1, 127.6, 125.2, 115.0, 113.4, 107.8, 96.9, 84.4, 83.0. MS (ESI): 485 (M+H⁺, 100). Anal calcd for C₁₆H₁₀I₂N₂: C, 39.70; H, 2.08; N, 5.79. Found C, 40.05; H, 2.30; N, 5.48.

5,5'-Dimethyl-1H,1'H-2,3'-biindole (6f)

Yellow amorphous solid. ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.21 (s, 1H), 10.99 (s, 1H), 7.77 (d, J = 2.7 Hz, 2H), 7.33 (d, J = 8.2 Hz, 1H), 7.26 (s, 1H), 7.21 (d, J = 8.1 Hz, 1H), 6.99 (dd, J = 8.3, 1.1 Hz, 1H), 6.83 (dd, J = 8.2, 1.2 Hz, 1H), 6.64 (d, J = 1.4 Hz, 1H), 2.45 (s, 3H), 2.36 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆): δ 135.5, 134.9, 134.8, 130.0, 128.8, 127.5, 125.4, 123.7, 123.5, 122.2, 119.7, 119.2, 112.0, 110.5, 108.6, 96.8, 21.8, 21.7. MS (ESI): 261 (M+H⁺, 100). Anal calcd for C₁₈H₁₆N₂: C, 83.04; H, 6.19; N, 10.76. Found C, 82.87; H, 6.01; N, 10.83.

5,5'-Dimethoxy-1H,1'H-2,3'-biindole (6g)

Yellow amorphous solid. ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.22 (s, 1H), 10.97 (s, 1H), 7.76 (d, J = 2.7 Hz, 1H), 7.36 (dd, J = 14.7, 5.6 Hz, 2H), 7.21 (d, J = 8.7 Hz, 1H), 7.01 (d, J = 2.4 Hz, 1H), 6.82 (dd, J = 8.8, 2.3 Hz, 1H), 6.69-6.61 (m, 2H), 3.83 (s, 3H), 3.74 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆): δ 154.5, 153.8, 135.4, 132.2, 131.6, 130.2, 125.5, 124.1, 113.1, 112.3, 111.4, 110.3,

110.2, 108.9, 101.9, 97.1, 60.2, 55.9. MS (ESI): 293 (M+H⁺, 100). These assignments matched with those previously published.²

5,5'-Bis(benzyloxy)-1*H*,1'*H*-2,3'-biindole (**6h**)

Yellow amorphous solid. ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.25 (d, *J* = 2.0 Hz, 1H), 11.01 (s, 1H), 7.80 (d, *J* = 2.6 Hz, 1H), 7.56-7.50 (m, 3H), 7.47 (d, *J* = 7.2 Hz, 2H), 7.39 (dd, *J* = 14.2, 7.5 Hz, 5H), 7.32 (dd, *J* = 7.3, 4.6 Hz, 2H), 7.25 (d, *J* = 8.6 Hz, 1H), 7.10 (d, *J* = 2.2 Hz, 1H), 6.92 (dd, *J* = 8.8, 2.3 Hz, 1H), 6.76 (dd, *J* = 8.6, 2.4 Hz, 1H), 6.64 (d, *J* = 1.1 Hz, 1H), 5.19 (s, 2H), 5.10 (s, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆): δ 153.6, 152.9, 138.5, 138.3, 135.5, 132.4, 131.8, 130.2, 129.0, 128.9, 128.8, 128.7, 128.2, 128.1, 128.0, 127.9, 125.5, 124.2, 113.1, 112.9, 111.4, 111.1, 108.9, 103.8, 103.5, 97.2, 70.6, 70.4. MS (ESI): 445 (M+H⁺, 100). Anal calcd for C₃₀H₂₄N₂O₂: C, 81.06; H, 5.44; N, 6.30. Found C, 80.73; H, 5.46; N, 6.51.

1*H*,1'*H*-[3, 3'-Biindole]-5,5'-dicarboxylic acid (6i)

Yellow amorphous solid. ¹H NMR (400 MHz, DMSO-*d*₆): δ 12.50 (s, 2H), 11.81 (d, J = 2.2 Hz, 1H), 11.68 (d, J = 1.2 Hz, 1H), 8.64 (s, 1H), 8.27-8.24 (m, 1H), 7.99 (d, J = 2.6 Hz, 1H), 7.83 (dd, J = 8.6, 1.5 Hz, 1H), 7.71 (dd, J = 8.5, 1.6 Hz, 1H), 7.55 (d, J = 8.6 Hz, 1H), 7.43 (d, J = 8.5 Hz, 1H), 6.89 (d, J = 1.4 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆): δ 168.9, 168.7, 139.6, 139.2, 135.4, 129.2, 125.6, 124.7, 123.6, 123.0, 122.6, 122.5, 122.4, 122.0, 112.3, 110.7, 109.7, 98.8. MS (ESI): 321 (M+H⁺, 100). Anal calcd for C₁₈H₁₂N₂O₄: C, 67.50; H, 3.78; N, 8.75. Found C, 67.84; H, 3.60; N, 9.02.

6,6'-Difluoro-1H,1'H-2,3'-biindole (6j)

Yellow amorphous solid. ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.46 (s, 1H), 11.34 (s, 1H), 7.96 (dd, J = 8.6, 5.4 Hz, 1H), 7.84 (d, J = 2.3 Hz, 1H), 7.47 (dd, J = 8.4, 5.5 Hz, 1H), 7.25 (dd, J = 9.9, 2.1 Hz, 1H), 7.10 (d, J = 10.0 Hz, 1H), 7.03-6.97 (m, 1H), 6.83 (dd, J = 13.2, 5.3 Hz, 1H), 6.77 (s, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆): δ 159.5 (d, J = 235.4 Hz), 159.0 (d, J = 233.3 Hz), 137.1 (d, J = 12.6 Hz), 136.4 (d, J = 12.7 Hz), 134.8 (d, J = 3.5 Hz), 126.4, 124.2 (d, J = 3.1 Hz), 121.9, 121.1 (d, J = 10.2 Hz), 120.4 (d, J = 10.0 Hz), 108.9, 108.7 (d, J = 24.3 Hz), 107.5 (d, J = 24.0 Hz), 98.4 (d, J = 25.5 Hz), 97.4, 97.1 (d, J = 25.6 Hz). MS (ESI): 269 (M+H⁺, 100). Anal calcd for C₁₆H₁₀F₂N₂: C, 71.64; H, 3.76; N, 10.44. Found C, 71.79; H, 3.92; N, 10.25. 6,6'-Dichloro-1*H*,1'*H*-2,3'-biindole (**6**k)

Yellow amorphous solid. ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.56 (s, 1H), 11.41 (s, 1H), 7.98 (d, J = 8.6 Hz, 1H), 7.90 (d, J = 2.5 Hz, 1H), 7.51 (dd, J = 14.9, 5.0 Hz, 2H), 7.35 (s, 1H), 7.16 (dd, J = 8.4, 1.5 Hz, 1H), 6.98 (dd, J = 8.3, 1.6 Hz, 1H), 6.79 (s, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆): δ 137. 5, 137.0, 135.0, 128.4, 127.0, 125.4, 125.0, 123.8, 121.4, 120.8, 120.6, 119.6, 112.1, 110.5, 108.8, 97.7. MS (ESI): 301 (M+H⁺, 100), 303 (M+H⁺, 30). Anal calcd for C₁₆H₁₀Cl₂N₂: C, 63.81; H, 3.35; N, 9.30. Found C, 64.20; H, 3.48; N, 9.17.

6,6'-Dimethyl-1H,1'H-2,3'-biindole (6l)

Yellow amorphous solid. ¹H NMR (400 MHz, DMSO- d_6): δ 11.18 (s, 1H), 10.98 (s, 1H), 7.84 (d, J = 8.2 Hz, 1H), 7.73 (d, J = 2.6 Hz, 1H), 7.35 (d, J = 7.9 Hz, 1H), 7.23 (s, 1H), 7.12 (s, 1H), 6.96 (dd, J = 8.2, 1.0 Hz, 1H), 6.78 (dd, J = 8.0, 0.9 Hz, 1H), 6.65 (d, J = 1.4 Hz, 1H), 2.42 (s, 3H), 2.39 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6): δ 137.6, 136.9, 134.1, 131.2, 129.6, 127.6, 123.1, 122.6, 121.9, 120.9, 119.8, 119.2, 112.1, 110.8, 109.0, 97.0, 22.0, 21.8. MS (ESI): 261 (M+H⁺, 100). Anal calcd for C₁₈H₁₆N₂: C, 83.04; H, 6.19; N, 10.76. Found C, 82.96; H, 5.82; N, 10.49. 7,7'-Dimethyl-1H,1'H-2,3'-biindole (**6m**)

Yellow amorphous solid. ¹H NMR (400 MHz, DMSO- d_6): δ 11.36 (s, 1H), 10.78 (s, 1H), 8.03 (d, J = 2.7 Hz, 1H), 7.81 (d, J = 7.9 Hz, 1H), 7.32 (d, J = 7.6 Hz, 1H), 7.05 (t, J = 7.8 Hz, 1H), 6.98 (d, J = 7.0 Hz, 1H), 6.87 (t, J = 7.2 Hz, 1H), 6.81 (d, J = 7.0 Hz, 1H), 6.75 (t, J = 2.0 Hz, 1H), 2.51 (s, 3H), 2.49 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6): δ 136.6, 135.8, 134.6, 129.4, 125.0, 123.8, 122.6, 121.6, 121.4, 120.3, 120.1, 119.5, 117.8, 117.2, 109.3, 98.0, 17.6, 17.2. MS (ESI): 261 (M+H⁺, 100). These assignments matched with those previously published.² 7,7'-Dimethoxy-1*H*,1'*H*-2,3'-biindole (**6n**)

Yellow amorphous solid. ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.41 (s, 1H), 11.13 (s, 1H), 8.00 (s, 1H), 7.55 (d, *J* = 8.0 Hz, 1H), 7.12-7.00 (m, 2H), 6.90 – 6.83 (m, 1H), 6.72 (d, *J* = 6.8 Hz, 2H), 6.60 (d, *J* = 7.5 Hz, 1H), 3.92 (s, 6H). ¹³C NMR (101 MHz, DMSO-*d*₆): δ 146.8, 146.1, 134.6, 131.2, 127.2, 126.8, 126.2, 123.7, 120.8, 119.8, 112.9, 112.7, 109.2, 102.6, 101.9, 98.0, 55.7, 55.5. HRESIMS calcd for [C₁₈H₁₆N₂O₂ + H]⁺ 293.12900, found 293.12859.

Yellow amorphous solid. ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.35 (s, 1H), 10.76 (s, 1H), 8.02 (d, J = 2.5 Hz, 1H), 7.80 (d, J = 7.9 Hz, 1H), 7.32 (d, J = 7.5 Hz, 1H), 7.07 (t, J = 7.5 Hz, 1H), 7.00 (d, J = 7.0 Hz, 1H), 6.95-6.79 (m, 2H), 6.74 (d, J = 1.6 Hz, 1H), 2.94 (q, J = 7.5 Hz, 2H), 2.90 (q, J = 7.5 Hz, 2H), 1.31 (t, J = 7.5 Hz, 3H), 1.30 (t, J = 7.5 Hz, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆): δ 135.8, 135.1, 134.6, 129.6, 127.8, 126.6, 125.3, 123.8, 120.8, 120.5, 119.65 (d, J = 8.4 Hz), 117.8, 117.2, 109.3, 98.1, 24.2, 24.1, 15.1, 14.9. MS (ESI): 289 (M+H⁺, 100). Anal calcd for C₂₀H₂₀N₂: C, 83.30; H, 6.99; N, 9.71. Found C, 83.04; H, 6.83; N, 9.39. 4,4'-Dimethyl-1*H*,1'*H*-2,3'-biindole (**6p**)

Yellow amorphous solid. ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.31 (s, 1H), 11.09 (s, 1H), 7.44 (d, J = 2.5 Hz, 1H), 7.28 (d, J = 8.1 Hz, 1H), 7.16 (d, J = 8.1 Hz, 1H), 7.07-6.99 (m, 1H), 6.97-6.88 (m, 1H), 6.78 (dd, J = 9.5, 7.2 Hz, 2H), 6.40 (d, J = 1.5 Hz, 1H), 2.47 (s, 3H), 2.32 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆): δ 136.8, 136.3, 134.1, 130.3, 128.8, 128.4, 125.9, 125.7, 122.0, 121.2, 120.8, 119.3, 110.1, 109.4, 108.9, 100.4, 20.3, 19.1. MS (ESI): 261 (M+H⁺, 100). Anal calcd for C₁₈H₁₆N₂: C, 83.04; H, 6.19; N, 10.76. Found C, 82.87; H, 5.95; N, 10.38.

4,4'-Bis(benzyloxy)- 1H,1'H-2,3'-biindole (6q)

Yellow amorphous solid. ¹H NMR (400 MHz, DMSO- d_6) δ 11.53 (d, J = 2.2 Hz, 1H), 10.65 (d, J = 1.5 Hz, 1H), 7.84 (d, J = 2.6 Hz, 1H), 7.58-7.55 (m, 2H), 7.48 (d, J = 7.2 Hz, 2H), 7.40-7.33 (m, 5H), 7.10 (d, J = 4.1 Hz, 2H), 6.81-6.76 (m, 4H), 6.49 (d, J = 7.8 Hz, 1H), 6.32 (d, J = 8.0 Hz, 1H), 5.27 (s, 2H), 5.18 (s, 2H), 3.37 (s, 2H). ¹³C NMR (101 MHz, DMSO- d_6): δ 152.5, 151.4, 139.0, 138.3, 137.4, 137.0, 133.3, 129.1, 129.0, 128.8, 128.6, 128.0, 127.8, 124.2, 122.8, 120.8, 120.1, 114.8, 108.7, 106.4, 104.8, 101.9, 101.2, 95.3, 70.6, 69.5. MS (ESI): 445 (M+H⁺, 100). Anal calcd for C₃₀H₂₄N₂O₂: C, 81.06; H, 5.44; N, 6.30. Found C, 80.91; H, 5.28; N, 6.03.

1,1'-Dimethyl-1*H*,1'*H*-2,3'-biindole (**6r**)

Yellow amorphous solid. ¹H NMR (400 MHz, DMSO- d_6): δ 7.71 (s, 1H), 7.68 (s, 1H), 7.53 (s, 1H), 7.44 (s, 1H), 7.24 (d, J = 7.3 Hz, 2H), 7.14 (d, J = 4.6 Hz, 2H), 7.04 (t, J = 7.4 Hz, 2H), 3.87

(s, 3H), 3.76 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6): δ 138.0, 137.2, 135.4, 129.7, 128.4, 127.3, 122.4, 121.0, 120.5, 120.0, 119.9, 119.7, 110.6, 110.1, 106.2, 100.6, 33.1, 31.3. MS (ESI): 261 (M+H⁺, 100). Anal calcd for C₁₈H₁₆N₂: C, 83.04; H, 6.19; N, 10.76. Found C, 82.76; H, 5.84; N, 10.59.

3-Methylindolin-2-one (9)

White amorphous solid. ¹H NMR (400 MHz, DMSO- d_{δ}): δ 10.31 (s, 1H), 7.22 (d, J = 7.4 Hz, 1H), 7.15 (t, J = 7.7 Hz, 1H), 6.93 (t, J = 7.4 Hz, 1H), 6.81 (d, J = 7.7 Hz, 1H), 3.38 (q, J = 7.6 Hz, 1H), 1.30 (d, J = 7.6 Hz, 3H). ¹³C NMR (101 MHz, DMSO- d_{δ}): δ 180.1, 142.8, 131.8, 128.0, 124.1, 121.7, 109.6, 40.6, 15.5. MS (ESI): 148 (M+H⁺, 100).

3.3 General Procedure for the Preparation of 10.

To a solution of indole (0.3 mmol) in CH₃CN (1 mL) was added NBS (0.24 mmol) under an air atmosphere and the mixture was stirred at room temperature for 12 h. The reaction mixture was concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluent: EtOAc/PE = 1:2) to yield the corresponding product **10**.

3.4 Spectroscopic Data of the Products 10

2-(5,12-Dihydroindolo[3,2-*a*]carbazol-6-yl)aniline (10a)

Yellow amorphous solid. ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.74 (s, 1H), 10.81 (s, 1H), 8.66 (d, J = 7.8 Hz, 1H), 8.11 (d, J = 7.7 Hz, 1H), 8.02 (s, 1H), 7.62 (dd, J = 14.1, 8.0 Hz, 2H), 7.32-7.14 (m, 6H), 6.90 (dd, J = 8.1, 1.0 Hz, 1H), 6.75 (dt, J = 1.2, 7.4 Hz,1H), 4.64 (s, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆): δ 149.5, 139.9, 139.6, 137.7, 133.7, 131.5, 128.6, 124.5, 124.2, 124.1, 123.9, 122.0, 121.5, 119.5, 119.4, 119.3, 119.1, 117.1, 115.7, 115.6, 115.4, 111.9, 111.5, 107.1. MS (ESI): 348 (M+H⁺, 100). These assignments matched with those previously published.³ 3-Chloro-2-(1,8-dichloro-5,12-dihydroindolo[3,2-*a*]carbazol-6-yl)aniline (**10b**)

Yellow amorphous solid. ¹H NMR (400 MHz, DMSO- d_6): δ 11.39 (s, 1H), 10.93 (s, 1H), 8.38 (s, 1H), 7.92 (d, J = 7.7 Hz, 1H), 7.55 (d, J = 8.0 Hz, 1H), 7.44-7.26 (m, 5H), 7.25-7.15 (m, 2H), 4.64

(s, 2H). ¹³C NMR (101 MHz, DMSO- d_6): δ 149.4, 141.1, 140.4, 138.7, 135.0, 133.8, 130.1, 125.9,125.8, 125.1, 124.8, 122.9, 121.0, 120.5, 120.4, 120.3, 119.8, 117.0, 115.2, 113.8, 113.0, 111.7, 111.1, 105.5. MS (ESI): 450 (M+H⁺, 100). Anal calcd for C₂₄H₁₄Cl₃N₃: C, 63.95; H, 3.13; N, 9.32. Found C, 64.07; H, 3.28; N, 9.01.

2-Chloro-6-(4,11-dichloro-5,12-dihydroindolo[3,2-*a*]carbazol-6-yl)aniline (10c)

Yellow amorphous solid. ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.74 (s, 1H), 10.94 (s, 1H), 9.05 (d, J = 7.8 Hz, 1H), 8.20-8.10 (m, 2H), 7.48 (dd, J = 7.7, 0.8 Hz, 1H), 7.42 (dd, J = 7.7, 0.9 Hz, 1H), 7.36 (dd, J = 8.0, 1.4 Hz, 1H), 7.31 (t, J = 7.8 Hz, 1H), 7.24-7.17 (m, 2H), 6.77 (t, J = 7.8 Hz, 1H), 4.69 (s, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆): δ 142.9, 138.6, 136.9, 136.4, 134.3, 130.7, 129.0, 126.5, 125.9, 124.8, 124.3, 124.1, 121.8, 121.1, 121.0, 120.3, 118.8, 118.5, 117.7, 116.9, 116.7, 116.1, 115.7, 108.4. MS (ESI): 450 (M+H⁺, 100). Anal calcd for C₂₄H₁₄Cl₃N₃: C, 63.95; H, 3.13; N, 9.32. Found C, 63.80; H, 3.32; N, 8.96.

2-Bromo-6-(4,11-dibromo-5,12-dihydroindolo[3,2-*a*]carbazol-6-yl)aniline (10d)

Yellow amorphous solid. ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.54 (s, 1H), 10.53 (s, 1H), 9.07 (d, J = 7.8 Hz, 1H), 8.43-7.94 (m, 2H), 7.63 (d, J = 7.7 Hz, 1H), 7.60-7.47 (m, 2H), 7.33-7.19 (m, 2H), 7.15 (t, J = 7.7 Hz, 1H), 6.72 (t, J = 7.7 Hz, 1H), 4.70 (s, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆): δ 143.7, 138.5, 138.3, 137.8, 134.4, 132.2, 131.4, 127.9, 127.5, 126.4, 125.9, 123.9, 122.5, 121.5, 121.2, 120.8, 119.0, 118.5, 117.2, 116.9, 109.5, 108.6, 104.3, 103.9, 56.3, 56.1, 56.0. MS (ESI): 584 (M+H⁺, 100). Anal calcd for C₂₄H₁₄Br₃N₃: C, 49.35; H, 2.42; N, 7.19. Found C, 49.69; H, 2.16; N, 6.83.

2-(4,11-Dimethoxy-5,12-dihydroindolo[3,2-*a*]carbazol-6-yl)-6-methoxyaniline (10e)

Yellow amorphous solid. ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.40 (s, 1H), 10.39 (s, 1H), 8.14 (s, 1H), 7.77 (d, *J* = 7.8 Hz, 1H), 7.44 (d, *J* = 8.4 Hz, 1H), 7.16 (t, *J* = 7.8 Hz, 1H), 7.00-7.92 (m, 4H), 6.90 (dd, *J* = 7.8, 1.0 Hz, 1H), 6.78 (t, *J* = 7.8 Hz, 1H), 4.33 (s, 2H), 4.04 (s, 3H), 3.95 (s, 3H), 3.89 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆): δ 147.5, 146.1, 145.8, 137.7, 135.2, 131.9, 131.2, 128.0, 124.8, 124.3, 124.2, 124.1, 122.7, 121.3, 120.7, 117.4, 117.1, 117.0, 112.4, 110.2, 107.4, 106.6, 105.5, 104.0, 56.3, 56.1, 56.0. MS (ESI): 438 (M+H⁺, 100). Anal calcd for C₂₇H₂₃N₃O₃: C, 74.13; H, 5.30; N, 9.60. Found C, 73.85; H, 5.21; N, 9.29.

2-(Benzyloxy)-6-(4,11-bis(benzyloxy)-5,12-dihydroindolo[3,2-a]carbazol-6-yl)aniline (10f)

Yellow amorphous solid. ¹H NMR (400 MHz, DMSO- d_6): δ 11.50 (s, 1H), 11.15 (s, 1H), 8.12 (dd, J = 5.0, 2.6 Hz, 1H), 7.60-7.55 (m, 8H), 7.44-7.33 (m, 9H), 7.12 (t, J = 8.1 Hz, 1H), 7.06 (d, J = 8.1 Hz, 2H), 6.88-6.85 (m, 2H), 6.77 (d, J = 1.9 Hz, 1H), 6.67 (d, J = 7.8 Hz, 1H), 5.35-5.27 (m, 8H). ¹³C NMR (101 MHz, DMSO- d_6): δ 145.9, 145.8, 145.0, 144.6, 138.1, 137.8, 137.7, 137.6, 135.8, 134.7, 131.4, 128.9, 128.8, 128.3, 128.2, 128.1, 128.0, 127.9, 127.4, 127.0, 126.9, 126.5, 124.8, 124.2, 121.1, 120.8, 119.8, 113.1, 112.8, 109.2, 108.4, 104.9, 104.0, 103.4, 98.1, 97.6, 70.0, 69.7, 69.6. MS (ESI): 666 (M+H⁺, 100). Anal calcd for C₄₅H₃₅N₃O₃: C, 81.18; H, 5.30; N, 6.31. Found C, 80.83; H, 5.09; N, 6.12.

3.5 General Procedure for the Preparation of 11.

To a solution of indole (0.3 mmol) and morpholine (0.6 mmol) in CH_3CN (1 mL) was added NBS (0.24 mmol) under an air atmosphere and the mixture was stirred at room temperature for 3 h. The reaction mixture was concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluent: EtOAc/PE = 1:4) to yield the corresponding product **11**.

3.6 Spectroscopic Data of the Products 11.

3-Bromo-1*H*-indole (11)

White amorphous solid. ¹H NMR (400 MHz, DMSO- d_6): δ 11.45 (s, 1H), 7.52 (d, J = 2.6 Hz, 1H), 7.40 (t, J = 8.2 Hz, 2H), 7.18-7.14 (m, 1H), 7.11-7.07 (m, 1H). ¹H NMR (400 MHz, DMSO- d_6): δ 135.8, 126.5, 125.2, 122.6, 120.3, 118.3, 112.5, 89.1.

4. Copies of ¹H, ¹³C Spectra

¹H and ¹³C NMR Spectra for **6a**

¹H and ¹³C NMR Spectra for **6b**

¹H and ¹³C NMR Spectra for **6c**

 ^{1}H and ^{13}C NMR Spectra for **6f**

¹H and ¹³C NMR Spectra for **6g**

¹H and ¹³C NMR Spectra for **6h**

¹H and ¹³C NMR Spectra for 6i

¹H and ¹³C NMR Spectra for 6j

20

¹H and ¹³C NMR Spectra for **6**k

¹H and ¹³C NMR Spectra for 6l

¹H and ¹³C NMR Spectra for **6m**

¹H and ¹³C NMR Spectra for **6n**

¹H and ¹³C NMR Spectra for **60**

¹H and ¹³C NMR Spectra for 6p

¹H and ¹³C NMR Spectra for **6q**

¹H and ¹³C NMR Spectra for **6r**

¹H and ¹³C NMR Spectra for 9

¹H and ¹³C NMR Spectra for **10a**

¹H and ¹³C NMR Spectra for **10b**

¹H and ¹³C NMR Spectra for **10c**

¹H and ¹³C NMR Spectra for **10d**

¹H and ¹³C NMR Spectra for **10e**

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Spectra for 10f

¹H and ¹³C NMR Spectra for **11**

5. Copies of HRESIMS Spectra for 6n

6. X-ray Data of Compound 10b

Temp :

Figure 1. ORTEP representation of the molecular structure of **10b**. The data have been assigned the following deposition numbers, **CCDC** 1574092.

7. References

1. N. H. Ansari, C. A. Dacko, N. G. Akhmedov and B. C. G. Söderberg, J. Org. Chem. 2016, 81, 9337–9349.

- 2. T. Guo, S. L. Han, Y. C. Liu, Y. Liu and H. M. Liu, Tetrahedron Lett. 2016, 57, 1097-1099.
- 3. V. Bocchi and G. Palla, Tetrahedron 1986, 42, 5019-5024.