Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Differentiation of enantiomeric anions by NMR spectroscopy with chiral bisurea receptors

Suguru Ito,* Manami Okuno, and Masatoshi Asami*

Department of Advanced Materials Chemistry, Graduate School of Engineering Yokohama National University 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan *E-mail: suguru-ito@ynu.ac.jp, m-asami@ynu.ac.jp

Table of contents

1. Determination of association constants by NMR titration	S2
2. Distribution of guest molecules calculated from association constants	S37
3. Determination of the absolute configuration of chiral diol (<i>S</i> , <i>S</i>)- S1	S38
4. References	S39
¹ H and ¹³ C NMR spectra	S40

1. Determination of association constants by NMR titration

Association constants K_1 and K_2 of host-guest complexes is defined

H + G
$$\stackrel{K_1}{\longleftrightarrow}$$
 HG
HG + G $\stackrel{K_2}{\longleftrightarrow}$ HG₂
 $K_1 = \frac{[HG]}{[H][G]}$ $K_2 = \frac{[HG_2]}{[HG][G]}$

where [H], [G], [HG], and [HG₂] represent molar concentrations of the host, guest, 1:1 complex of host–guest, and 1:2 complex of host–guest, respectively.

The key equation for 1:2 equilibria is defined

$$\Delta \delta = \frac{\delta_{\Delta \text{HG}} \mathcal{K}_1[\text{G}] + \delta_{\Delta \text{HG}_2} \mathcal{K}_1 \mathcal{K}_2[\text{G}]^2}{1 + \mathcal{K}_1[\text{G}] + \mathcal{K}_1 \mathcal{K}_2[\text{G}]^2}$$

where $\Delta\delta$ represents the observed changes in the NMR chemical shift at a specific signal. $\Delta\delta_{HG}$ and $\Delta\delta_{HG2}$ are the variation of NMR chemical shift values of HG and HG₂ from that of the mixture of host and guest. The results were analysed by the nonlinear curve fitting program using Matlab.¹ Each titration experiments in *d*₆-acetone were carried out in triplicate. Titration experiments in CDCl₃ and *d*₆-DMSO were also carried out in duplicate and once, respectively. The results are summarized in Tables S1–S20 and Figs. S1–S10.

1st titration					
$[(R)-TBAM]_0 (mM)$	H _A (ppm)	H _B (ppm)	H _C (ppm)	H _D (ppm)	
0.00	5.453	7.512	7.260	7.997	
0.44	5.407	7.503	7.285	7.989	
0.88	5.345	7.481	7.299	7.967	
1.34	5.284	7.465	7.321	7.950	
1.78	5.226	7.449	7.343	7.935	
2.16	5.179	7.438	7.360	7.922	
2.59	5.123	7.423	7.381	7.908	
3.08	5.070	7.410	7.401	7.894	
3.54	5.019	7.398	7.420	7.882	
3.83	4.965	7.385	7.441	7.869	
4.42	4.912	7.375	7.459	7.857	
5.75	4.869	7.367	7.483	7.844	
6.78	4.884	7.373	7.493	7.841	
7.97	4.903	7.382	7.500	7.840	
9.28	4.924	7.391	7.507	7.839	
10.28	4.944	7.400	7.513	7.839	
11.18	4.964	7.408	7.518	7.839	
12.14	4.983	7.416	7.523	7.839	
13.44	5.001	7.423	7.528	7.839	
17.89	5.063	7.446	7.545	7.838	
22.29	5.112	7.470	7.559	7.839	
44.74	5.257	7.529	7.594	7.840	
67.74	5.329	7.561	7.612	7.843	
90.20	5.367	7.575	7.622	7.846	
109.29	5.394	7.585	7.628	7.849	

Table S1. Data tables for NMR titration of (R,R)-2a with (R)-TBAM in d_6 -acetone.

$[(R)-TBAM]_0 (mM)$	H _A (ppm)	H _B (ppm)	H _C (ppm)	H _D (ppm)
0.00	5.455	7.514	7.254	7.999
0.51	5.386	7.494	7.278	7.980
1.00	5.318	7.475	7.303	7.961
1.44	5.253	7.457	7.327	7.944
1.96	5.183	7.438	7.353	7.926
2.49	5.121	7.422	7.376	7.910
3.03	5.061	7.408	7.399	7.894
3.43	5.002	7.393	7.421	7.880
4.07	4.943	7.378	7.445	7.865
4.43	4.895	7.367	7.464	7.853
4.98	4.873	7.362	7.477	7.846
6.22	4.865	7.365	7.492	7.839
7.40	4.890	7.373	7.501	7.838
8.66	4.915	7.384	7.509	7.837
9.81	4.939	7.398	7.515	7.837
11.00	4.963	7.408	7.522	7.837
12.31	4.985	7.417	7.528	7.837
13.61	5.006	7.426	7.533	7.836
14.78	5.026	7.433	7.539	7.837
19.93	5.091	7.461	7.555	7.836
24.51	5.141	7.482	7.569	7.837
47.10	5.280	7.539	7.604	7.839
73.11	5.344	7.565	7.619	7.842
98.87	5.378	7.580	7.627	7.845
130.50	5.404	7.590	7.632	7.848

Ji u titi ation

[(R)-TBAM] ₀ (mM)	H _A (ppm)	H _B (ppm)	H _C (ppm)	H _D (ppm)
0.00	5.454	7.514	7.252	7.999
0.48	5.395	7.496	7.274	7.982
0.98	5.322	7.475	7.300	7.962
1.49	5.253	7.457	7.325	7.944
1.97	5.188	7.439	7.349	7.927
2.42	5.125	7.423	7.373	7.911
2.94	5.060	7.407	7.397	7.894
3.49	5.000	7.391	7.420	7.880
3.79	4.943	7.378	7.443	7.866
4.46	4.894	7.367	7.463	7.854
4.99	4.871	7.361	7.478	7.845
6.11	4.867	7.363	7.494	7.839
7.63	4.896	7.378	7.506	7.838
8.71	4.926	7.389	7.512	7.837
10.03	4.955	7.405	7.520	7.837
11.13	4.983	7.415	7.529	7.836
12.04	5.008	7.426	7.535	7.836
13.63	5.032	7.437	7.541	7.836
14.98	5.054	7.447	7.546	7.836
20.03	5.132	7.479	7.567	7.836
24.93	5.188	7.501	7.582	7.836
47.52	5.342	7.567	7.623	7.839
76.34	5.412	7.595	7.641	7.842
98.80	5.450	7.610	7.651	7.845
115.79	5.474	7.621	7.657	7.848

Fig. S1 Typical fitted plots for the titration of (R,R)-2a with (R)-TBAM in d_6 -acetone (1st titration).

Table S2. Association constants and error values obtained by curve-fitting analysis of NMR titration data of (R,R)-2a with (R)-TBAM in d_6 -acetone.

Entry	K_1 (M ⁻¹)	K_2 (M ⁻¹)	Standard error	Covariance of fit
1st titration	53423	48.7075	0.00392474	0.000278238
2nd titration	31433.7	61.6698	0.00530838	0.000460578
3rd titration	32621.2	62.92	0.00588963	0.000567245
Average	$(3.9\pm1.4)\times10^4$	$(5.8\pm0.9)\times10^{1}$		

1st titration					
$[(S)-TBAM]_0 (mM)$	H _A (ppm)	H _B (ppm)	H _C (ppm)	H _D (ppm)	
0.00	5.430	7.506	7.264	7.991	
0.59	5.370	7.489	7.285	7.975	
1.09	5.302	7.471	7.308	7.958	
1.61	5.237	7.454	7.332	7.941	
1.97	5.182	7.440	7.349	7.928	
2.51	5.120	7.424	7.371	7.913	
2.87	5.052	7.408	7.394	7.897	
3.43	4.988	7.392	7.417	7.882	
3.89	4.936	7.378	7.439	7.868	
4.47	4.876	7.367	7.457	7.856	
4.99	4.849	7.361	7.468	7.850	
6.30	4.835	7.361	7.479	7.844	
7.24	4.840	7.370	7.485	7.843	
8.75	4.867	7.378	7.490	7.843	
9.69	4.885	7.387	7.494	7.843	
10.66	4.896	7.393	7.498	7.844	
11.91	4.914	7.401	7.502	7.844	
13.24	4.931	7.410	7.507	7.844	
14.71	4.950	7.419	7.515	7.845	
18.98	5.008	7.447	7.527	7.846	
23.86	5.052	7.468	7.539	7.847	
49.66	5.200	7.537	7.578	7.852	
81.63	5.281	7.577	7.599	7.857	
112.79	5.327	7.597	7.611	7.860	
120.94	5.360	7.615	7.620	7.863	

Table S3. Data tables for NMR titration of (R,R)-2a with (S)-TBAM in d_6 -acetone.

[(S)-TBAM] ₀ (mM)	H _A (ppm)	H _B (ppm)	H _C (ppm)	H _D (ppm)
0.00	5.451	7.512	7.256	7.997
0.48	5.387	7.494	7.278	7.980
1.01	5.316	7.475	7.302	7.961
1.48	5.249	7.457	7.324	7.944
2.00	5.183	7.440	7.348	7.928
2.56	5.118	7.424	7.370	7.912
3.14	5.052	7.407	7.393	7.897
3.63	4.988	7.392	7.416	7.881
4.12	4.927	7.378	7.437	7.868
4.61	4.875	7.366	7.456	7.856
5.14	4.843	7.359	7.469	7.848
6.52	4.835	7.361	7.479	7.844
7.56	4.840	7.370	7.485	7.843
8.60	4.868	7.379	7.490	7.843
9.74	4.886	7.388	7.495	7.843
11.42	4.905	7.397	7.500	7.844
12.73	4.921	7.405	7.504	7.844
13.58	4.938	7.413	7.508	7.844
15.47	4.953	7.420	7.513	7.845
19.30	5.009	7.447	7.527	7.846
25.68	5.053	7.468	7.543	7.847
49.08	5.200	7.537	7.578	7.852
80.48	5.281	7.578	7.599	7.857
110.62	5.327	7.598	7.611	7.860
126.94	5.357	7.614	7.619	7.863

3rd titration

			Ĩ	
$[(S)-TBAM]_0 (mM)$	H _A (ppm)	H _B (ppm)	H _C (ppm)	H _D (ppm)
0.00	5.442	7.997	7.257	7.511
0.63	5.375	7.985	7.293	7.499
1.32	5.281	7.955	7.315	7.467
1.88	5.209	7.936	7.340	7.448
2.44	5.135	7.918	7.365	7.429
3.06	5.061	7.900	7.392	7.410
3.76	4.983	7.882	7.420	7.391
4.33	4.917	7.867	7.444	7.376
4.83	4.863	7.854	7.464	7.364
6.04	4.831	7.844	7.480	7.358
6.55	4.834	7.844	7.482	7.361
7.01	4.846	7.843	7.485	7.365
7.68	4.849	7.843	7.488	7.369
8.89	4.867	7.843	7.493	7.378
10.31	4.889	7.843	7.500	7.389
11.59	4.911	7.844	7.506	7.400
13.25	4.932	7.844	7.511	7.410
14.89	4.950	7.844	7.517	7.419
16.35	4.970	7.845	7.522	7.429
18.13	4.987	7.845	7.527	7.437
24.16	5.056	7.847	7.547	7.470
31.38	5.105	7.848	7.561	7.495
60.06	5.248	7.853	7.598	7.554
98.84	5.324	7.859	7.620	7.602
135.47	5.364	7.863	7.632	7.622
169.30	5.400	7.866	7.639	7.639

Fig. S2 Typical fitted plots for the titration of (R,R)-2a with (S)-TBAM in d_6 -acetone (1st titration).

Table S4. Association constants and error values obtained by curve-fitting analysis of NMR titration data of (R,R)-2a with (S)-TBAM in d_6 -acetone.

Entry	K_1 (M ⁻¹)	$K_2 (\mathrm{M}^{-1})$	Standard error	Covariance of fit
1st titration	59506.7	33.8721	0.00525521	0.000469976
2nd titration	44156.5	32.004	0.00346843	0.000188417
3rd titration	35789.9	30.0576	0.00372195	0.000205844
Average	$(4.7\pm1.3)\times10^4$	$(3.2\pm0.2)\times10^{1}$		

1st titration					
$[(R)-TBAM]_0 (mM)$	H _A (ppm)	H _B (ppm)	H _C (ppm)	H _D (ppm)	
0.00	6.224	7.524	7.354	8.019	
0.45	6.142	7.512	7.398	8.001	
1.02	6.036	7.497	7.447	7.980	
1.52	5.936	7.481	7.493	7.960	
2.11	5.835	7.466	7.541	7.940	
2.53	5.744	7.454	7.587	7.922	
3.07	5.647	7.438	7.635	7.903	
3.49	5.556	7.424	7.680	7.885	
4.22	5.463	7.410	7.725	7.866	
4.52	5.392	7.400	7.761	7.853	
5.03	5.375	7.398	7.776	7.847	
5.88	5.406	7.406	7.788	7.844	
7.46	5.458	7.417	7.798	7.841	
8.93	5.509	7.428	7.807	7.841	
9.89	5.557	7.438	7.815	7.839	
11.67	5.600	7.447	7.828	7.837	
12.01	5.639	7.455	7.830	7.838	
13.43	5.678	7.463	7.837	7.837	
14.75	5.715	7.471	7.844	7.836	
20.99	5.826	7.494	7.864	7.835	
25.36	5.906	7.511	7.878	7.834	
47.49	6.112	7.548	7.917	7.834	
74.63	6.198	7.573	7.934	7.836	
97.46	6.242	7.581	7.942	7.838	
127.05	6.271	7.587	7.948	7.840	

Table S5. Data tables for NMR titration of (R,R)-**2b** with (R)-TBAM in d_6 -acetone.

2nd	titra	tion
-----	-------	------

[(R)-TBAM] ₀ (mM)	H _A (ppm)	H _B (ppm)	H _C (ppm)	H _D (ppm)
0.00	6.219	7.524	7.360	8.017
0.49	6.130	7.510	7.401	7.999
0.96	6.036	7.496	7.444	7.981
1.38	5.954	7.485	7.485	7.964
1.98	5.859	7.470	7.532	7.945
2.34	5.774	7.457	7.574	7.927
2.90	5.678	7.442	7.619	7.909
3.36	5.589	7.429	7.661	7.892
3.72	5.509	7.417	7.702	7.876
4.25	5.420	7.404	7.747	7.858
4.65	5.376	7.398	7.770	7.849
5.08	5.371	7.398	7.779	7.846
5.58	5.383	7.401	7.784	7.844
5.96	5.398	7.404	7.787	7.844
6.90	5.436	7.412	7.795	7.842
8.18	5.483	7.422	7.803	7.841
9.24	5.531	7.431	7.812	7.840
10.26	5.573	7.441	7.819	7.837
11.42	5.615	7.450	7.825	7.837
13.19	5.653	7.457	7.833	7.836
14.15	5.688	7.465	7.837	7.837
18.19	5.798	7.488	7.859	7.835
23.25	5.881	7.506	7.874	7.834
47.83	6.095	7.549	7.913	7.833
71.42	6.187	7.571	7.931	7.835
98.09	6.233	7.579	7.940	7.837
126.97	6.261	7.586	7.946	7.839

Ji u titi ation

[(R)-TBAM] ₀ (mM)	H _A (ppm)	H _B (ppm)	H _C (ppm)	H _D (ppm)
0.00	6.234	7.525	7.353	8.018
0.44	6.137	7.512	7.399	8.000
1.09	6.036	7.496	7.448	7.978
1.57	5.938	7.483	7.494	7.959
2.16	5.825	7.465	7.551	7.937
2.82	5.714	7.448	7.604	7.915
3.31	5.622	7.434	7.650	7.896
3.79	5.527	7.421	7.695	7.878
4.38	5.449	7.409	7.734	7.863
5.05	5.390	7.400	7.766	7.851
5.64	5.379	7.399	7.777	7.846
6.76	5.390	7.402	7.783	7.845
7.08	5.404	7.405	7.786	7.843
7.81	5.422	7.409	7.789	7.843
8.29	5.459	7.417	7.796	7.844
10.03	5.503	7.426	7.805	7.841
10.81	5.545	7.435	7.812	7.840
12.40	5.582	7.443	7.819	7.837
13.98	5.619	7.451	7.827	7.837
15.26	5.653	7.458	7.832	7.837
17.65	5.688	7.464	7.838	7.837
21.61	5.795	7.488	7.858	7.836
26.81	5.878	7.506	7.873	7.834
54.95	6.095	7.550	7.916	7.834
82.79	6.192	7.574	7.936	7.836
106.93	6.244	7.585	7.949	7.838
143.82	6.275	7.592	7.952	7.839

Fig. S3 Typical fitted plots for the titration of (R,R)-2b with (R)-TBAM in d_6 -acetone (1st titration).

Table S6. Association constants and error values obtained by curve-fitting analysis of NMR titration data of (R,R)-2b with (R)-TBAM in d_6 -acetone.

Entry	K_1 (M ⁻¹)	$K_2 (\mathrm{M}^{-1})$	Standard error	Covariance of fit
1st titration	110315	75.4396	0.00967604	0.000715052
2nd titration	105945	81.2486	0.0103111	0.000793198
3rd titration	47210.3	52.3694	0.00710802	0.00035455
Average	(8.8±5.0)×10 ⁴	$(7.0\pm1.8)\times10^{1}$		

1st titration					
$[(S)-TBAM]_0 (mM)$	H _A (ppm)	H _B (ppm)	H _C (ppm)	H _D (ppm)	
0.00	6.212	7.523	7.366	8.016	
0.50	6.130	7.512	7.399	8.000	
1.01	6.043	7.499	7.438	7.982	
1.43	5.956	7.488	7.475	7.965	
1.94	5.874	7.475	7.515	7.948	
2.49	5.792	7.462	7.553	7.932	
3.09	5.703	7.450	7.591	7.915	
3.28	5.618	7.440	7.629	7.898	
4.06	5.533	7.426	7.668	7.881	
4.38	5.457	7.416	7.702	7.867	
4.81	5.428	7.412	7.716	7.860	
5.98	5.430	7.415	7.728	7.856	
7.68	5.456	7.425	7.736	7.856	
8.84	5.495	7.432	7.743	7.855	
9.84	5.527	7.441	7.750	7.854	
11.43	5.557	7.448	7.757	7.854	
13.06	5.587	7.457	7.764	7.853	
13.47	5.615	7.464	7.771	7.853	
14.21	5.641	7.471	7.777	7.853	
20.56	5.734	7.495	7.800	7.853	
23.86	5.805	7.514	7.816	7.852	
45.19	6.007	7.564	7.866	7.852	
70.17	6.104	7.593	7.890	7.854	
84.58	6.155	7.605	7.904	7.856	
150.11	6.187	7.614	7.912	7.858	

Table S7. Data tables for NMR titration of (R,R)-**2b** with (S)-TBAM in d_6 -acetone.

2nd	titration
-----	-----------

[(S)-TBAM] ₀ (mM)	H _A (ppm)	H _B (ppm)	H _C (ppm)	H _D (ppm)
0.00	6.219	7.523	7.360	8.017
0.49	6.139	7.512	7.396	8.001
1.01	6.055	7.499	7.434	7.984
1.40	5.966	7.488	7.472	7.967
1.93	5.890	7.475	7.507	7.951
2.41	5.809	7.462	7.544	7.935
2.87	5.716	7.450	7.585	7.917
3.35	5.632	7.440	7.624	7.900
3.88	5.550	7.426	7.660	7.885
4.14	5.483	7.416	7.690	7.872
4.88	5.430	7.412	7.714	7.861
5.71	5.427	7.415	7.726	7.857
7.79	5.462	7.425	7.734	7.855
8.48	5.495	7.432	7.742	7.855
9.90	5.528	7.441	7.750	7.854
10.81	5.561	7.448	7.758	7.854
11.69	5.588	7.457	7.764	7.854
13.00	5.615	7.464	7.771	7.853
14.25	5.642	7.471	7.777	7.853
22.34	5.802	7.514	7.816	7.852
43.09	6.005	7.564	7.867	7.852
66.49	6.102	7.593	7.890	7.854
85.23	6.153	7.605	7.903	7.856
148.24	6.186	7.614	7.912	7.858

Ji u titi ation

[(<i>S</i>)-TBAM] ₀ (mM)	H _A (ppm)	H _B (ppm)	H _C (ppm)	H _D (ppm)
0.00	6.202	7.522	7.370	8.014
0.51	6.123	7.511	7.404	7.998
1.01	6.031	7.497	7.445	7.981
1.59	5.942	7.485	7.485	7.963
2.11	5.850	7.472	7.525	7.945
2.56	5.774	7.461	7.562	7.929
3.09	5.680	7.447	7.604	7.911
3.46	5.608	7.438	7.637	7.897
4.13	5.530	7.426	7.671	7.882
4.39	5.456	7.416	7.705	7.868
5.02	5.426	7.412	7.729	7.867
5.55	5.427	7.412	7.734	7.865
5.98	5.429	7.415	7.730	7.857
6.53	5.442	7.418	7.733	7.857
7.59	5.472	7.426	7.740	7.856
8.89	5.507	7.436	7.748	7.856
10.07	5.541	7.445	7.756	7.855
10.80	5.573	7.454	7.764	7.855
12.34	5.631	7.470	7.777	7.854
15.08	5.659	7.476	7.783	7.854
19.79	5.750	7.503	7.805	7.853
22.95	5.818	7.519	7.821	7.853
52.21	6.021	7.571	7.870	7.854
71.64	6.116	7.598	7.894	7.855
111.39	6.166	7.610	7.907	7.858
122.93	6.196	7.616	7.914	7.858

Fig. S4 Typical fitted plots for the titration of (R,R)-**2b** with (S)-TBAM in d_6 -acetone (1st titration).

Table S8. Association constants and error values obtained by curve-fitting analysis of NMR titration data of (R,R)-2b with (S)-TBAM in d_6 -acetone.

Entry	K_1 (M ⁻¹)	$K_2 (\mathrm{M}^{-1})$	Standard error	Covariance of fit
1st titration	138013	48.6614	0.0100559	0.000905094
2nd titration	70047.6	58.4541	0.00925406	0.000757775
3rd titration	119420	53.515	0.00823091	0.00059642
Average	$(1.1\pm0.4)\times10^{5}$	$(5.4\pm0.6)\times10^{1}$		

1st titration				
$[(R)-TBAM]_0 (mM)$	H _A (ppm)	H _B (ppm)	H _C (ppm)	H _D (ppm)
0.00	5.222	7.446	7.714	8.035
0.49	5.180	7.428	7.720	8.014
1.07	5.120	7.404	7.729	7.990
1.62	5.064	7.384	7.737	7.968
2.16	4.988	7.359	7.747	7.944
2.69	4.927	7.340	7.754	7.924
2.96	4.861	7.319	7.763	7.902
3.57	4.796	7.297	7.771	7.881
4.36	4.744	7.280	7.777	7.863
4.84	4.728	7.272	7.778	7.853
5.29	4.742	7.272	7.777	7.848
7.32	4.813	7.279	7.768	7.842
7.83	4.886	7.290	7.760	7.839
9.36	4.968	7.299	7.755	7.836
11.34	5.017	7.307	7.750	7.834
12.10	5.061	7.314	7.747	7.832
14.17	5.095	7.319	7.744	7.831
15.81	5.118	7.323	7.742	7.830
17.23	5.138	7.327	7.741	7.829
20.86	5.191	7.337	7.738	7.827
28.68	5.216	7.342	7.737	7.826
48.18	5.255	7.353	7.738	7.827
83.74	5.265	7.359	7.741	7.830
103.32	5.270	7.361	7.744	7.832
146.31	5.271	7.362	7.746	7.834

Table S9. Data tables for NMR titration of (R,R)-2c with (R)-TBAM in d_6 -acetone.

2nd	titration
-----	-----------

[(R)-TBAM] ₀ (mM)	H _A (ppm)	H _B (ppm)	H _C (ppm)	H _D (ppm)
0.00	5.226	8.035	7.713	7.447
0.47	5.187	8.016	7.720	7.428
1.05	5.127	7.993	7.729	7.407
1.56	5.068	7.971	7.737	7.386
1.98	5.008	7.951	7.745	7.366
2.52	4.947	7.931	7.752	7.346
3.06	4.891	7.913	7.759	7.327
3.29	4.825	7.895	7.768	7.308
3.73	4.807	7.886	7.770	7.301
4.59	4.735	7.862	7.778	7.277
5.41	4.723	7.852	7.779	7.269
5.86	4.740	7.847	7.777	7.269
6.36	4.773	7.845	7.773	7.273
7.82	4.846	7.841	7.766	7.283
9.10	4.933	7.837	7.758	7.295
10.13	4.989	7.835	7.753	7.303
12.46	5.038	7.833	7.749	7.311
13.51	5.074	7.831	7.746	7.317
14.75	5.100	7.830	7.744	7.321
21.21	5.183	7.827	7.739	7.336
26.43	5.212	7.826	7.738	7.342
52.84	5.255	7.827	7.739	7.354
75.86	5.266	7.830	7.742	7.359
102.89	5.269	7.832	7.744	7.362
122.62	5.272	7.834	7.747	7.363

Ji u titi ation

[(R)-TBAM] ₀ (mM)	H _A (ppm)	H _B (ppm)	H _C (ppm)	H _D (ppm)
0.00	5.230	7.447	7.713	8.036
0.50	5.185	7.431	7.720	8.017
0.96	5.140	7.412	7.727	7.997
1.49	5.081	7.391	7.735	7.975
2.00	5.023	7.370	7.743	7.956
2.37	4.968	7.352	7.751	7.937
2.94	4.903	7.331	7.758	7.917
3.58	4.846	7.312	7.766	7.897
4.06	4.788	7.293	7.772	7.878
4.38	4.749	7.279	7.778	7.864
5.05	4.730	7.272	7.780	7.853
5.42	4.742	7.270	7.778	7.849
5.92	4.766	7.273	7.775	7.845
6.63	4.799	7.277	7.772	7.843
8.61	4.854	7.285	7.766	7.840
9.11	4.921	7.295	7.760	7.838
10.48	4.986	7.304	7.755	7.835
12.68	5.030	7.311	7.752	7.833
13.41	5.068	7.318	7.749	7.833
13.96	5.095	7.322	7.747	7.831
15.08	5.120	7.326	7.746	7.831
19.95	5.179	7.337	7.742	7.829
28.96	5.208	7.343	7.740	7.827
59.10	5.252	7.356	7.740	7.828
79.99	5.269	7.361	7.744	7.831
105.19	5.273	7.365	7.747	7.834
119.10	5.274	7.367	7.749	7.837

Fig. S5 Typical fitted plots for the titration of (R,R)-2c with (R)-TBAM in d_6 -acetone (1st titration).

Table S10. Association constants and error values obtained by curve-fitting analysis of NMR titration data of (R,R)-2c with (R)-TBAM in d_6 -acetone.

Entry	K_1 (M ⁻¹)	$K_2 (\mathrm{M}^{-1})$	Standard error	Covariance of fit
1st titration	80974.9	445.198	0.00894311	0.00427439
2nd titration	112884	382.6	0.00696565	0.00235563
3rd titration	90421.5	332.219	0.00811029	0.00316993
Average	$(9.5\pm1.9)\times10^4$	$(3.9\pm0.7)\times10^2$		

1st titration				
$[(S)-TBAM]_0 (mM)$	H _A (ppm)	H _B (ppm)	H _C (ppm)	H _D (ppm)
0.00	5.231	8.038	7.712	7.448
0.43	5.194	8.020	7.718	7.433
0.89	5.144	8.002	7.725	7.415
1.32	5.099	7.985	7.731	7.396
1.75	5.041	7.968	7.738	7.379
2.35	4.988	7.950	7.744	7.362
2.68	4.929	7.932	7.752	7.343
3.19	4.875	7.916	7.757	7.326
3.58	4.821	7.899	7.764	7.306
4.08	4.768	7.883	7.770	7.303
4.57	4.729	7.870	7.774	7.300
5.69	4.731	7.856	7.772	7.283
7.67	4.793	7.852	7.766	7.277
7.82	4.865	7.848	7.760	7.286
9.47	4.915	7.846	7.755	7.294
9.72	4.969	7.843	7.752	7.302
11.02	5.007	7.841	7.749	7.308
13.13	5.041	7.839	7.747	7.313
14.40	5.068	7.838	7.745	7.318
17.94	5.138	7.835	7.742	7.330
22.22	5.175	7.833	7.740	7.338
44.38	5.237	7.831	7.741	7.353
61.28	5.253	7.833	7.744	7.360
88.32	5.260	7.833	7.747	7.362
112.82	5.264	7.834	7.749	7.364

Table S11. Data tables for NMR titration of (R,R)-2c with (S)-TBAM in d_6 -acetone.

2nd	titration
-----	-----------

$[(S)-TBAM]_0 (mM)$	H _A (ppm)	H _B (ppm)	H _C (ppm)	H _D (ppm)
0.00	5.226	8.034	7.714	7.445
0.48	5.185	8.016	7.720	7.429
1.12	5.131	7.996	7.727	7.409
1.49	5.075	7.977	7.734	7.390
2.04	5.012	7.957	7.742	7.369
2.57	4.957	7.939	7.748	7.352
2.81	4.934	7.932	7.751	7.343
3.19	4.878	7.915	7.757	7.325
3.66	4.816	7.897	7.764	7.304
4.19	4.766	7.881	7.770	7.303
4.94	4.722	7.867	7.774	7.299
6.33	4.744	7.855	7.771	7.279
7.37	4.812	7.851	7.764	7.278
9.41	4.880	7.847	7.758	7.287
10.71	4.934	7.845	7.753	7.296
11.94	4.983	7.842	7.750	7.303
13.33	5.021	7.840	7.748	7.310
13.35	5.052	7.839	7.746	7.315
15.58	5.079	7.838	7.745	7.319
23.08	5.146	7.835	7.741	7.332
25.91	5.177	7.833	7.740	7.338
47.90	5.236	7.831	7.741	7.353
76.92	5.253	7.832	7.744	7.359
108.67	5.259	7.833	7.747	7.362
117.81	5.263	7.834	7.749	7.365

3rd titration

[(<i>S</i>)-TBAM] ₀ (mM)	H _A (ppm)	H _B (ppm)	H _C (ppm)	H _D (ppm)
0.00	5.221	8.034	7.714	7.445
0.64	5.170	8.010	7.721	7.424
1.27	5.099	7.985	7.731	7.398
1.93	5.032	7.963	7.740	7.376
2.63	4.957	7.940	7.749	7.350
3.38	4.892	7.917	7.757	7.326
3.81	4.816	7.894	7.766	7.302
4.38	4.760	7.876	7.772	7.297
5.18	4.730	7.863	7.776	7.293
5.83	4.739	7.858	7.773	7.281
6.49	4.769	7.854	7.770	7.272
7.24	4.803	7.853	7.767	7.275
7.76	4.839	7.851	7.764	7.280
7.94	4.873	7.849	7.761	7.284
9.51	4.926	7.847	7.756	7.294
10.41	4.994	7.844	7.752	7.304
13.07	5.037	7.841	7.748	7.309
14.86	5.075	7.840	7.745	7.315
16.76	5.103	7.838	7.743	7.320
17.57	5.127	7.837	7.742	7.324
20.01	5.144	7.836	7.741	7.326
29.02	5.196	7.834	7.738	7.335
31.09	5.221	7.834	7.737	7.341
59.65	5.260	7.835	7.738	7.350
92.73	5.274	7.837	7.741	7.355
130.45	5.284	7.839	7.744	7.356
166.69	5.281	7.841	7.747	7.357

Fig. S6 Typical fitted plots for the titration of (R,R)-2c with (S)-TBAM in d_6 -acetone (1st titration).

Table S12. Association constants and error values obtained by curve-fitting analysis of NMR titration data of (R,R)-2c with (S)-TBAM in d_6 -acetone.

Entry	K_1 (M ⁻¹)	$K_2 (\mathrm{M}^{-1})$	Standard error	Covariance of fit
1st titration	201995	321.076	0.00924234	0.00442789
2nd titration	131035	233.947	0.00855427	0.00396013
3rd titration	212539	255.983	0.00800423	0.00330207
Average	(1.8±0.5)×10 ⁵	$(2.7\pm0.5)\times10^2$		

[(R)-TBAM] ₀ (mM)	H _A (ppm)	H _B (ppm)	H _C (ppm)	H _D (ppm)
0.00	5.486	7.163	7.837	7.154
0.43	5.444	7.170	7.822	7.134
0.89	5.400	7.171	7.808	7.112
1.48	5.356	7.193	7.794	7.090
1.97	5.316	7.205	7.783	7.075
2.56	5.281	7.217	7.774	7.060
3.03	5.247	7.229	7.766	7.047
3.68	5.211	7.244	7.758	7.034
4.30	5.186	7.254	7.754	7.026
4.90	5.162	7.266	7.749	7.019
5.63	5.145	7.274	7.746	7.014
6.09	5.132	7.280	7.745	7.012
6.79	5.121	7.286	7.743	7.009
7.08	5.113	7.292	7.742	7.008
8.41	5.098	7.299	7.740	7.005
9.84	5.087	7.305	7.739	7.004
11.60	5.079	7.309	7.738	7.003
12.71	5.070	7.312	7.737	7.003
13.93	5.066	7.315	7.737	7.003
16.69	5.060	7.317	7.736	7.003
17.84	5.057	7.320	7.737	7.004
23.49	5.042	7.325	7.733	7.005
28.38	5.033	7.328	7.732	7.007
43.54	5.012	7.337	7.731	7.014
73.33	5.007	7.342	7.730	7.016
91.71	5.005	7.346	7.730	7.021

Table S13. Data tables for NMR titration of (R,R)-2a with (R)-TBAM in CDCl₃.

1st titration

2nd	titration
-----	-----------

$[(R)-TBAM]_0 (mM)$	H _A (ppm)	H _B (ppm)	H _C (ppm)	H _D (ppm)
0.00	5.483	7.163	7.835	7.158
0.48	5.441	7.170	7.821	7.134
0.89	5.395	7.182	7.807	7.111
1.37	5.361	7.192	7.796	7.095
1.99	5.322	7.204	7.784	7.077
2.42	5.287	7.214	7.775	7.062
2.96	5.255	7.225	7.767	7.050
3.43	5.228	7.232	7.762	7.041
3.89	5.205	7.247	7.757	7.033
4.34	5.185	7.254	7.753	7.026
4.86	5.167	7.264	7.750	7.021
5.38	5.153	7.271	7.747	7.018
5.86	5.139	7.278	7.745	7.013
6.48	5.127	7.283	7.743	7.011
6.89	5.119	7.288	7.743	7.009
8.31	5.103	7.296	7.740	7.006
9.47	5.092	7.302	7.740	7.005
10.88	5.083	7.307	7.738	7.004
11.87	5.076	7.311	7.738	7.004
13.21	5.071	7.313	7.738	7.004
15.05	5.066	7.316	7.737	7.004
19.08	5.052	7.322	7.735	7.006
24.14	5.041	7.326	7.735	7.006
53.19	5.017	7.337	7.732	7.013
77.84	5.008	7.343	7.731	7.018
117.65	5.005	7.348	7.731	7.020

Fig. S7 Typical fitted plots for the titration of (R,R)-2a with (R)-TBAM in CDCl₃ (1st titration).

Table S14. Association constants and error values obtained by curve-fitting analysis of NMR titration data of (R,R)-2a with (R)-TBAM in CDCl₃.

Entry	K_1 (M ⁻¹)	$K_2 (\mathrm{M}^{-1})$	Standard error	Covariance of fit
1st titration	5544	58.1559	0.00761385	0.00163728
2nd titration	5815.96	72.0007	0.00760955	0.001758
Average	$(5.7\pm0.3)\times10^3$	$(6.5\pm1.4)\times10^{1}$		

1st titration						
$[(S)-TBAM]_0 (mM)$	H _A (ppm)	H _B (ppm)	H _C (ppm)	H _D (ppm)		
0.00	5.478	7.160	7.841	7.155		
0.41	5.428	7.166	7.823	7.135		
0.88	5.379	7.178	7.807	7.111		
1.46	5.333	7.186	7.793	7.090		
1.91	5.288	7.198	7.781	7.073		
2.41	5.252	7.210	7.772	7.060		
2.84	5.216	7.221	7.765	7.048		
3.41	5.184	7.233	7.760	7.039		
3.99	5.157	7.244	7.756	7.032		
4.51	5.137	7.251	7.753	7.027		
4.92	5.121	7.261	7.752	7.024		
5.06	5.107	7.268	7.751	7.022		
5.56	5.095	7.273	7.750	7.019		
6.72	5.085	7.278	7.749	7.018		
7.64	5.069	7.284	7.747	7.015		
8.98	5.057	7.292	7.747	7.014		
9.71	5.049	7.296	7.747	7.014		
10.93	5.041	7.300	7.747	7.015		
12.60	5.035	7.301	7.747	7.014		
13.82	5.030	7.304	7.745	7.014		
15.48	5.025	7.305	7.752	7.014		
20.58	5.011	7.311	7.746	7.016		
25.34	5.000	7.314	7.745	7.018		
45.28	4.973	7.322	7.743	7.023		
91.64	4.962	7.327	7.743	7.027		
131.72	4.956	7.329	7.742	7.029		
168.65	4.954	7.330	7.742	7.031		

Table S15. Data tables for NMR titration of (R,R)-2a with (S)-TBAM in CDCl₃.

[(<i>S</i>)-TBAM] ₀ (mM)	H _A (ppm)	H _B (ppm)	H _C (ppm)	H _D (ppm)
0.00	5.477	7.159	7.841	7.153
0.46	5.426	7.167	7.822	7.132
0.93	5.374	7.178	7.805	7.106
1.48	5.324	7.187	7.790	7.085
2.06	5.280	7.197	7.778	7.068
2.44	5.244	7.208	7.770	7.055
2.98	5.208	7.220	7.763	7.044
3.44	5.177	7.231	7.757	7.034
3.91	5.150	7.242	7.753	7.028
4.61	5.126	7.252	7.750	7.022
4.79	5.107	7.262	7.749	7.018
5.49	5.090	7.270	7.747	7.015
5.86	5.078	7.277	7.747	7.013
6.59	5.068	7.282	7.745	7.012
7.94	5.054	7.289	7.745	7.011
8.99	5.042	7.295	7.745	7.011
9.99	5.034	7.299	7.745	7.011
10.99	5.028	7.302	7.745	7.011
13.28	5.022	7.304	7.745	7.011
14.87	5.018	7.306	7.745	7.012
17.10	5.014	7.308	7.745	7.013
21.61	5.000	7.312	7.743	7.014
25.00	4.991	7.315	7.742	7.017
55.14	4.967	7.323	7.742	7.023
67.24	4.958	7.328	7.742	7.027
106.72	4.954	7.330	7.742	7.030

Fig. S8 Typical fitted plots for the titration of (R,R)-2a with (S)-TBAM in CDCl₃ (1st titration).

Table S16. Association constants and error values obtained by curve-fitting analysis of NMR titration data of (R,R)-2a with (S)-TBAM in CDCl₃.

Entry	K_1 (M ⁻¹)	$K_2 (\mathrm{M}^{-1})$	Standard error	Covariance of fit
1st titration	9659.05	53.8387	0.011105	0.00320859
2nd titration	9949.76	64.897	0.0105355	0.00284926
Average	$(9.8\pm0.3)\times10^3$	$(5.9\pm1.1)\times10^{1}$		

$[(R)-TBAM]_0 (mM)$	H _A (ppm)	H _B (ppm)	H _C (ppm)	H _D (ppm)
0.00	8.025	7.183	6.871	0.915
0.29	8.021	7.180	6.869	0.912
1.13	8.020	7.180	6.866	0.911
1.52	8.018	7.178	6.865	0.909
1.93	8.018	7.176	6.861	0.905
2.50	8.016	7.175	6.859	0.903
2.83	8.015	7.174	6.858	0.902
3.42	8.012	7.172	6.856	0.901
3.78	8.011	7.171	6.855	0.899
4.37	8.009	7.170	6.853	0.897
4.88	8.008	7.169	6.851	0.895
5.37	8.006	7.167	6.849	0.894
5.66	8.004	7.166	6.848	0.893
6.33	8.003	7.165	6.846	0.891
7.48	8.000	7.163	6.844	0.889
8.14	7.994	7.162	6.841	0.887
9.53	7.995	7.159	6.839	0.885
10.91	7.992	7.157	6.836	0.883
12.36	7.990	7.156	6.834	0.881
13.02	7.988	7.154	6.832	0.880
14.19	7.986	7.153	6.832	0.879
18.13	7.979	7.148	6.824	0.875
22.75	7.974	7.146	6.821	0.872
50.71	7.958	7.134	6.803	0.870
79.18	7.950	7.127	6.800	0.874
90.32	7.947	7.128	6.798	0.879
134.74	7.944	7.128	6.796	0.884

Table S17. Data tables for NMR titration of (R,R)-2a with (R)-TBAM in d_6 -DMSO.

Fig. S9 Typical fitted plots for the titration of (R,R)-2a with (R)-TBAM in d_6 -DMSO.

Table S18. Association constants and error values obtained by curve-fitting analysis of NMR titration data of (R,R)-2a with (R)-TBAM in d_6 -DMSO.

K_1 (M ⁻¹)	$K_2 \left(\mathrm{M}^{-1} \right)$	Standard error	Covariance of fit
97.4263	11.5272	0.000995454	0.00241527

$[(S)-TBAM]_0 (mM)$	H _A (ppm)	H _B (ppm)	H _C (ppm)	H _D (ppm)
0.00	8.026	7.183	6.867	0.912
0.52	8.022	7.181	6.867	0.909
0.99	8.020	7.178	6.864	0.905
1.38	8.018	7.176	6.862	0.903
1.89	8.017	7.175	6.860	0.899
2.38	8.015	7.173	6.858	0.897
2.83	8.013	7.171	6.856	0.894
3.11	8.012	7.170	6.855	0.892
3.56	8.009	7.168	6.853	0.889
4.10	8.009	7.168	6.853	0.888
4.51	8.006	7.165	6.849	0.884
5.10	8.005	7.165	6.848	0.883
5.36	8.002	7.162	6.846	0.879
6.21	8.002	7.161	6.845	0.879
7.41	7.999	7.159	6.842	0.875
8.43	7.997	7.157	6.840	0.870
9.68	7.994	7.154	6.836	0.867
11.26	7.991	7.152	6.834	0.863
11.84	7.990	7.151	6.832	0.862
12.93	7.987	7.148	6.830	0.858
14.16	7.986	7.148	6.828	0.856
19.36	7.980	7.142	6.822	0.849
22.85	7.975	7.136	6.818	0.844
50.30	7.962	7.128	6.804	0.836
82.04	7.960	7.129	6.803	0.838
91.33	7.957	7.126	6.798	0.842
125.01	7.956	7.127	6.798	0.844

Table S19. Data tables for NMR titration of (R,R)-2a with (S)-TBAM in d_6 -DMSO.

Fig. S10 Typical fitted plots for the titration of (R,R)-2a with (S)-TBAM in d_6 -DMSO (1st titration).

Table S20. Association constants and error values obtained by curve-fitting analysis of NMR titration data of (R,R)-2a with (S)-TBAM in d_6 -DMSO.

K_1 (M ⁻¹)	$K_2 \left(\mathrm{M}^{-1} \right)$	Standard error	Covariance of fit
99.9613	8.40613	0.00106614	0.00237843

2. Distribution of guest molecules calculated from association constants

Association constants K_1 and K_2 for 1:1 and 1:2 complaxation of host and guest compounds are defined

$$H + G \xrightarrow{K_{1}} HG$$

$$HG + G \xrightarrow{K_{2}} HG_{2}$$

$$K_{1} = \frac{[HG]}{[H][G]} (1) \qquad K_{2} = \frac{[HG_{2}]}{[HG][G]} (2)$$

where [H], [G], [HG], and [HG₂] represent molar concentrations of the host, guest, 1:1 complex of host-guest, and 1:2 complex of host-guest, respectively.

The initial concentrations of host and guest compounds $[H]_0$ and $[G]_0$ are expressed as follows. $[H]_0 = [H] + [HG] + [HG_2]$ (3) $[G]_0 = [G] + [HG] + 2[HG_2]$ (4)

From equations (1)–(4), the cubic equation (5) is derived.

$$K_1K_2[G]^3 + \{K_1(2K_2[H]_0 - K_2[G]_0 + 1)\}[G]^2 + \{K_1([H]_0 - [G]_0) + 1\}[G] - [G]_0 = 0$$
 (5)

The smallest positive real solution of the equation (5) corresponds to the concentration of the guest compound [G]. After the concentration of guest compound [G] is obtained, the concentration of host compound [H] can be calculated from equation (6).

$$[H] = \frac{[H]_0}{1 + K_1[G] + K_1 K_2[G]^2} \quad (6)$$

Once [H] and [G] are known, the concentration of 1:1 complex [HG] and 1:2 complex [HG₂] can also be calculated from equations (7) and (8). [HG] = K_1 [H][G] (7) [HG₂] = K_2 [HG][G] (8)

The distribution of guest molecules shown in Tables 5–7 was obtained from the calculated [G], [HG], and [HG₂].

3. Determination of the absolute configuration of chiral diol (S,S)-S1

Chiral diamine (R,R)-1 was derived from chiral diol (S,S)-S1.² The absolute configuration of (S,S)-S1 was determined based on the stereochemical course of the asymmetric ethylation² and further confirmed by the modified Mosher ester analysis.³ Diastereomeric diesters (S,S,R,R)-S2 and synthesized reaction of (S,S)-S1(S)-(S,S,S,S)-S2 were by the with or (R)- α -methoxy- α -(trifluoromethyl)phenylacetyl chloride (MTPA-Cl) in the presence of DMAP and Et₃N (Scheme S1).

Scheme S1 Synthesis of MTPA esters (S,S,R,R)-S2 and (S,S,S,S)-S2

As the ¹H NMR signals of ethyl groups of (*S*)-MTPA ester **S2** appeared upfield relative to those of (*R*)-MTPA ester **S2** owing to the diamagnetic effect of the phenyl group of MTPA, the absolute configuration of chiral diol **S1** was determined as (*S*,*S*)-configuration (Fig. S7).

Fig. S11 ¹H NMR spectra of (S,S,R,R)-S2 (a) and (S,S,S,S)-S2 (b). Configurational correlation model for (S,S,R,R)-S2 and (S,S,S,S)-S2 (c).

4,6-Bis((S)-1-{[(R)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoyl]oxy}propyl)dibenzo[b,d]furan

[(*S*,*S*,*R*,*R*)-S2] To a stirred solution of (*S*,*S*)-S1 (12.0 mg, 0.041 mmol) in dichloromethane (5.0 mL) was added DMAP (40.0 mg, 0.33 mmol), Et₃N (170 μL, 0.12 mmol), and (*S*)-MTPA-Cl (30 μL, 0.16 mmol). The reaction mixture was stirred at room temperature for 23 h. To the mixture was added N^1 , N^1 -dimethylpropane-1,3-diamine (20 μL, 0.16 mmol), and the mixture was stirred at room temperature for 10 min. After removal of solvent under reduced pressure, crude product was purified by preparative thin-layer chromatography (hexane/CH₂Cl₂/AcOEt = 8:1:1) to give (*R*)-MTPA ester (*S*,*S*,*R*,*R*)-S2 (21.0 mg, 73%) as colorless oil. [α]_D²⁸ +9.8 (*c* 0.86, CHCl₃); IR (neat): *v*_{max} 3065, 3034, 2975, 2947, 2881, 2850, 1747, 1715, 1588, 1491, 1452, 1436, 1422, 1362, 1270, 1252, 1185, 1123, 1082, 1058, 1018, 994, 965, 918, 890, 866, 846, 813, 781, 766, 749, 719, 697, 647 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.88–7.85 (m, 2H), 7.39 (d, *J* = 7.8 Hz, 4H), 7.32–7.22 (m, 10H), 6.46 (dd, *J* = 7.3, 6.0 Hz, 2H), 3.58 (s, 6H), 2.27–2.17 (m, 2H), 2.15–2.05 (m, 2H), 0.99 (t, *J* = 7.4 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 165.8, 152.9, 132.2, 129.4, 128.2, 127.3, 125.1, 124.2, 123.5, 123.3 (q, ¹*J*_{C-F} = 289 Hz), 122.9, 120.4, 84.6 (q, ²*J*_{C-F} = 28 Hz), 75.3, 55.6, 28.0, 9.8; HRMS-ESI (*m*/z): [M+Na]⁺ Calcd for C₃₈H₃₄O₇F₆Na, 739.2101; Found, 739.2115.

4,6-Bis((S)-1-{[(S)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoyl]oxy}propyl)dibenzo[b,d]furan

[(*S***,***S***,***S***,***S***)-S2] According to the same procedure as the synthesis of (***S***,***S***,***R***,***R***)-S2, the reaction of (***S***,***S***)-S1 and (***R***)-MTPA-Cl afforded (***S***)-MTPA ester (***S***,***S***,***S***,***S***)-S2 (29.0 mg, 98%) as colorless oil. [\alpha]_{1D}^{28} -70.3 (***c* **1.2, CHCl₃); IR (neat):** *v***_{max} 3065, 3037, 2975, 2947, 2881, 2849, 1748, 1715, 1588, 1491, 1452, 1437, 1422, 1362, 1270, 1242, 1186, 1122, 1082, 1058, 1017, 994, 965, 918, 893, 869, 847, 812, 782, 766, 749, 719, 697, 647cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.93-7.91 (m, 2H), 7.45-7.41 (m, 6H), 7.36-7.29 (m, 4H), 7.26-7.22 (m, 4H), 6.49 (t,** *J* **= 6.6 Hz, 2H), 3.45 (s, 6H), 2.23-2.14 (m, 2H), 2.08-1.99 (m, 2H), 0.87 (t,** *J* **= 7.4 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 165.9, 153.1, 132.3, 129.5, 128.3, 127.4, 125.7, 124.3, 123.5, 123.4 (q, ¹***J***_{C-F} = 289 Hz) 123.1, 120.7, 84.6 (q, ²***J***_{C-F} = 28 Hz), 75.4, 55.3, 27.7, 9.6; HRMS-ESI (***m***/***z***): [M+Na]⁺ Calcd for C₃₈H₃₄O₇F₆Na, 739.2101; Found, 739.2110.**

4. Reference

- 1) P. Thordarson, Chem. Soc. Rev., 2011, 40, 1305.
- 2) S. Ito, K. Ikeda, M. Asami, Chem. Lett., 2016, 45, 1379.
- 3) I. Ohtani, T. Kusumi, Y. Kashman, H. Kakisawa, J. Am. Chem. Soc., 1991, 113, 4092.

¹H NMR (500 MHz, in CDCl₃)

Acquisition Time (sec)	3.1719	Comment	U 0628-2	D	3.827959	D1	3.827959	DE	6
DS	2	Date	28 Jun 2017	7 17:00:44		Date Stamp	28 Jun 2017	17:00:44	
File Name	F:¥NMR¥U ()628–2¥1¥PDATA¥1¥1r		Frequency (MHz)	500,1300	GB	0	INSTRUM	<spect></spect>
LB	0.1	NS	8	Nucleus	1H	Number of Transients	8	Origin	spect
Original Points Count	32768	Owner	root	PC	1	PROBHD	<5 mm BBO	BB-1H Z-GRD Z859001/	0006 >
PULPROG	<zg30></zg30>	Points Count	32768	Pulse Sequence	zg30	Receiver Gain	362.00	SF	500.130006648269
SF01	500.1330885	507478		SI	32768	SSB	0	SW(cvclical) (Hz)	10330.58
SWH	10330.57851	23967		Solvent	CHLOROFC	RM−d		Spectrum Offset (Hz)	3065.8052
Spectrum Type	standard	Sweep Width (Hz)	10330.26	ТD	65536	TD0	1	TE	323.2
Temperature (degree C)	50.200	WDW	1						

9.5

9.0

S40

¹³C NMR (126 MHz, in CDCl₃)

Acquisition Time (sec)	1.0912	Comment	U 0628 13C			D	0.00345	D1	2
DE	6	DS	4	Date	28 Jun 2017	18:03:50		Date Stamp	28 Jun 2017 18:03:50
File Name	F:¥NMR¥U (0628 13C¥1¥PDATA¥1¥1r		Frequency (MHz)	125.7578	GB	0	INSTRUM	<spect></spect>
LB	1	NS	1024	Nucleus	13C	Number of Transients	1024	Origin	spect
Original Points Count	32768	Owner	root	PC	1.4	PROBHD	<5 mm BBO	BB-1H Z-GRD Z859001/	0006 >
PULPROG	<zgpg30></zgpg30>	Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	8192.00	SF	125.757789
SF01	125.7703643	304853		SI	32768	SSB	0	SW(cvclical) (Hz)	30030.03
SWH	30030.03003	3003		Solvent	CHLOROFO	RM-d		Spectrum Offset (Hz)	12583.4375
Spectrum Type	standard	Sweep Width (Hz)	30029.11	ТD	65536	TD0	1	TE	323.2
Temperature (degree C)	50.200	WDW	1						

CDCI₃ O 1111 NH HN oĦ NH HN كبالماوغلان (R,R)-**2a** 130 128 126 124 122 120 442 -153.8 -51.8 138.9 28.7 119 120 123 123 123 123 124 124 126 <u>o io</u> . ത à Chemical Shift (ppm) 24 96 48 32 80 72 64 56 152 144 136 128 120 112 104 88 40

S42

¹H NMR (400 MHz, in CDCI₃)

¹³C NMR (126 MHz, in CDCl₃)

Acquisition Time (sec)	1.0912	Comment	TU 1104 13	С		D	0.00345	D1	2
DE	6	DS	4	Date	04 Nov 2016	6 17:27:33		Date Stamp	04 Nov 2016 17:27:33
File Name	K:¥NMR¥TU	1104 13C¥1¥PDATA¥1¥1	r	Frequency (MHz)	125.7578	GB	0	INSTRUM	<pre><spect></spect></pre>
LB	1	NS	512	Nucleus	13C	Number of Transients	512	Origin	spect
Original Points Count	32768	Owner	root	PC	1.4	PROBHD	<5 mm BBO	BB-1H Z-GRD Z859001/	/0006 >
PULPROG	<zgpg30></zgpg30>	Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	5792.60	SF	125.757789
SF01	125.7703643	304853		SI	32768	SSB	0	SW(cvclical) (Hz)	30030.03
SWH	30030.03003	3003		Solvent	CHLOROFC	RM-d		Spectrum Offset (Hz)	12569.6924
Spectrum Type	standard	Sweep Width (Hz)	30029.11	ТD	65536	TD0	1	TE	298.8
Temperature (degree C)	25.800	WDW	1						

S43

S44

¹H NMR (400 MHz, in CDCl₃)

¹³C NMR (126 MHz, in CDCI₃)

....

Acquisition Time (sec)	1.0912	Comment	SU 0208 13	С		D	0.00345	D1	2
DE	6	DS	4	Date	08 Feb 2017	15:10:17		Date Stamp	08 Feb 2017 15:10:17
File Name	F:¥NMR¥SU	0208 13C¥10¥PDATA¥1¥	1r	Frequency (MHz)	125.7578	GB	0	INSTRUM	<pre><spect></spect></pre>
LB	1	NS	512	Nucleus	13C	Number of Transients	512	Origin	spect
Original Points Count	32768	Owner	root	PC	1.4	PROBHD	<5 mm BBO	BB-1H Z-GRD Z859001/	0006 >
PULPROG	<zgpg30></zgpg30>	Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	10321.30	SF	125.757789
SF01	125.7703643	304853		SI	32768	SSB	0	SW(cvclical) (Hz)	30030.03
SWH	30030.03003	3003		Solvent	CHLOROFO	RM-d		Spectrum Offset (Hz)	12567.8574
Spectrum Type	standard	Sweep Width (Hz)	30029.11	ТD	65536	TD0	1	TE	298.4
Temperature (degree C)	25.400	WDW	1						

S45

¹H NMR (500 MHz, in CDCl₃)

Acquisition Time (sec)	3.1719	Comment	362 S	D	3.827959	D1	3.827959	DE	6
DS	2	Date	05 Jul 2017	/ 18:35:46		Date Stamp	05 Jul 2017	18:35:46	
File Name	F:¥oku362 S	S¥1¥PDATA¥1¥1r		Frequency (MHz)	500,1300	GB	0	INSTRUM	<spect></spect>
LB	0.1	NS	8	Nucleus	1H	Number of Transients	8	Origin	spect
Original Points Count	32768	Owner	root	PC	1	PROBHD	<5 mm BBO	BB-1H Z-GRD Z859001	/0006 >
PULPROG	<zg30></zg30>	Points Count	32768	Pulse Sequence	zg30	Receiver Gain	256.00	SF	500.130006648269
SF01	500.133088	507478		SI	32768	SSB	0	SW(cvclical) (Hz)	10330.58
SWH	10330.5785	123967		Solvent	CHLOROFO	DRM-d		Spectrum Offset (Hz)	3071.4568
Spectrum Type	standard	Sweep Width (Hz)	10330.26	ТР	65536	TD0	1	TE	300.2

Temperature (degree C) 27.200 WDW

S46

¹³C NMR (126 MHz, in CDCl₃)

Acquisition Time (sec)	1.0912	Comment	A.13C np CD	CI3 {C:¥YNU} asmlab 1		D	0.00345	D1	2
DE	6	DS	4	Date	07 Sep 2017	03:30:35		Date Stamp	07 Sep 2017 03:30:35
File Name	F:¥NMR¥oku3	362 R ester 0906¥2¥PDAT	A¥1¥1r	Frequency (MHz)	125.7578	GB	0	INSTRUM	<pre>spect></pre>
LB	1	NS	7000	Nucleus	13C	Number of Transients	7000	Origin	spect
Original Points Count	32768	Owner	DRX500	PC	1.4	PROBHD	<5 mm BBO BB-1H Z-GRD Z859001/0006 >		
PULPROG	<zgpg30></zgpg30>	Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	9195.20	SF	125.757788800476
SF01	125.77036430	04853		SI	32768	SSB	0	SW(cvclical) (Hz)	30030.03
SWH	SWH 30030.03003003			Solvent CHLOROFORM-d				Spectrum Offset (Hz)	12575.5029
Spectrum Type	standard	Sweep Width (Hz)	30029.11	TD	65536	TD0	1	TE	299.2
Temperature (degree C)	26.200	WDW .	1						

¹H NMR (500 MHz, in CDCl₃)

Acquisition Time (sec)	3.1719	Comment	363 R	D	3.827959	D1	3.827959	DE	6
DS	2	Date	05 Jul 2017	18:40:09		Date Stamp	05 Jul 2017	18:40:09	
File Name	F:¥oku363 F	R¥1¥PDATA¥1¥1r		Frequency (MHz)	500.1300	GB	0	INSTRUM	<pre>spect></pre>
LB	0.1	NS	8	Nucleus	1H	Number of Transients	8	Origin	spect
Original Points Count	32768	Owner	root	PC	1	PROBHD	<5 mm BBO	BB-1H Z-GRD Z859001	/0006 >
PULPROG	<zg30></zg30>	Points Count	32768	Pulse Sequence	zg30	Receiver Gain	181.00	SF	500.130006648269
SF01	1 500.133088507478				32768	SSB	0	SW(cvclical) (Hz)	10330.58
SWH	10330.5785	123967		Solvent	CHLOROF	ORM-d		Spectrum Offset (Hz)	3071.1565
Spectrum Type	standard	Sweep Width (Hz)	10330.26	TD	65536	TD0	1	TE	300.2

¹³C NMR (126 MHz, in CDCl₃)

153

`_

160

152

Acquisition Time (sec)	1.0912	Comment	A.13C np CE	CI3 {C:¥YNU} asmlab 2		D	0.00345	D1	2
DE	6	DS	4	Date	07 Sep 2017	7 09:46:42		Date Stamp	07 Sep 2017 09:46:42
File Name	F:¥NMR¥oku	363 S ester 0906¥2¥PDAT	A¥1¥1r	Frequency (MHz)	125.7578	GB	0	INSTRUM	<pre>spect></pre>
LB	1	NS	7000	Nucleus	13C	Number of Transients	7000	Origin	spect
Original Points Count	32768	Owner	DRX500	PC	1.4	PROBHD	<5 mm BBO BB-1H Z-GRD Z859001/0006 >		
PULPROG	<zgpg30></zgpg30>	Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	5792.60	SF	125.757788761098
SF01	125.77036430	04853		SI	32768	SSB	0	SW(cvclical) (Hz)	30030.03
SWH	30030.030030	003		Solvent	CHI OROFORM-d			Spectrum Offset (Hz)	12575.5391
Spectrum Type	standard	Sweep Width (Hz)	30029.11	TD	65536	TDO	1	TE	299.3
Temperature (degree C)	26.300	WDW	1						

> 120.0 120.7 122.3 123.1 123.5 124.6 125.7 126.5

> > 120

128

112

129.5 132.3

136

144

CDCI₃ 0= Ph Ph, F₃C OMe MeO ČF₃ (*S,S,S*,*S*)-**S2**

-27.7

32

24

9.6

Chemical Shift (ppm)

80

84.3 84.5 84.9

88

96

104

-75.4

72

64

55.3

56

48

40