Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Lili Zhang, Yang Liu, Kun Liu, Zhantao Liu, Ningning He, Wenjun Li*

Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, 266021, China.

A: General Information and Starting Materials	1
B: General Procedure for Cascade Reactions	2
C: Characterization Data	3
D: De- <i>tert</i> -butylation reaction	12
E: Mechanistic study	15
F: HPLC Analysis	16
G: NMR Analysis	
H: Absolute Configuration and X-Ray Analysis Data	62
I: Reference	64

A: General Information and Starting Materials

General Information. Proton nuclear magnetic resonance (¹H NMR) spectra and carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on a Bruker ACF300 spectrometer (500 MHz and 125 MHz). Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent (CDCl₃: δ 7.26, (CD₃)₂SO: δ 2.50). Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane and are referenced to the carbon resonances of the solvent (CDCl₃: δ 77.16, (CD₃)₂SO: δ 39.6). Data are represented as follows: chemical shift, integration, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants in Hertz (Hz). All high resolution mass spectra were obtained on a Finnigan/MAT 95XL-T mass spectrometer. For thin layer chromatography (TLC), Merck pre-coated TLC plates (Merck 60 F254) were used, and compounds were visualized with a UV light at 254 nm. Flash chromatography separations were performed on Merck 60 (0.040-0.063 mm) mesh silica gel.

Starting Materials. All solvents, inorganic reagents were from commercial sources and used without purification unless otherwise noted and catalysts **4a-h** were purchased from Sigma-Aldrich. The quinone methides and azlactones were prepared following the literature procedures.¹⁻²

B: General Procedure for Cascade Reactions

To a solution of CCl₄ (0.6 mL) were added quinone methides 1 (0.05 mmol), azlactones 2 (0.075 mmol) and catalyst 4e (0.0025 mmol). The reaction mixture was stirred at room temperature for 48 h and then the solvent was removed under vacuum. The residue was purified by silica gel chromatography to yield the desired products.

C: Characterization Data

N-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-ethyl-2-oxochroman-3-yl)-4methoxybenzamide (3aa)

White solid, 91% yield. ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.65 (d, J = 10.0 Hz, 2H), 7.29-7.26 (m, 1H), 7.14-7.04 (m, 3H), 6.97 (s, 2H), 6.88 (d, J = 10.0 Hz, 2H), 5.74 (s, 1H), 5.54 (s, 1H), 5.21 (s, 1H), 3.84 (s, 3H), 2.07-2.03 (m, 1H), 1.65-1.61 (m, 1H), 1.31 (s, 18H), 0.97 (t, J = 10.0 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 166.6, 166.4, 162.5, 153.4, 150.9, 135.5, 129.0, 128.7, 128.4, 127.6, 126.3, 125.1,

124.7, 124.1, 116.6, 113.7, 61.9, 55.4, 46.9, 34.3, 30.2, 24.1, 8.0. HRMS (ESI): exact mass calculated for $M^+(C_{33}H_{40}NO_5)$ requires m/z 530.2906, found m/z 530.2901. The enantiomeric ratio was determined to be 97:3 by HPLC. [IC column, 254 nm, *n*-hexane:EtOH = 85:15, 0.8 mL/min]: 14.3 min (major), 21.4 min (minor).

N-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-ethyl-6-fluoro-2-oxochroman-3-yl)-4-methoxybenzamide (3ba)

White solid, 82% yield. ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.66 (d, J = 10.0 Hz, 2H), 7.09-7.06 (m, 1H), 6.99-6.96 (m, 1H), 6.95 (s, 2H), 6.89 (d, J = 10.0 Hz, 2H), 6.87-6.85 (m, 1H), 5.73 (s, 1H), 5.58 (s, 1H), 5.24 (s, 1H), 3.85 (s, 3H), 2.02-1.96 (m, 1H), 1.68-1.61 (m, 1H), 1.32 (s, 18H), 0.97 (t, J = 10.0 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 166.6, 164.3 (d, J = 1700.0 Hz), 158.0,

153.6, 146.8 (d, J = 10.0 Hz), 135.7, 129.0, 127.5, 126.8 (d, J = 30.0 Hz), 126.2, 124.4, 117.8 (d, J = 35.0 Hz), 115.3, 115.1 (d, J = 25.0 Hz), 114.9, 113.7, 61.7, 55.4, 46.7, 34.3, 30.2, 24.3, 8.0. HRMS (ESI): exact mass calculated for M⁺ (C₃₃H₃₉FNO₅) requires m/z 548.2812, found m/z 548.2808. The enantiomeric ratio was determined to be 94:6 by HPLC. [IC column, 254 nm, *n*-hexane:EtOH = 85:15, 0.8 mL/min]: 11.8 min (major), 15.6 min (minor).

N-((3*R*,4*S*)-6-chloro-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-ethyl-2-oxochroman -3-yl)-4-methoxybenzamide (3ca)

White solid, 77% yield. ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.66 (d, J = 10.0 Hz, 2H), 7.25-7.23 (m, 1H), 7.14-7.13 (m, 1H), 7.05 (d, J = 10.0 Hz, 1H), 6.94 (s, 2H), 6.89 (d, J = 10.0 Hz, 2H), 5.74 (s, 1H), 5.53 (s, 1H), 5.25 (s, 1H), 3.84 (s, 3H), 2.04-1.96 (m, 1H), 1.67-1.61 (m, 1H), 1.32 (s, 18H), 0.97 (t, J = 10.0 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 166.6, 165.8, 162.6,

153.6, 149.4, 135.7, 129.3, 129.0, 128.6, 128.4, 127.5, 126.7, 126.1, 124.3, 117.9,

113.7, 61.7, 55.4, 46.8, 34.3, 30.2, 24.2, 8.0. HRMS (ESI): exact mass calculated for M^+ (C₃₃H₃₉ClNO₅) requires m/z 564.2517, found m/z 564.2513. The enantiomeric ratio was determined to be 98:2 by HPLC. [IC column, 254 nm, *n*-hexane:EtOH = 85:15, 0.8 mL/min]: 11.4 min (major), 15.0 min (minor).

N-((3*R*,4*S*)-6-bromo-4-(3,5-di*-tert*-butyl-4-hydroxyphenyl)-3-ethyl-2-oxochroman -3-yl)-4-methoxybenzamide (3da)

135.7, 131.5, 131.3, 129.0, 127.5, 127.1, 126.1, 124.3, 118.3, 116.8, 113.7, 61.7, 55.4, 46.7, 34.3, 30.2, 24.2, 7.9. HRMS (ESI): exact mass calculated for $M^+(C_{33}H_{39}BrNO_5)$ requires m/z 608.2012, found m/z 608.2009. The enantiomeric ratio was determined to be 97:3 by HPLC. [IC column, 254 nm, *n*-hexane:EtOH = 85:15, 0.8 mL/min]: 11.7 min (major), 15.6 min (minor).

N-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-ethyl-6-methyl-2-oxochroman -3-yl)-4-methoxybenzamide (3ea)

Br

White solid, 87% yield. ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.65 (d, J = 10.0 Hz, 2H), 7.07-7.05 (m, 1H), 7.00-6.99 (m, 1H), 6.97 (s, 2H), 6.95 (s, 1H), 6.88 (d, J = 10.0 Hz, 2H), 5.72 (s, 1H), 5.46 (s, 1H), 5.21 (s, 1H), 3.84 (s, 3H), 2.25 (s, 3H), 2.09-2.01 (m, 1H), 1.64-1.56 (m, 1H), 1.32 (s, 18H), 0.96 (t, J = 10.0 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 166.6, 166.5, 162.4,

153.4, 148.8, 135.4, 133.7, 129.1, 129.0, 128.8, 127.5, 126.4, 125.2, 124.2, 116.3, 113.7, 62.0, 55.4, 46.9, 34.3, 30.3, 24.0, 20.8, 8.0. HRMS (ESI): exact mass calculated for M^+ ($C_{34}H_{42}NO_5$) requires m/z 544.3063, found m/z 544.3059. The enantiomeric ratio was determined to be 97:3 by HPLC. [IC column, 254 nm, *n*-hexane:EtOH = 85:15, 0.8 mL/min]: 17.4 min (major), 20.1 min (minor).

N-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-ethyl-7-methoxy-2-oxochrom an-3-yl)-4-methoxybenzamide (3fa)

White solid, 85% yield. ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.65 (d, J = 10.0 Hz, 2H), 7.02 (d, J = 10.0 Hz, 1H), 6.95 (s, 2H), 6.88 (d, J = 10.0 Hz, 2H), 6.67 (s, 1H), 6.62-6.60 (m, 1H), 5.73 (s, 1H), 5.41 (s, 1H), 5.20 (s, 1H), 3.84 (s, 3H), 3.80 (s, 3H), 2.10-2.03 (m, 1H),

S4

1.61-1.55 (m, 1H), 1.31 (s, 18H), 0.96 (t, J = 10.0 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 166.5, 166.4, 162.5, 159.7, 153.3, 151.6, 135.4, 129.3, 129.0, 127.5, 126.4, 125.5, 116.4, 113.7, 110.2, 102.0, 62.0, 55.5, 55.4, 46.3, 34.3, 30.2, 24.6, 8.0. HRMS (ESI): exact mass calculated for M⁺ (C₃₄H₄₂NO₆) requires m/z 560.3012, found m/z 560.3010. The enantiomeric ratio was determined to be 94:6 by HPLC. [IC column, 254 nm, *n*-hexane:EtOH = 85:15, 0.8 mL/min]: 14.7 min (major), 26.3 min (minor).

N-((1*S*,2*R*)-1-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-ethyl-3-oxo-2,3-dihydro-1*H*-benzo[*f*]chromen-2-yl)-4-methoxybenzamide (3ga)

White solid, 89% yield. ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.94-7.92 (m, 1H), 7.83-7.79 (m, 2H), 7.52-7.49 (m, 1H), 7.42-7.39 (m, 1H), 7.33-7.28 (m, 3H), 7.05 (s, 2H), 6.71-6.67 (m, 2H), 5.88 (s, 1H), 5.16 (s, 1H), 4.90 (s, 1H), 3.73 (s, 3H), 2.64-2.57 (m, 1H), 1.65-1.58 (m, 1H), 1.36 (s, 18H), 1.10 (t, J = 10.0 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 166.6, 166.3, 162.3, 153.5, 149.6, 136.2,

131.5, 130.9, 129.9, 128.9, 128.7, 127.3, 126.2, 125.8, 125.1, 124.9, 122.8, 117.0, 113.7, 113.6, 61.1, 55.3, 48.2, 34.3, 30.2, 22.8, 7.6. HRMS (ESI): exact mass calculated for M^+ (C₃₇H₄₂NO₅) requires m/z 580.3063, found m/z 580.3059. The enantiomeric ratio was determined to be 82:18 by HPLC. [IC column, 254 nm, *n*-hexane:EtOH = 85:15, 0.8 mL/min]: 9.9 min (minor), 17.1 min (major).

N-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-oxo-3-propylchroman-3-yl)-4-methoxybenzamide (3ab)

White solid, 87% yield. ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.64 (d, J = 10.0 Hz, 2H), 7.30-7.26 (m, 1H), 7.14-7.10 (m, 2H), 7.08-7.05 (m, 1H), 6.97 (s, 2H), 6.88 (d, J = 10.0 Hz, 2H), 5.76 (s, 1H), 5.50 (s, 1H), 5.22 (s, 1H), 3.84 (s, 3H), 1.99-1.92 (m, 1H), 1.54-1.48 (m, 1H), 1.44-1.36 (m, 2H), 1.32 (s, 18H), 0.86 (t, J = 10.0 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 166.7, 166.5, 162.5,

153.4, 150.9, 135.5, 129.0, 128.6, 128.4, 127.5, 126.3, 125.1, 124.7, 124.2, 116.6, 113.7, 61.6, 55.4, 47.0, 34.3, 33.8, 30.2, 16.8, 14.1. HRMS (ESI): exact mass calculated for M^+ ($C_{34}H_{42}NO_5$) requires m/z 544.3063, found m/z 544.3061. The enantiomeric ratio was determined to be 92:8 by HPLC. [IA column, 254 nm, *n*-hexane:EtOH = 9:1, 0.8 mL/min]: 12.1 min (minor), 14.9 min (major).

N-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-isopropyl-2-oxochroman-3-yl) -4-methoxybenzamide (3ac)

White solid, 72% yield. ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.62 (d, J = 10.0 Hz, 2H), 7.24-7.21 (m, 1H), 7.09-7.07 (m, 2H), 7.04-7.01 (m, 3H), 6.88 (d, J = 10.0 Hz,

2H), 5.85 (s, 1H), 5.36 (s, 1H), 5.23 (s, 1H), 3.84 (s, 3H), 2.16-2.10 (m, 1H), 1.32 (s, 18H), 1.05 (d, J = 10.0 Hz, 3H), 1.01 (d, J = 10.0 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 166.0, 165.7, 162.5, 153.4, 151.2, 135.7, 128.8, 128.2, 127.3, 127.2, 126.2, 125.9, 125.3, 124.1, 116.4, 113.8, 63.6, 55.4, 48.0, 34.3, 31.9, 30.2, 18.8, 18.0. HRMS (ESI): exact mass calculated for M⁺ (C₃₄H₄₂NO₅) requires

m/z 544.3063, found m/z 544.3058. The enantiomeric ratio was determined to be 96:4 by HPLC. [IC column, 254 nm, *n*-hexane:EtOH = 85:15, 0.8 mL/min]: 16.3 min (major), 19.1 min (minor).

N-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-isobutyl-2-oxochroman-3-yl)-4-methoxybenzamide (3ad)

White solid, 87% yield. ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.64 (d, J = 10.0 Hz, 2H), 7.30-7.27 (m, 1H), 7.12-7.10 (m, 2H), 7.08-7.05 (m, 1H), 6.96 (s, 2H), 6.89 (d, J = 10.0 Hz, 2H), 5.74 (s, 1H), 5.64 (s, 1H), 5.21 (s, 1H), 3.84 (s, 3H), 1.98-1.94 (m, 2H), 1.87-1.79 (m, 1H), 1.31 (s, 18H), 1.00 (d, J = 5.0 Hz, 3H), 0.88 (d, J = 5.0 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 166.4, 166.2, 162.4,

153.4, 150.8, 135.3, 128.9, 128.7, 128.4, 127.8, 126.5, 124.9, 124.8, 124.1, 116.5, 113.7, 61.8, 55.4, 47.0, 40.1, 34.3, 30.3, 24.3, 24.2, 24.1. HRMS (ESI): exact mass calculated for M^+ (C₃₄H₄₄NO₅) requires m/z 558.3219, found m/z 558.3215. The enantiomeric ratio was determined to be 91:9 by HPLC. [IC column, 254 nm, *n*-hexane:EtOH = 85:15, 0.8 mL/min]: 10.8 min (minor), 13.9 min (major).

N-((3*S*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-oxo-3-phenylchroman-3-yl)-4-methoxybenzamide (3ae)

White solid, 88% yield. ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.74 (d, J = 10.0 Hz, 2H), 7.31-7.29 (m, 1H), 7.26-7.25 (m, 1H), 7.18-7.15 (m, 2H), 7.02-7.00 (m, 2H), 6.93 (d, J = 10.0 Hz, 2H), 6.78 (d, J = 10.0 Hz, 2H), 6.50-6.49 (m, 3H), 5.90 (s, 1H), 5.19 (s, 1H), 3.86 (s, 3H), 1.21 (s, 18H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 167.9, 167.4, 162.7, 153.5, 151.1, 135.1, 134.7, 129.1, 128.9, 128.7,

128.5, 128.4, 126.7, 126.4, 124.5, 124.3, 124.0, 116.8, 113.8, 66.4, 55.4, 48.4, 34.1, 30.1. HRMS (ESI): exact mass calculated for $M^+(C_{37}H_{40}NO_5)$ requires m/z 578.2906, found m/z 578.2902. The enantiomeric ratio was determined to be 97:3 by HPLC. [IC column, 254 nm, *n*-hexane:EtOH = 85:15, 0.8 mL/min]: 15.6 min (major), 25.5 min (minor).

N-((3*R*,4*S*)-3-benzyl-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-oxochroman-3-yl)-4-methoxybenzamide (3af)

White solid, 83% yield. ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.47 (d, J = 10.0 Hz, 2H), 7.31-7.27 (m, 4H), 7.19-7.16 (m, 2H), 7.10 (s, 2H), 7.08-7.05 (m, 3H), 6.83 (d, J = 10.0 Hz, 2H), 5.81 (s, 1H), 5.40 (s, 1H), 5.26 (s, 1H), 3.82 (s, 3H), 3.47 (d, J = 15.0 Hz, 1H), 2.92 (d, J = 15.0 Hz, 1H), 1.37 (s, 18H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 166.7, 166.2, 162.4, 153.5, 150.9, 135.7, 134.1, 130.4, 128.9,

128.8, 128.7, 128.6, 127.7, 127.3, 126.4, 125.6, 124.7, 124.2, 116.6, 113.7, 61.8, 55.4, 48.1, 36.2, 34.4, 30.3. HRMS (ESI): exact mass calculated for M^+ ($C_{38}H_{42}NO_5$) requires m/z 592.3063, found m/z 592.3057. The enantiomeric ratio was determined to be 99:1 by HPLC. [IC column, 254 nm, *n*-hexane:EtOH = 85:15, 0.8 mL/min]: 13.7 min (major), 16.7 min (minor).

N-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-(2-(methylthio)ethyl)-2-oxoch roman-3-yl)-4-methoxybenzamide (3ag)

White solid, 86% yield. ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.68 (d, J = 10.0 Hz, 2H), 7.30-7.27 (m, 1H), 7.16-7.06 (m, 3H), 6.97 (s, 2H), 6.88 (d, J = 10.0 Hz, 2H), 6.70 (s, 1H), 5.58 (s, 1H), 5.23 (s, 1H), 3.84 (s, 3H), 2.67-2.56 (m, 2H), 2.27-2.21 (m, 1H), 2.01 (s, 3H), 1.98-1.92 (m, 1H), 1.31 (s, 18H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 166.5, 166.4, 162.5, 153.5, 150.7, 135.6,

129.1, 128.7, 128.5, 127.6, 126.0, 124.7, 124.4, 124.3, 116.6, 113.7, 62.0, 55.4, 47.0, 34.3, 30.2, 29.3, 28.0, 15.6. HRMS (ESI): exact mass calculated for $M^+(C_{34}H_{42}NO_5S)$ requires m/z 576.2784, found m/z 576.2780. The enantiomeric ratio was determined to be 91:9 by HPLC. [IC column, 254 nm, *n*-hexane:EtOH = 85:15, 0.8 mL/min]: 13.5 min (major), 15.6 min (minor).

N-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-ethyl-2-oxochroman-3-yl)-4-fluorobenzamide (3ah)

White solid, 72% yield. ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.71-7.68 (m, 2H), 7.30-7.27 (m, 1H), 7.14-7.10 (m, 2H), 7.08-7.05 (m, 3H), 6.97 (s, 2H), 5.81 (s, 1H), 5.54 (s, 1H), 5.23 (s, 1H), 2.10-2.02 (m, 1H), 1.68-1.64 (m, 1H), 1.32 (s, 18H), 0.97 (t, J = 10.0 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 166.2, 166.0, 164.9 (d, J = 1000.0 Hz), 153.5, 150.8, 135.6, 130.2 (d, J =

10.0 Hz), 129.5 (d, J = 35.0 Hz), 128.6 (d, J = 100.0 Hz), 127.5, 124.9, 124.6, 124.2, 116.6, 115.7, 115.5, 62.2, 46.8, 34.3, 30.2, 24.1, 8.0. HRMS (ESI): exact mass calculated for M⁺ (C₃₂H₃₇FNO₄) requires m/z 518.2707, found m/z 518.2701. The enantiomeric ratio was determined to be 96:4 by HPLC. [IC column, 254 nm, *n*-hexane:EtOH = 85:15, 0.8 mL/min]: 6.5 min (major), 9.1 min (minor).

4-Chloro-*N*-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-ethyl-2-oxochroman -3-yl)benzamide (3ai)

White solid, 85% yield. ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.62-7.60 (m, 2H), 7.37-7.35 (m, 2H), 7.30-7.26 (m, 1H), 7.14-7.10 (m, 2H), 7.08-7.05 (m, 1H), 6.96 (s, 2H), 5.84 (s, 1H), 5.52 (s, 1H), 5.23 (s, 1H), 2.10-2.03 (m, 1H), 1.69-1.63 (m, 1H), 1.32 (s, 18H), 0.97 (t, *J* = 5.0 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 166.2, 166.1, 153.5, 150.8, 138.1, 135.6, 132.5, 128.8,

128.7, 128.6, 128.5, 127.5, 124.9, 124.6, 124.3, 116.6, 62.2, 46.8, 34.3, 30.2, 24.1, 8.0. HRMS (ESI): exact mass calculated for $M^+(C_{32}H_{37}CINO_4)$ requires m/z 534.2411, found m/z 534.2407. The enantiomeric ratio was determined to be 97:3 by HPLC. [IC column, 254 nm, *n*-hexane:EtOH = 85:15, 0.8 mL/min]: 6.5 min (major), 9.1 min (minor).

N-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-ethyl-2-oxochroman-3-yl)-4-methylbenzamide (3aj)

White solid, 87% yield. ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.57 (d, J = 10.0 Hz, 2H), 7.29-7.28 (m, 1H), 7.19 (d, J = 10.0 Hz, 2H), 7.14-7.10 (m, 2H), 7.07-7.04 (m, 1H), 6.97 (s, 2H), 5.79 (s, 1H), 5.53 (s, 1H), 5.21 (s, 1H), 2.38 (s, 3H), 2.10-2.02 (m, 1H), 1.67-1.63 (m, 1H), 1.32 (s, 18H), 0.97 (t, J = 10.0 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 167.1, 166.3, 153.4, 150.9,

142.3, 135.5, 131.2, 129.1, 128.7, 128.4, 127.6, 127.1, 125.1, 124.7, 124.1, 116.6, 62.0, 46.9, 34.3, 30.2, 24.1, 24.5, 8.0. HRMS (ESI): exact mass calculated for M^+ (C₃₃H₄₀NO₄) requires m/z 514.2957, found m/z 514.2950. The enantiomeric ratio was determined to be 95:5 by HPLC. [IC column, 254 nm, *n*-hexane:EtOH = 85:15, 0.8 mL/min]: 10.3 min (major), 12.9 min (minor).

3-Chloro-*N*-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-ethyl-2-oxochroman -3-yl)benzamide (3ak)

White solid, 91% yield. ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.62 (s, 1H), 7.57-7.55 (m, 1H), 7.47-7.45 (m, 1H), 7.35-7.26 (m, 2H), 7.14-7.10 (m, 2H), 7.08-7.05 (m, 1H), 6.97 (s, 2H), 5.85 (s, 1H), 5.52 (s, 1H), 5.24 (s, 1H), 2.09-2.04 (m, 1H), 1.70-1.66 (m, 1H), 1.33 (s, 18H), 0.97 (t, J = 10.0 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 166.1, 165.9, 153.5, 150.8, 135.9, 135.6, 134.6, 131.9,

129.9, 128.7, 128.5, 127.5, 127.3, 125.4, 124.9, 124.5, 124.3, 116.6, 62.3, 46.7, 34.3, 30.2, 24.1, 8.0. HRMS (ESI): exact mass calculated for $M^+(C_{32}H_{37}ClNO_4)$ requires m/z 534.2411, found m/z 534.2406. The enantiomeric ratio was determined to be 92:8

by HPLC. [IC column, 254 nm, *n*-hexane:EtOH = 9:1, 0.8 mL/min]: 9.0 min (major), 12.5 min (minor).

3-Bromo-*N*-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-ethyl-2-oxochroman -3-yl)benzamide (3al)

White solid, 87% yield. ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.77 (s, 1H), 7.63-7.61 (m, 2H), 7.30-7.26 (m, 2H), 7.14-7.10 (m, 2H), 7.08-7.05 (m, 1H), 6.97 (s, 2H), 5.82 (s, 1H), 5.52 (s, 1H), 5.24 (s, 1H), 2.09-2.04 (m, 1H), 1.69-1.64 (m, 1H), 1.33 (s, 18H), 0.97 (t, *J* = 10.0 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 166.0, 165.8, 153.5, 150.8, 136.2, 135.6, 134.8, 130.2, 130.1, 128.7, 128.5,

127.5, 125.9, 124.9, 124.5, 124.3, 122.6, 116.6, 62.3, 46.7, 34.3, 30.2, 24.1, 8.0. HRMS (ESI): exact mass calculated for $M^+(C_{32}H_{37}BrNO_4)$ requires m/z 578.1906, found m/z 578.1901. The enantiomeric ratio was determined to be 93:7 by HPLC. [IC column, 254 nm, *n*-hexane:EtOH = 9:1, 0.8 mL/min]: 9.5 min (major), 13.5 min (minor).

N-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-ethyl-2-oxochroman-3-yl)-3-methylbenzamide (3am)

White solid, 94% yield. ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.50 (s, 1H), 7.44-7.42 (m, 1H), 7.31-7.25 (m, 3H), 7.14-7.11 (m, 2H), 7.08-7.05 (m, 1H), 6.98 (s, 2H), 5.79 (s, 1H), 5.55 (s, 1H), 5.22 (s, 1H), 2.36 (s, 3H), 2.10-2.02 (m, 1H), 1.68-1.62 (m, 1H), 1.32 (s, 18H), 0.98 (t, *J* = 10.0 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 167.4, 166.2, 153.4, 150.9, 138.4, 135.5, 134.1, 132.6, 128.7, 128.4,

128.3, 127.8, 127.6, 125.1, 124.7, 124.2, 124.1, 116.6, 62.0, 46.8, 34.3, 30.2, 24.1, 21.3, 8.0. HRMS (ESI): exact mass calculated for M^+ ($C_{33}H_{40}NO_4$) requires m/z 514.2957, found m/z 514.2952. The enantiomeric ratio was determined to be 92:8 by HPLC. [IC column, 254 nm, *n*-hexane:EtOH = 85:15, 0.8 mL/min]: 9.3 min (major), 11.4 min (minor).

2-Bromo-*N*-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-ethyl-2-oxochroman -3-yl)benzamide (3an)

White solid, 92% yield. ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.55-7.52 (m, 2H), 7.33-7.28 (m, 2H), 7.25-7.23 (m, 1H), 7.14-7.13 (m, 1H), 7.08-7.04 (m, 2H), 7.00 (s, 2H), 6.06 (s, 1H), 5.24 (s, 1H), 5.22 (s, 1H), 2.24-2.17 (m, 1H), 1.74-1.66 (m, 1H), 1.37 (s, 18H), 1.02 (t, *J* = 10.0 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 166.3, 165.9, 153.5, 151.1, 136.2, 135.8, 133.7, 131.8, 130.7, 129.0, 128.6,

127.5, 126.9, 125.6, 125.0, 124.3, 119.3, 116.5, 62.7, 48.1, 34.3, 30.3, 23.9, 8.1. HRMS (ESI): exact mass calculated for $M^+(C_{32}H_{37}BrNO_4)$ requires m/z 578.1906, found m/z 578.1900. The enantiomeric ratio was determined to be 93:7 by HPLC. [IC column, 254 nm, *n*-hexane:EtOH = 85:15, 0.8 mL/min]: 9.2 min (major), 13.6 min (minor).

N-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-ethyl-2-oxochroman-3-yl)-2-naphthamide (3ao)

White solid, 91% yield. ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 8.15 (s, 1H), 7.86-7.84 (m, 3H), 7.74-7.72 (m, 1H), 7.57-7.50 (m, 2H), 7.31-7.28 (m, 1H), 7.17-7.13 (m, 2H), 7.09-7.06 (m, 1H), 7.03 (s, 2H), 6.01 (s, 1H), 5.60 (s, 1H), 5.22 (s, 1H), 2.16-2.08 (m, 1H), 1.75-1.68 (m, 1H), 1.31 (s, 18H), 1.02 (t, J = 10.0 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 167.4, 166.3, 153.5, 150.9, 135.6,

134.9, 132.4, 131.4, 128.8, 128.7, 128.5, 128.4, 127.8, 127.7, 127.6, 127.5, 126.8, 125.1, 124.7, 124.2, 123.6, 116.6, 62.2, 47.0, 34.3, 30.2, 24.2, 8.1. HRMS (ESI): exact mass calculated for $M^+(C_{36}H_{40}NO_4)$ requires m/z 550.2957, found m/z 550.2951. The enantiomeric ratio was determined to be 94:6 by HPLC. [IC column, 254 nm, *n*-hexane:EtOH = 85:15, 0.8 mL/min]: 9.6 min (major), 12.7 min (minor).

N-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-ethyl-2-oxochroman-3-yl)fura n-2-carboxamide (3ap)

White solid, 91% yield. ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.37 (s, 1H), 7.30-7.27 (m, 1H), 7.21-7.20 (m, 1H), 7.18-7.16 (m, 1H), 7.11 (d, J = 10.0 Hz, 1H), 7.08-7.05 (m, 1H), 6.96 (s, 2H), 6.51 (s, 1H), 6.04 (s, 1H), 5.52 (s, 1H), 5.21 (s, 1H), 2.04-1.97 (m, 1H), 1.62-1.55 (m, 1H), 1.31 (s, 18H), 0.96 (t, J = 10.0 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 166.1, 157.7, 153.4, 150.8, 147.5, 143.8,

135.4, 128.7, 128.4, 127.6, 124.7, 124.3, 124.2, 116.6, 115.2, 112.4, 61.8, 46.7, 34.3, 30.2, 24.0, 7.9. HRMS (ESI): exact mass calculated for $M^+(C_{30}H_{36}NO_5)$ requires m/z 490.2593, found m/z 490.2589. The enantiomeric ratio was determined to be 91:9 by HPLC. [IC column, 254 nm, *n*-hexane:EtOH = 85:15, 0.8 mL/min]: 11.1 min (major), 16.1 min (minor).

N-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-ethyl-2-oxochroman-3-yl)thio phene-2-carboxamide (3aq)

White solid, 98% yield. ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.48-7.47 (m, 1H), 7.43-7.42 (m, 1H), 7.29-7.26 (m, 1H), 7.15-7.14 (m, 1H), 7.11-7.10 (m, 1H), 7.08-7.05 (m, 1H), 7.05-7.02 (m, 1H), 6.98 (s, 2H), 5.67 (s, 1H), 5.52 (s, 1H), 5.22 (s, 1H), 2.07-2.00 (m, 1H), 1.65-1.57 (m, 1H), 1.31 (s, 18H), 0.97 (t, *J* = 10.0 Hz, 3H).

¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 166.1, 161.4, 153.5, 150.8, 138.1, 135.5, 130.5, 128.8, 128.7, 128.5, 127.6, 127.5, 124.8, 124.5, 124.2, 116.6, 62.2, 46.8, 34.3, 30.2, 24.1, 8.0. HRMS (ESI): exact mass calculated for M⁺ (C₃₀H₃₀NO₄S) requires m/z 506.2365, found m/z 506.2360. The enantiomeric ratio was determined to be 94:6 by HPLC. [IC column, 254 nm, *n*-hexane:EtOH = 85:15, 0.8 mL/min]:

10.0 min (major), 13.0 min (minor).

D: De-tert-butylation reaction.

To a solution of **3aa** (17.1 mg, 0.032 mmol) in dry toluene (1.5 mL) was added AlCl₃ (21.5 mg, 5.0 eq) in one portion. The reaction solution was stirred at room temperature for 24 h and 1.5 mL H₂O was added to quench the reaction. The aqueous phase was extracted with CH₂Cl₂ (3×1.0 mL) and the organic layer was dried with anhydrous Na₂SO₄ and reduced in vacum to give a residue, which was purified by column chromatography to afford the product **5** as a white solid (10.7 mg, 80% yield, 94:6 e.r., >20:1 d.r.).

N-((3*R*,4*S*)-3-ethyl-4-(4-hydroxyphenyl)-2-oxochroman-3-yl)-4-methoxybenzami de (5)

White solid, 80% yield. ¹H NMR ((CD₃)₂SO, 500 MHz): δ (ppm) 9.46 (s, 1H), 8.13 (s, 1H), 7.56 (d, *J* = 10.0 Hz, 2H), 7.25-7.22 (m, 1H), 7.10-7.04 (m, 3H), 6.92 (d, *J* = 10.0 Hz, 2H), 6.87 (d, *J* = 10.0 Hz, 2H), 6.70 (d, *J* = 10.0 Hz, 2H), 4.89 (s, 1H), 3.75 (s, 3H), 1.96-1.88 (m, 1H), 1.51-1.44 (m, 1H), 0.89 (t, *J* = 10.0 Hz, 3H). ¹³C NMR ((CD₃)₂SO, 125 MHz): δ (ppm) 167.1, 166.4, 162.2, 157.3, 151.6, 130.7,

129.8, 129.7, 128.8, 127.2, 126.3, 125.9, 124.4, 115.9, 115.8, 113.9, 61.1, 55.8, 48.4, 24.5, 8.3. HRMS (ESI): exact mass calculated for M^+ ($C_{25}H_{24}NO_5$) requires m/z 418.1654, found m/z 418.1650. The enantiomeric ratio was determined to be 94:6 by HPLC. [IC column, 254 nm, *n*-hexane:EtOH = 85:15, 0.8 mL/min]: 19.8 min (major), 25.0 min (minor).

N-((3*R*,4*S*)-3-ethyl-4-(4-hydroxyphenyl)-2-oxochroman-3-yl)-4-methoxybenzame (5)

N-((3*R*,4*S*)-3-ethyl-4-(4-hydroxyphenyl)-2-oxochroman-3-yl)-4-methoxybenzami de (5)

E: Mechanistic study

To a solution of CCl_4 (0.3 mL) were added Ac (or TBS)-protected quinone methides **6** (0.05 mmol), azlactone **2a** (0.075 mmol) and catalyst **4e** (0.005 mmol). The reaction mixture was stirred at room temperature for 72 h. The reaction was monitored by TLC analysis, which indicated that almost no reaction occurred.

F: HPLC Analysis

N-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-ethyl-6-fluoro-2-oxochroman-3-yl)-4-methoxybenzamide (3ba)

N-((3*R*,4*S*)-6-chloro-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-ethyl-2-oxochroman -3-yl)-4-methoxybenzamide (3ca)

N-((3*R*,4*S*)-6-bromo-4-(3,5-di*-tert*-butyl-4-hydroxyphenyl)-3-ethyl-2-oxochroman -3-yl)-4-methoxybenzamide (3da)

N-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-ethyl-6-methyl-2-oxochroman -3-yl)-4-methoxybenzamide (3ea)

N-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-ethyl-7-methoxy-2-oxochrom an-3-yl)-4-methoxybenzamide (3fa)

N-((1S,2R)-1-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-ethyl-3-oxo-2,3-dihydro-1H-benzo[f]chromen-2-yl)-4-methoxybenzamide (3ga)

N-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-oxo-3-propylchroman-3-yl)-4-methoxybenzamide (3ab)

N-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-isopropyl-2-oxochroman-3-yl) -4-methoxybenzamide (3ac)

N-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-isobutyl-2-oxochroman-3-yl)-4-methoxybenzamide (3ad)

N-((3*S*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-oxo-3-phenylchroman-3-yl)-4-methoxybenzamide (3ae)

N-((3*R*,4*S*)-3-benzyl-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-oxochroman-3-yl)-4-methoxybenzamide (3af)

N-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-(2-(methylthio)ethyl)-2-oxoch roman-3-yl)-4-methoxybenzamide (3ag)

N-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-ethyl-2-oxochroman-3-yl)-4-fluorobenzamide (3ah)

4-Chloro-*N*-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-ethyl-2-oxochroman -3-yl)benzamide (3ai)

N-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-ethyl-2-oxochroman-3-yl)-4-methylbenzamide (3aj)

3-Chloro-*N*-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-ethyl-2-oxochroman -3-yl)benzamide (3ak)

3-Bromo-*N*-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-ethyl-2-oxochroman -3-yl)benzamide (3al)

N-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-ethyl-2-oxochroman-3-yl)-3-methylbenzamide (3am)

2-Bromo-*N*-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-ethyl-2-oxochroman -3-yl)benzamide (3an)

N-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-ethyl-2-oxochroman-3-yl)-2-naphthamide (3ao)

N-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-ethyl-2-oxochroman-3-yl)thio phene-2-carboxamide (3aq)

G: NMR Analysis

N-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-ethyl-2-oxochroman-3-yl)-4-methoxybenzamide (3aa)

N-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-ethyl-6-fluoro-2-oxochroman-3-yl)-4-methoxybenzamide (3ba)

N-((3*R*,4*S*)-6-chloro-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-ethyl-2-oxochroman -3-yl)-4-methoxybenzamide (3ca)

N-((3*R*,4*S*)-6-bromo-4-(3,5-di*-tert*-butyl-4-hydroxyphenyl)-3-ethyl-2-oxochroman -3-yl)-4-methoxybenzamide (3da)

f1 (ppm)

N-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-ethyl-7-methoxy-2-oxochrom an-3-yl)-4-methoxybenzamide (3fa)

f1 (ppm)

N-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-isopropyl-2-oxochroman-3-yl) -4-methoxybenzamide (3ac)

N-((3*S*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-oxo-3-phenylchroman-3-yl)-4-methoxybenzamide (3ae)

S50

N-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-(2-(methylthio)ethyl)-2-oxoch roman-3-yl)-4-methoxybenzamide (3ag)

N-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-ethyl-2-oxochroman-3-yl)-4-fluorobenzamide (3ah)

4-Chloro-*N*-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-ethyl-2-oxochroman -3-yl)benzamide (3ai)

N-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-ethyl-2-oxochroman-3-yl)-4-methylbenzamide (3aj)

f1 (ppm)

3-Chloro-*N*-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-ethyl-2-oxochroman -3-yl)benzamide (3ak)

3-Bromo-*N*-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-ethyl-2-oxochroman -3-yl)benzamide (3al)

N-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-ethyl-2-oxochroman-3-yl)-3-methylbenzamide (3am)

2-Bromo-*N*-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-ethyl-2-oxochroman -3-yl)benzamide (3an)

N-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-ethyl-2-oxochroman-3-yl)-2-naphthamide (3ao)

N-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-ethyl-2-oxochroman-3-yl)fura n-2-carboxamide (3ap)

N-((3*R*,4*S*)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-ethyl-2-oxochroman-3-yl)thio phene-2-carboxamide (3aq)

H: Absolute Configuration and X-Ray Analysis Data

Identification code	3an
Empirical formula	$C_{32}H_{36}BrNO_4$
Formula weight	578.53
Temperature/K	150.0
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å	10.3304(5)
b/Å	11.1679(5)
c/Å	24.5971(12)
α/°	90
β/°	90
$\gamma^{/\circ}$	90
Volume/Å ³	2837.7(2)
Z	4
$\rho_{calc}g/cm^3$	1.354
μ/mm^{-1}	1.486
F(000)	1208.0
Crystal size/mm ³	$0.42 \times 0.38 \times 0.31$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/	° 4.926 to 52.864
Index ranges	$-12 \le h \le 12, -13 \le k \le 13, -30 \le l \le 30$
Reflections collected	57777
Independent reflections	5823 [$R_{int} = 0.0487, R_{sigma} = 0.0234$]
Data/restraints/parameters	5823/8/351
Goodness-of-fit on F ²	1.038
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0337, wR_2 = 0.0815$
Final R indexes [all data]	$R_1 = 0.0396, wR_2 = 0.0848$
Largest diff. peak/hole / e Å ⁻	³ 0.78/-0.73
Flack parameter	0.127(2)

Table Crystal data and structure refinement for 3an.

I: Reference

- 1. K. Zhao, Y. Zhi, T. Shu, A. Valkonen, K. Rissanen, D. Enders, *Angew. Chem. Int. Ed.* **2016**, *55*, 12104-12108.
- 2. T. Wang, Z. Yu, D. L. Hoon, C. Y. Phee, Y. Lan, Y. Lu, J. Am. Chem. Soc. 2016, 138, 265-271.