Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Highly Regioselective Gold-Catalyzed Formal Hydration of Propargylic *gem*-Difluorides

Jean-Denys Hamel, Tatsuru Hayashi, Mélissa Cloutier, Paul R. Savoie, Olivier Thibeault, Meggan Beaudoin and Jean-François Paquin*

CCVC, PROTEO, Département de chimie, 1045 avenue de la Médecine, Université Laval, Québec, Québec, Canada G1V 0A6 *jean-francois.paquin@chm.ulaval.ca*

Table of contents

1.	General information	2
2.	Optimization of the gold-catalyzed formal hydration reaction	3
3.	Preparation of propargylic gem-difluorides	4
4.	Gold-catalyzed formal hydration of propargylic gem-difluorides	31
5.	Reduction of 3,3-difluoroketone 2f	42
6.	Hydration of non-fluorinated substrates	43
7.	¹ H, ¹⁹ F and ¹³ C NMR spectra	46
8.	DFT calculations	183
9.	References	246

1. General information

The following includes general experimental procedures, specific details for representative reactions, and isolation and spectroscopic information for the new compounds prepared. All reactions were carried out under an argon atmosphere with dry solvents. Et₂O, THF, CH₃CN, CH₂Cl₂ and toluene were purified using a Vacuum Atmospheres Inc. Solvent Purification System. All other commercially available compounds were used as received. Thin-layer chromatography (TLC) analysis of reaction mixtures was performed using Silicycle silica gel 60 Å F254 TLC plates, and visualized under UV or by staining with either potassium permanganate, *p*-anisaldehyde or phosphomolybdic acid. Flash column chromatography was carried out on Silicycle silica gel 60 Å, 230-400 mesh. ¹H, ¹³C and ¹⁹F NMR spectra were recorded in CDCl₃ at ambient temperature using Agilent DD2 500 and Varian Inova 400 spectrometers. ¹H and ¹³C NMR chemical shifts are reported in ppm downfield of tetramethylsilane and are respectively referenced to tetramethylsilane ($\delta = 0.00$ ppm) and residual solvent ($\delta =$ 77.16 ppm). For ¹⁹F NMR, CFCl₃ is used as the external standard. Multiplicities are reported using the following abbreviations: s = singlet, d = doublet, t = triplet, q =quartet, p = pentet, sext = sextet, m = multiplet, bs = broad signal. High-resolution mass spectra were obtained on a LC/MS-TOF Agilent 6210 using electrospray ionization (ESI) or atmospheric pressure photoionization (APPI). Infrared spectra were recorded using a Thermo Scientific Nicolet 380 FT-IR spectrometer. Melting points were recorded on a Stanford Research System OptiMelt capillary melting point apparatus and are uncorrected.

2. Optimization of the gold-catalyzed formal hydration reaction

	F_F	E [Au] cat. (5 mol % Additive	5)) J	K F F	MeO F F			~	F	2	
	Ph	n-Pr Solvent (0.1 M)	► Ph	<i>∽ n</i> -Pr +	Ph n	-Pr +	Ph⁄	\bigvee_{0}		∽ `N	le
	1a	temp., 18 h	2a;	K = O = MeO, MeO	4			5 (<i>E-</i> i 6 (<i>Z</i> -i	isome some	er) er)	
Entry	[Au] cat.	Solvent	Temp [°C]	Additive (mol %)	Conversion [%] ^[b]	Yield [%] ^[b]			Yield of $2a + 3 + 4$ [%] ^[b]		
						2a	3	4	5	6	
1	AuCl ₃	CH ₂ Cl ₂ /MeOH (1:1)	40	-	48	17	-	-	7	5	17
2	Ph ₃ PAuCl	CH ₂ Cl ₂ /MeOH (1:1)	40	-	16	-	-	-	6	5	-
3	Ph ₃ PAuCl	CH ₂ Cl ₂ /MeOH (1:1)	40	AgOTf (5)	100	17	15	-	-	-	32
4	Ph ₃ PAuCl	MeOH	40	AgOTf (5)	100	7	20	-	-	-	27
5	Ph ₃ PAuCl	PhMe/MeOH (1:1)	40	AgOTf (5)	100	20	19	-	-	-	39
6	Ph ₃ PAuCl	CHCl ₃ /MeOH (1:1)	40	AgOTf (5)	21	6	-	-	2	-	6
7	Ph ₃ PAuCl	THF/MeOH (1:1)	40	AgOTf (5)	100	57	21	-	-	-	78
8	Ph ₃ PAuCl	THF/MeOH (1:1)	21	AgOTf (5)	100	55	25	4	-	-	84
9	Ph ₃ PAuCl	THF/MeOH (1:1)	0	AgOTf (5)	79	2	5	71	1	-	79
10	Ph ₃ PAuCl	THF/MeOH (1:1)	21	$Ag(NTf)_2(5)$	100	44	13	24	-	-	81
11	(naph) ₃ PAuCl	THF/MeOH (1:1)	21	AgOTf (5)	100	38	4	23	-	-	65
12	Me ₂ SAuCl	THF/MeOH (1:1)	21	AgOTf (5)	37	18	-	10	-	-	28
13	IMesAuCl	THF/MeOH (1:1)	21	AgOTf (5)	100	54	3	22	-	-	79
14	Ph ₃ PAuCl	THF/MeOH (9:1)	21	AgOTf (5)	100	27	33	39	-	-	99 (82) ^[c]

 Table S1. Selected optimization data using propargylic difluoride 1.
 [a]

^[a] The optimized conditions are shown in bold.

^[b] NMR yield estimated by ¹⁹F NMR analysis of the crude mixture after an aqueous work-up (sat. aq. NaHCO₃) using 2-fluoro-4-nitrotoluene as the internal standard.

^[c] Isolated yield of **2a** after an acidic treatment (3 N HCl/CH₂Cl₂, 21 °C, 3 h).

3. Preparation of propargylic gem-difluorides

1-Phenylhex-1-yn-3-ol (S1). To a -78 °C solution of phenylacetylene (4.0 mL, 36.4 mmol) in THF (120 mL) was added *n*-BuLi (2.5 mol/L in hexanes, 16.0 mL, 40.0 mmol) and the mixture was stirred at -78 °C for 30 minutes, and then at room temperature for 30 minutes. The solution was brought back to -78 °C and butyraldehyde (3.93 mL, 43.7 mmol) was added. The mixture was stirred at room temperature for 1 hour, after which saturated NaHCO₃ was added. The mixture was extracted with Et₂O (3x), washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. The desired compound (5.70 g, 90%) was isolated as a pale yellow oil by flash chromatography using 80% CH₂Cl₂/hexanes. Spectroscopic data was in agreement with the literature.¹

1-Phenylhex-1-yn-3-one (S2). To a -78 °C solution of oxalyl chloride (1.11 mL, 12.9 mmol) in CH₂Cl₂ (90 mL) was added DMSO (1.83 mL, 25.8 mmol) and stirring was continued at -78 °C for 15 minutes. A solution of 1-phenylhex-1-yn-3-ol (**S1**, 761 mg, 2.65 mmol) in CH₂Cl₂ (17 mL) was slowly added and the resulting solution was stirred at -78 °C for 15 minutes. Et₃N (9.0 mL, 64.5 mmol) was added, the solution was stirred at -78 °C for 20 minutes, and then allowed to reach room temperature over 40 minutes. Saturated NaHCO₃ was added and stirring was continued for 30 minutes. The resulting mixture was extracted with CH₂Cl₂ (3x), dried over Na₂SO₄ and concentrated *in vacuo*. The desired product (1.55 g, 84%) was isolated as a yellow oil by flash chromatography using 2% EtOAc/hexanes. Spectroscopic data was in agreement with the literature.²

(3,3-Difluorohex-1-yn-1-yl)benzene (1a). 1-Phenylhex-1-yn-3-one (S2, 353 mg, 2.05 mmol) was charged into a polypropylene vial. Me-DAST (0.50 mL, 5.12 mmol) was added and the mixture was stirred at 45 °C for 72 hours. It was brought back to 0 °C, diluted with EtOAc and poured into a stirring mixture of EtOAc and saturated NaHCO₃. The mixture was stirred for 30 minutes, after which the organic layer was separated, dried over Na₂SO₄ and concentrated *in vacuo*. The desired compound (114 mg, 29%) was isolated as a colorless oil by flash chromatography using hexanes. IR (ATR, ZnSe) v = 2968, 2936, 2878, 2242, 1490, 1323, 1171, 993, 754, 688 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.50 (d, 2H, *J* = 6.9 Hz), 7.42-7.39 (m, 1H), 7.35 (t, 2H, *J* = 7.5 Hz), 2.11 (m, 2H), 1.71-1.62 (m, 2H), 1.03 (t, 3H, *J* = 7.5 Hz); ¹⁹F NMR (CDCl₃, 470 MHz) δ -82.1 (t, 2F, *J* = 14.9 Hz); ¹³C NMR (CDCl₃, 126 MHz) δ 132.2 (t, *J*_{C-F} = 2.4 Hz), 129.9, 128.6, 120.5 (t, *J*_{C-F} = 2.8 Hz), 115.5 (t, *J*_{C-F} = 232 Hz), 86.7 (t, *J*_{C-F} = 6.9 Hz), 82.0 (t, *J*_{C-F} = 40.8 Hz), 41.5 (t, *J*_{C-F} = 26.0 Hz), 16.6 (t, *J*_{C-F} = 3.9 Hz), 13.8; HRMS-ESI calcd for C₁₂H₁₂F [M-F]⁺ 175.0918; found 175.0934.

1,5-Diphenylpent-1-yn-3-ol (S3). To a -78 °C solution of phenylacetylene (4.0 mL, 36.5 mmol) in THF (100 mL) was added *n*-BuLi (2.5 mol/L in hexanes, 13.4 mL, 33.4 mmol) and the mixture was stirred at -78 °C for 30 minutes, and then at room temperature for 30 minutes. The solution was brought back to -78 °C and hydrocinnamaldehyde (4.0 mL, 30.4 mmol) was added. The mixture was stirred at room temperature for 1 hour, after which saturated NaHCO₃ was added. The mixture was extracted with Et₂O (3x), washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. The desired compound (3.74 g,

52%) was isolated as a pale yellow oil by flash chromatography using 5% EtOAc/hexanes. Spectroscopic data was in agreement with the literature.³

1,5-Diphenylpent-1-yn-3-one (S4). To a -78 °C solution of oxalyl chloride (0.49 mL, 5.75 mmol) in CH₂Cl₂ (40 mL) was added DMSO (0.82 mL, 11.5 mmol) and stirring was continued at -78 °C for 15 minutes. A solution of 1,5-diphenylpent-1-yn-3-ol (**S3**, 1132 mg, 4.79 mmol) in CH₂Cl₂ (8 mL) was slowly added and the resulting solution was stirred at -78 °C for 15 minutes. Et₃N (4.0 mL, 28.7 mmol) was added, the solution was stirred at -78 °C for 20 minutes, and then allowed to reach room temperature over 40 minutes. Saturated NaHCO₃ was added and stirring was continued for 30 minutes. The resulting mixture was extracted with CH₂Cl₂ (3x), dried over Na₂SO₄ and concentrated *in vacuo*. The desired product (1073 mg, 96%) was isolated as a yellow oil by flash chromatography using 10% EtOAc/hexanes. Spectroscopic data was in agreement with the literature.⁴

(**3,3-Difluoropent-1-yne-1,5-diyl)dibenzene** (**1b**). 1,5-Diphenylpent-1-yn-3-one (**S4**, 515 mg, 2.20 mmol) was charged into a polypropylene vial. Me-DAST (0.54 mL, 5.50 mmol) was added and the mixture was stirred at 65 °C for 72 hours. It was brought back to 0 °C, diluted with EtOAc and poured into a stirring mixture of EtOAc and saturated NaHCO₃. The mixture was stirred for 30 minutes, after which the organic layer was separated, dried over Na₂SO₄ and concentrated *in vacuo*. The desired compound (91 mg, 16%) was isolated as a colorless oil by flash chromatography using hexanes. IR (ATR, ZnSe) v = 3064, 3028, 2934, 2240, 1491, 1162, 1044, 953, 754, 688 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.51-7.50 (m, 2H), 7.44-7.40 (m, 2H), 7.38-7.35 (m, 2H), 7.33-7.30 (m, 2H), 7.25-7.21 (m, 3H), 2.97-2.94 (m, 2H), 2.51-2.42 (m, 2H); ¹⁹F NMR (CDCl₃, 470 MHz) δ -82.8 (t, *J* = 14.7 Hz, 2F); ¹³C NMR (CDCl₃, 126 MHz) δ 139.9, 132.1 (t, *J*_{C-F} = 2.2 Hz), 129.9, 128.6, 128.5, 128.3, 126.4, 120.2 (t, *J*_{C-F} = 2.6 Hz), 114.8 (t, *J*_{C-F} = 2.8 Hz); HRMS-ESI calcd for C₁₇H₁₈F₂N [M+NH₄]⁺ 274.1402; found 274.1400.

Ethyl 5-hydroxypentanoate (S5). To a solution of δ -valerolactone (1.85 mL, 20.0 mmol) in dry ethanol (40 mL) was added sulfuric acid (2 drops). The mixture was heated to reflux for 5 hours, after which it was brought to 0 °C. NaHCO₃ (200 mg) was added and the suspension was stirred for 10 minutes. The solids were filtered off, and ethanol was removed *in vacuo*. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The desired product (2.21 g, 76%) was isolated as a pale yellow oil by flash chromatography using 5% MeOH/CH₂Cl₂. Spectroscopic data was in agreement with the literature.⁵

Ethyl 5-oxopentanoate (**S6**). To a -78 °C solution of oxalyl chloride (1.55 mL, 18.1 mmol) in CH₂Cl₂ (140 mL) was added DMSO (2.57 mL, 36.2 mmol) and stirring was continued at -78 °C for 15 minutes. A solution of ethyl 5-hydroxypentanoate (**S5**, 2.21 g, 15.1 mmol) in CH₂Cl₂ (11 mL) was slowly added and the resulting solution was stirred at -78 °C for 15 minutes. Et₃N (12.6 mL, 90.6 mmol) was added, the solution was stirred at -78 °C for 20 minutes, and then allowed to reach room temperature over 40 minutes. Saturated NaHCO₃ was added and stirring was continued for 30 minutes. The resulting mixture was extracted with CH₂Cl₂ (3x), dried over Na₂SO₄ and concentrated *in vacuo*. The desired product (1.80 g, 82%) was isolated as a pale yellow oil by flash

chromatography using 20% EtOAc/hexanes. Spectroscopic data was in agreement with the literature.⁶

Ethyl 5-hydroxy-7-phenylhept-6-ynoate (S7). To a -78 °C solution of phenylacetylene (0.60 mL, 5.50 mmol) in THF (17 mL) was added *n*-BuLi (2.5 mol/L in hexanes, 2.2 mL, 5.50 mmol) and the mixture was stirred at -78 °C for 30 minutes, and then at room temperature for 30 minutes. The solution was brought back to -78 °C and ethyl 5-oxopentanoate (S6, 721 mg, 5.00 mmol) was added. The mixture was stirred at room temperature for 1 hour, after which saturated NaHCO₃ was added. The mixture was extracted with Et₂O (3x), washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. The desired compound (1.02g, 83%) was isolated as a yellow oil by flash chromatography using 10% EtOAc/hexanes. IR (ATR, ZnSe) v = 3421, 2938, 2202, 1730, 1713, 1489, 1151, 1025, 755, 691 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.44-7.42 (m, 2H), 7.32-7.30 (m, 2H), 4.62 (q, 1H, *J* = 5.8 Hz), 4.14 (q, 2H, *J* = 7.1 Hz), 2.40 (t, 2H, *J* = 6.8 Hz), 2.12 (dd, 1H, *J* = 5.7, 2.2 Hz), 1.92-1.82 (m, 4H), 1.26 (t, 3H, *J* = 7.1 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 173.7, 131.8, 128.6, 128.5, 122.6, 89.8, 85.2, 62.6, 60.5, 37.2, 34.0, 20.8, 14.4; HRMS-ESI calcd for C₁₅H₁₇O₂ [M+H]⁺-[H₂O] 229.1223; found 229.1229.

Ethyl 5-oxo-7-phenylhept-6-ynoate (S8). To a -78 °C solution of oxalyl chloride (0.36 mL, 4.21 mmol) in CH₂Cl₂ (25 mL) was added DMSO (0.60 mL, 8.42 mmol) and stirring was continued at -78 °C for 15 minutes. A solution of ethyl 5-hydroxy-7-phenylhept-6-ynoate (S7, 864 mg, 3.51 mmol) in CH₂Cl₂ (10 mL) was slowly added and the resulting solution was stirred at -78 °C for 15 minutes. Et₃N (2.9 mL, 21.0 mmol) was added, the solution was stirred at -78 °C for 20 minutes, and then allowed to reach room temperature over 40 minutes. Saturated NaHCO₃ was added and stirring was continued for 30 minutes. The resulting mixture was extracted with CH₂Cl₂ (3x), dried over Na₂SO₄ and concentrated *in vacuo*. The desired product (805 mg, 94%) was isolated as a yellow oil by flash chromatography using 10% EtOAc/hexanes. IR (ATR, ZnSe) v = 2979, 2198, 1729, 1666, 1374, 1159, 1095, 1026, 757, 688 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.58 (d, 2H, *J* = 7.0 Hz), 7.46 (t, 2H, *J* = 7.5 Hz), 7.39 (t, 2H, *J* = 7.6 Hz), 4.15 (q, 2H, *J* = 7.1 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 187.1, 173.1, 133.2, 130.9, 128.8, 120.0,

91.1, 87.8, 60.6, 44.5, 33.3, 19.3, 14.4; HRMS-ESI calcd for C₁₅H₁₇O₃ [M+H]⁺ 245.1172; found 245.1175.

Ethyl 5,5-difluoro-7-phenylhept-6-ynoate (1c). Ethyl 5-oxo-7-phenylhept-6-ynoate (**S8**, 393 mg, 1.61 mmol) was charged into a polypropylene vial. Me-DAST (0.39 mL, 4.02 mmol) was added and the mixture was stirred at 55 °C for 24 hours. It was brought back to 0 °C, diluted with EtOAc and poured into a stirring mixture of EtOAc and saturated NaHCO₃. The mixture was stirred for 30 minutes, after which the organic layer was separated, dried over Na₂SO₄ and concentrated *in vacuo*. The desired compound (87 mg, 20%) was isolated as a pale yellow oil by flash chromatography using 5% EtOAc/hexanes. IR (ATR, ZnSe) v = 2980, 2241, 1731, 1490, 1324, 1162, 1109, 968, 756, 689 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.51 (m, 2H, *J* = 7.1 Hz), 7.41 (m, 1H), 7.36 (t, 2H, *J* = 7.4 Hz), 4.15 (q, 2H, *J* = 7.2 Hz), 2.43 (t, 2H, *J* = 7.4 Hz), 2.25-2.16 (m, 2H), 1.98 (p, 2H, *J* = 7.5 Hz), 1.26 (t, 3H, *J* = 7.1 Hz); ¹⁹F NMR (470 MHz, CDCl₃) δ -82.2 (t, 1F, *J* = 28.3 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 172.9, 132.3 (t, *J*_{C-F} = 6.8 Hz), 81.5 (t, *J*_{C-F} = 40.6 Hz), 60.6, 38.7 (t, *J*_{C-F} = 26.7 Hz), 33.4, 18.6 (t, *J*_{C-F} = 3.8 Hz), 14.4; HRMS-ESI calcd for C₁₅H₁₆FO₂ [M-F]⁺ 247.1129; found 247.1126.

Benzyl 4-(hydroxymethyl)piperidine-1-carboxylate (S9). To a solution of 1-((benzyloxy)carbonyl)piperidine-4-carboxylic acid (1.79 g, 6.80 mmol) in THF (26 mL), was aded BH₃-THF (1 M in THF, 8.16 mL, 8.16 mmol) at 0 °C and the mixture was stirred at room temperature for 1 hour. CH₃OH (15 mL) was then added and the volatiles were removed under vacuum. The residue was taken up in EtOAc and saturated NaHCO₃ was added. The layers were separated, and the organic layer was dried with MgSO₄ and concentrated *in vacuo*. Spectroscopic data was in agreement with the literature.⁷

Benzyl 4-formylpiperidine-1-carboxylate (S10). To a -78 °C solution of oxalyl chloride (0.39 mL, 4.51 mmol) in CH₂Cl₂ (20 mL) was added DMSO (0.64 mL, 9.03 mmol) and stirring was continued at -78 °C for 15 minutes. A solution of benzyl 4- (hydroxymethyl)piperidine-1-carboxylate (S9, 938 mg, 3.76 mmol) in CH₂Cl₂ (18 mL) was slowly added and the resulting solution was stirred at -78 °C for 15 minutes. Et₃N (3.15 mL, 22.6 mmol) was added, the solution was stirred at -78 °C for 20 minutes, and then allowed to reach room temperature over 40 minutes. Saturated NaHCO₃ was added and stirring was continued for 30 minutes. The resulting mixture was extracted with CH₂Cl₂ (3x), dried over MgSO₄ and concentrated *in vacuo*. The desired product (724 mg,

78%) was isolated as a pale yellow oil by flash chromatography using 30% EtOAc/hexanes. Spectroscopic data was in agreement with the literature.⁷

Benzyl 4-(1-hydroxy-3-phenylprop-2-yn-1-yl)piperidine-1-carboxylate (S11). To a -78 °C solution of phenylacetylene (0.34 mL, 3.12 mmol) in THF (7 mL) was added *n*-BuLi (2.5 mol/L in hexanes, 1.25 mL, 3.12 mmol) and the mixture was stirred at -78 °C for 30 minutes, and then at room temperature for 30 minutes. The solution was brought back to -78 °C and a solution of benzyl 4-formylpiperidine-1-carboxylate (S10, 702 mg, 2.84 mmol) in THF (3 mL) was added. The mixture was stirred at room temperature for 1 hour, after which saturated NaHCO₃ was added. The mixture was extracted with Et₂O (3x), washed with brine, dried over MgSO₄ and concentrated *in vacuo*. The desired compound (854 mg, 86%) was isolated as a yellow oil by flash chromatography using 40% EtOAc/hexanes. IR (ATR, ZnSe) v = 3236, 2984, 2895, 1625, 1398, 1200, 906, 724, 694 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.42-7.40 (m, 2H), 7.35-7.28 (m, 8H), 5.14 (s, 2H), 4.42 (d, 2H, *J* = 6.0 Hz), 4.29 (d, 2H, *J* = 26.6 Hz), 2.79 (br s, 2H), 2.45 (br s, 1H), 1.96-1.76 (m, 3H), 1.50-1.30 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 155.4, 136.9, 131.8, 128.63, 128.56, 128.4, 128.0, 127.9, 122.5, 88.4, 86.3, 67.2, 66.7, 43.9, 42.7, 28.0, 27.5; HRMS-ESI calcd for C₂₂H₂₄NO₃ [M+H]⁺ 350.1751; found 350.1748.

Benzyl 4-(3-phenylpropioloyl)piperidine-1-carboxylate (S12). To a -78 °C solution of oxalyl chloride (0.20 mL, 2.36 mmol) in CH₂Cl₂ (11.5 mL) was added DMSO (0.34 mL, 4.73 mmol) and stirring was continued at -78 °C for 15 minutes. A solution of benzyl 4-(1-hydroxy-3-phenylprop-2-yn-1-yl)piperidine-1-carboxylate (S11, 688 mg, 1.97 mmol) in CH₂Cl₂ (8.5 mL) was slowly added and the resulting solution was stirred at -78 °C for 15 minutes. Et₃N (1.65 mL, 11.8 mmol) was added, the solution was stirred at -78 °C for 20 minutes, and then allowed to reach room temperature over 40 minutes. Saturated NaHCO₃ was added and stirring was continued for 30 minutes. The resulting mixture was extracted with CH₂Cl₂ (3x), dried over MgSO₄ and concentrated *in vacuo*. The desired product (377 mg, 55%) was isolated as a pale orange oil by flash chromatography using hexanes. IR (ATR, ZnSe) $\nu = 2777$, 2195, 1660, 1419, 1307, 1260, 1216, 1107, 1012, 685 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.58-7.56 (m, 2H), 7.48-7.44 (m, 1H), 7.40-7.29 (m, 7H), 5.14 (s, 2H), 4.17 (br s, 2H), 2.98 (t, 2H, *J* = 10.5 Hz), 2.66 (tt, 1H, *J* = 10.9, 3.9 Hz), 2.05 (br s, 1H), 1.78-1.65 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 189.1, 155.2,

136.8, 133.1, 131.0, 128.7, 128.5, 128.1, 127.9, 119.7, 92.5, 86.8, 67.2, 49.9, 43.3, 27.4; HRMS-ESI calcd for C₂₂H₂₂NO₃ [M+H]⁺ 348.1594; found 348.1589.

Benzyl 4-(1,1-difluoro-3-phenylprop-2-yn-1-yl)piperidine-1-carboxylate (1d). Benzyl 4-(3-phenylpropioloyl)piperidine-1-carboxylate (S12, 216 mg, 0.622 mmol) was charged into a polypropylene vial. Me-DAST (0.152 mL, 1.55 mmol) was added and the mixture was stirred at 55 °C for 24 hours. It was brought back to 0 °C, diluted with EtOAc and poured into a stirring mixture of EtOAc and saturated NaHCO₃. The mixture was stirred for 30 minutes, after which the organic layer was separated, dried over MgSO₄ and concentrated in vacuo. The desired compound (98 mg, 43%) was isolated as a pale vellow oil by flash chromatography using 10% EtOAc/hexanes. IR (ATR, ZnSe) v =2931, 2862, 2239, 1694, 1427, 1319, 1278, 1225, 1132, 1022, 786, 688 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.50-7.48 (m, 2H), 7.43-7.40 (m, 1H), 4.37-4.28 (m, 7H), 5.15 (s, 2H), 4.34 (br s, 2H), 2.80 (s, 2H), 2.18 (pt, 1H, J = 11.9, 3.5 Hz), 1.95 (d, 2H, J = 10.5Hz), 1.67-1.40 (m, 2H); ¹⁹F NMR (470 MHz, CDCl₃) δ -89.2 (dd, J = 47.5, 11.0 Hz, 2F); ¹³C NMR (126 MHz, CDCl₃) δ 155.3, 136.8, 132.3 (t, $J_{C-F} = 2.1$ Hz), 130.1, 128.62, 128.61, 128.1, 128.0, 120.1 (t, $J_{C-F} = 2.6$ Hz), 116.4 (t, $J_{C-F} = 234$ Hz), 88.1 (t, $J_{C-F} = 6.7$ Hz), 80.3 (t, $J_{C-F} = 40.5$ Hz), 67.3, 44.9 (t, $J_{C-F} = 25.8$ Hz), 43.3, 25.5; HRMS-ESI calcd for C₂₂H₂₂F₂NO₂ [M+H]⁺ 370.1613; found 370.1600.

5-(Benzo[d][1,3]dioxol-5-yl)-4-methyl-1-phenylpent-1-yn-3-ol (S13). To a -78 °C solution of phenylacetylene (0.60 mL, 5.50 mmol) in THF (17 mL) was added *n*-BuLi (2.5 mol/L in hexanes, 2.2 mL, 5.50 mmol) and the mixture was stirred at -78 °C for 30 minutes, and then at room temperature for 30 minutes. The solution was brought back to -78 °C and 2-methyl-3-(3,4-methylenedioxyphenyl)-propanal (0.83 mL, 5.00 mmol) was added. The mixture was stirred at room temperature for 1 hour, after which saturated NaHCO₃ was added. The mixture was extracted with Et₂O (3x), washed with brine, dried over Na_2SO_4 and concentrated *in vacuo*. The desired compound (1.10 g, 75%) was isolated as a colorless oil by flash chromatography using 10% EtOAc/hexanes. IR (ATR, ZnSe) v = 3399, 2876, 1487, 1241, 1186, 1035, 928, 800, 754, 689 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) & 7.47-7.43 (m, 2H), 7.34-7.30 (m, 3H), 6.75-6.71 (m, 2H), 6.67 (t, 1H, J = 7.6 Hz), 5.93 (s, 2H), 4.51-4.73 (m, 1H), 2.94-2.81 (m, 1H), 2.51-2.46 (m, 2H), 2.14-2.04 (m, 1H), 1.91-1.83 (m, 1H), 1.05 (t, 3H, J = 7.0 Hz); ¹³C NMR (CDCl₃, 126 MHz) δ 147.71, 147.67, 145.92, 145.91, 134.4, 134.1, 131.9, 131.8, 128.61, 128.58, 128.48, 128.46, 122.72, 122.74, 122.21, 122.15, 109.7, 109.6, 108.3, 108.2, 100.9, 89.2, 88.4, 86.5, 86.1, 66.7, 66.4, 42.0, 41.8, 39.1, 38.5, 15.0, 14.7; HRMS-ESI calcd for $C_{19}H_{17}O_2$ [M+H]⁺-[H₂O] 277.1223; found 277.1203.

5-(Benzo[d][1,3]dioxol-5-yl)-4-methyl-1-phenylpent-1-yn-3-one (S14). To a -78 °C solution of oxalyl chloride (0.38 mL, 4.42 mmol) in CH₂Cl₂ (30 mL) was added DMSO (0.63 mL, 8.83 mmol) and stirring was continued at -78 °C for 15 minutes. A solution of 5-(benzo[*d*][1,3]dioxol-5-yl)-4-methyl-1-phenylpent-1-yn-3-ol (S13, 1083 mg, 3.68 mmol) in CH₂Cl₂ (7 mL) was slowly added and the resulting solution was stirred at -78 °C for 15 minutes. Et₃N (3.1 mL, 22.1 mmol) was added, the solution was stirred at -78 °C for 20 minutes, and then allowed to reach room temperature over 40 minutes. Saturated NaHCO₃ was added and stirring was continued for 30 minutes. The resulting mixture was extracted with CH₂Cl₂ (3x), dried over Na₂SO₄ and concentrated *in vacuo*. The desired product (949 mg, 88%) was isolated as a yellow oil by flash chromatography using 5% EtOAc/hexanes. IR (ATR, ZnSe) v = 2969, 2877, 2195, 1661, 1487, 1441, 1243, 1035, 927, 733 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.58 (d, 2H, *J* = 7.1 Hz), 7.46 (t, 1H, *J* = 7.5 Hz), 7.39 (t, 2H, *J* = 7.5 Hz), 6.74-6.70 (m, 2H), 6.66 (m, 1H), 5.91 (s, 2H), 3.14 (dd, 1H, *J* = 13.8, 6.4 Hz), 2.93 (sext, 1H, *J* = 6.9 Hz), 2.65 (dd, 1H, *J* = 13.8,

7.9 Hz), 1.23 (d, 3H, J = 6.9 Hz); ¹³C NMR (CDCl₃, 126 MHz) δ 191.2, 147.7, 146.2, 133.2, 132.8, 130.9, 128.8, 122.2, 120.1, 109.5, 108.3, 101.0, 92.2, 87.2, 50.8, 38.6, 15.9; HRMS-ESI calcd for C₁₉H₁₇O₃ [M+H]⁺ 293.1172; found 293.1176.

5-(3,3-Difluoro-2-methyl-5-phenylpent-4-yn-1-yl)benzo[d][1,3]dioxole (1e). 5-(Benzo[d][1,3]dioxol-5-yl)-4-methyl-1-phenylpent-1-yn-3-one (S14, 610 mg, 2.09 mmol)was charged into a polypropylene vial. Me-DAST (0.51 mL, 5.22 mmol) was added and the mixture was stirred at 45 °C for 24 hours. It was brought back to 0 °C, diluted with EtOAc and poured into a stirring mixture of EtOAc and saturated NaHCO₃. The mixture was stirred for 30 minutes, after which the organic layer was separated, dried over Na₂SO₄ and concentrated *in vacuo*. The desired compound (295 mg, 45%) was isolated as a pale yellow oil by flash chromatography using hexanes. IR (ATR, ZnSe) v = 2977, 2882, 2238, 1488, 1442, 1245, 1032, 983, 927, 755 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.51 (d, 2H, J = 7.0 Hz), 7.40 (t, 1H, J = 7.4 Hz), 7.35 (t, 2H, J = 7.3 Hz), 6.74 (d, 1H, J= 7.9 Hz), 6.68 (s, 1H), 6.64 (d, 1H, J = 7.9 Hz), 5.90 (s, 2H), 3.14 (m, 1H), 2.41-2.35 (m, 2H), 1.06 (d, 3H, J = 6.2 Hz); ¹⁹F NMR (470 MHz, CDCl₃) δ -88.5 (t, 2F, J = 10.9Hz); ¹³C NMR (126 MHz, CDCl₃) δ 147.8, 146.2, 132.9, 132.3 (t, $J_{C-F} = 2.2$ Hz), 130.0, 128.6, 122.3, 120.3 (t, $J_{C-F} = 2.6$ Hz), 117.5 (t, $J_{C-F} = 235$ Hz), 109.6, 108.3, 101.0, 87.7 (t, $J_{C-F} = 6.7$ Hz), 80.9 (t, $J_{C-F} = 40.6$ Hz), 44.5 (t, $J_{C-F} = 24.4$ Hz), 36.4 (t, $J_{C-F} = 3.3$ Hz), 13.0 (t, $J_{C-F} = 3.3$ Hz); HRMS-ESI calcd for. $C_{19}H_{16}FO_2$ [M-F]⁺ 295.1129; found 295.1125.

1-Phenyltridec-3-yn-5-ol (S15). To a -78 °C solution of 4-phenyl-1-butyne (0.77 mL, 5.50 mmol) in THF (17 mL) was added *n*-BuLi (2.5 mol/L in hexanes, 2.2 mL, 5.50 mmol) and the mixture was stirred at -78 °C for 30 minutes, and then at room temperature for 30 minutes. The solution was brought back to -78 °C and nonanal (0.86 mL, 5.00 mmol) was added. The mixture was stirred at room temperature for 1 hour, after which saturated NaHCO₃ was added. The mixture was extracted with Et₂O (3x), washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. The desired compound (1.27 g, 93%) was isolated as a colorless oil by flash chromatography using 20% EtOAc/hexanes. IR (ATR, ZnSe) v = 3291, 2922, 2853, 2212, 1672, 1454, 1339, 1029, 745, 696 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.29 (t, 2H, *J* = 7.5 Hz), 7.22-7.20 (m, 3H), 4.32 (q, 1H, *J* = 6.4 Hz), 2.82 (t, 2H, *J* = 7.5 Hz), 2.51 (td, 2H, *J* = 7.5, 2.0 Hz), 1.41-1.36 (m, 3H), 1.32-1.24 (m, 10H), 0.88 (t, 3H, *J* = 6.9 Hz); ¹³C NMR (CDCl₃, 126 MHz) δ 140.7, 128.6, 128.5, 126.4, 84.8, 82.3, 62.9, 38.3, 35.2, 32.0, 29.7, 29.5, 29.4, 25.3, 22.8, 21.0, 14.3; HRMS-ESI calcd for C₁₉H₂₇ [M+H]⁺-[H₂O] 255.2107; found 255.2095.

1-Phenyltridec-3-yn-5-one (S16). To a -78 °C solution of oxalyl chloride (0.43 mL, 5.02 mmol) in CH₂Cl₂ (35 mL) was added DMSO (0.71 mL, 10.0 mmol) and stirring was continued at -78 °C for 15 minutes. A solution of 1-phenyltridec-3-yn-5-ol (S15, 1.14 g, 4.19 mmol) in CH₂Cl₂ (7 mL) was slowly added and the resulting solution was stirred at -78 °C for 15 minutes. Et₃N (3.5 mL, 25.1 mmol) was added, the solution was stirred at -78 °C for 20 minutes, and then allowed to reach room temperature over 40 minutes. Saturated NaHCO₃ was added and stirring was continued for 30 minutes. The resulting mixture was extracted with CH_2Cl_2 (3x), dried over Na_2SO_4 and concentrated in vacuo. The desired product (1.03 g, 91%) was isolated as a colorless oil by flash chromatography using 5% EtOAc/hexanes. IR (ATR, ZnSe) v = 2925, 2853, 2211, 1669,1495, 1454, 1242, 1158, 746, 697 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.31 (t, 2H, J = 7.4 Hz), 7.25-7.21 (m, 3H), 2.89 (t, 2H, J = 7.5 Hz), 2.66 (t, 2H, J = 7.5 Hz), 2.48 (t, 2H, J = 7.5 Hz), 1.63-1.58 (m, 2H), 1.31-1.27 (m, 10H), 0.88 (t, 3H, J = 6.9 Hz); ¹³C NMR (CDCl₃, 126 MHz) & 188.6, 139.8, 128.7, 128.5, 126.8, 93.0, 81.5, 45.7, 34.1, 31.9, 29.4, 29.2, 29.1, 24.2, 22.8, 21.3, 14.3; HRMS-ESI calcd for $C_{19}H_{27}O[M+H]^+$ 271.2056; found 271.2030.

(5,5-Difluorotridec-3-yn-1-yl)benzene (1f). 1-Phenyltridec-3-yn-5-one (S16, 865 mg, 3.20 mmol) was charged into a polypropylene vial. Me-DAST (0.78 mL, 8.00 mmol) was added and the mixture was stirred at 55 °C for 18 hours. It was brought back to 0 °C, diluted with EtOAc and poured into a stirring mixture of EtOAc and saturated NaHCO₃. The mixture was stirred for 30 minutes, after which the organic layer was separated, dried over Na₂SO₄ and concentrated *in vacuo*. The desired compound (334 mg, 36%) was isolated as a colorless oil by flash chromatography using hexanes. IR (ATR, ZnSe) v = 2926, 2855, 2254, 1455, 1341, 1194, 1008, 929, 747, 697 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.30 (t, 2H, *J* = 7.4 Hz), 7.25-7.20 (m, 3H), 2.86 (t, 2H, *J* = 7.5 Hz), 2.56 (tt, 2H, *J* = 7.4, 4.8 Hz), 1.99-1.90 (m, 2H), 1.48-1.42 (m, 2H), 1.32-1.25 (m, 10H), 0.89 (t, 3H, *J* = 6.8 Hz); ¹⁹F NMR (CDCl₃, 470 MHz) δ -81.3 (tt, 2F, *J* = 14.4, 4.5 Hz); ¹³C NMR (CDCl₃, 126 MHz) δ 140.0, 128.6, 128.5, 126.7, 115.2 (t, *J*_{C-F} = 231 Hz), 87.7 (t, *J*_{C-F} = 6.6 Hz), 74.9 (t, *J*_{C-F} = 40.4 Hz), 39.5 (t, *J*_{C-F} = 26.2 Hz), 34.3 (t, *J*_{C-F} = 1.9 Hz), 32.0, 29.4, 29.3, 29.1, 23.0 (t, *J*_{C-F} = 3.5 Hz), 22.8, 20.7 (t, *J*_{C-F} = 2.3 Hz), 14.3 ; HRMS-ESI calcd for C₁₉H₃₀F₂N [M+NH₄]⁺ 310.2341; found 310.2343.

1-Phenyltridec-4-yn-3-ol (S17). To a -78 °C solution of 1-decyne (6.6 mL, 36.5 mmol) in THF (100 mL) was added *n*-BuLi (2.5 mol/L in hexanes, 13.4 mL, 33.4 mmol) and the mixture was stirred at -78 °C for 30 minutes, and then at room temperature for 30 minutes. The solution was brought back to -78 °C and hydrocinnamaldehyde (4.0 mL, 30.4 mmol) was added. The mixture was stirred at room temperature for 1 hour, after which saturated NaHCO₃ was added. The mixture was extracted with Et₂O (3x), washed

with brine, dried over Na_2SO_4 and concentrated *in vacuo*. The desired compound (3.81 g, 46%) was isolated as a yellow oil by flash chromatography using 5% EtOAc/hexanes. Spectroscopic data was in agreement with the literature.⁸

1-Phenyltridec-4-yn-3-one (S18). To a -78 °C solution of oxalyl chloride (1.64 mL, 19.1 mmol) in CH₂Cl₂ (80 mL) was added DMSO (2.00 mL, 28.6 mmol) and stirring was continued at -78 °C for 15 minutes. A solution of 1-phenyltridec-4-yn-3-ol (**S17**, 2.60 g, 9.54 mmol) in CH₂Cl₂ (15 mL) was slowly added and the resulting solution was stirred at -78 °C for 15 minutes. Et₃N (8.0 mL, 57.3 mmol) was added, the solution was stirred at -78 °C for 20 minutes, and then allowed to reach room temperature over 40 minutes. Saturated NaHCO₃ was added and stirring was continued for 30 minutes. The resulting mixture was extracted with CH₂Cl₂ (3x), dried over Na₂SO₄ and concentrated *in vacuo*. The desired product (2.49 g, 97%) was isolated as a yellow oil by flash chromatography using 2% EtOAc/hexanes. IR (ATR, ZnSe) v = 2925, 2855, 2212, 1673, 1454, 1243, 1159, 770, 738, 697cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.31-7.27 (m, 2H), 7.22-7.18 (m, 3H), 3.00-2.96 (m, 2H), 2.87 (m, 2H), 2.36 (t, 2H, *J* = 7.1 Hz), 1.61-1.53 (m, 2H), 1.41-1.36 (m, 2H), 1.32-1.27 (m, 8H), 0.88 (t, 3H, *J* = 6.7 Hz); ¹³C NMR (CDCl₃, 126 MHz) δ 187.3, 140.5, 128.6, 128.5, 126.4, 95.2, 80.9, 47.1, 31.9, 30.1, 29.3, 29.1, 29.0, 27.8, 22.8, 19.1, 14.2; HRMS-ESI calcd for C₁₉H₂₇O [M+H]⁺ 271.2056; found 271.2046.

(**3,3-Difluorotridec-4-yn-1-yl)benzene** (**1h**). 1-Phenyltridec-4-yn-3-one (**S18**, 1.00 g, 3.67 mmol) was charged into a polypropylene vial. Me-DAST (0.90 mL, 9.18 mmol) was added and the mixture was stirred at 55 °C for 24 hours. It was brought back to 0 °C, diluted with EtOAc and poured into a stirring mixture of EtOAc and saturated NaHCO₃. The mixture was stirred for 30 minutes, after which the organic layer was separated, dried over Na₂SO₄ and concentrated *in vacuo*. The desired compound (284 mg, 26%) was isolated as a colorless oil by flash chromatography using hexanes. IR (ATR, ZnSe) v = 2927, 2856, 2252, 1307, 1121, 1044, 934, 909, 734, 698 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.32-7.29 (m, 2H), 7.23-7.20 (m, 3H), 2.89-2.85 (m, 2H), 2.38-2.25 (m, 4H), 1.59-1.53 (m, 2H), 1.43-1.37 (m, 2H), 1.32-1.27 (m, 8H), 0.88 (t, 3H, *J* = 6.7 Hz); ¹⁹F NMR (CDCl₃, 470 MHz) δ -81.7 (tt, *J* = 14.5, 4.5 Hz, 2F); ¹³C NMR (CDCl₃, 126 MHz) δ 140.2, 128.7, 128.5, 126.4, 114.6 (t, *J*_{C-F} = 232 Hz), 89.4 (t, *J*_{C-F} = 6.6 Hz), 73.9 (t, *J*_{C-F} = 40.0 Hz), 41.4 (t, *J*_{C-F} = 26.9 Hz), 31.9, 29.4 (t, *J*_{C-F} = 4.0 Hz), 29.3, 29.1, 28.9, 27.9 (t,

 $J_{C-F} = 3.8$ Hz), 22.8, 18.5 (t, $J_{C-F} = 2.2$ Hz), 14.2; HRMS-ESI calcd for $C_{19}H_{30}F_2N$ [M+NH₄]⁺ 310.2341; found 310.2332.

6,6-Dimethyl-1-phenylhept-4-yn-3-ol (S19). To a -78 °C solution of 3,3-dimethyl-1butyne (0.80 mL, 6.50 mmol) in THF (20 mL) was added *n*-BuLi (2.5 mol/L in hexanes, 2.6 mL, 6.50 mmol) and the mixture was stirred at -78 °C for 30 minutes, and then at room temperature for 30 minutes. The solution was brought back to -78 °C and hydrocinnamaldehyde (0.86 mL, 5.91 mmol) was added. The mixture was stirred at room temperature for 1 hour, after which saturated NaHCO₃ was added. The mixture was extracted with Et₂O (3x), washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. The desired compound (470 mg, 37%) was isolated as a colorless oil by flash chromatography using 10% EtOAc/hexanes. Spectroscopic data was in agreement with the literature.⁹

6,6-Dimethyl-1-phenylhept-4-yn-3-one (S20). To a -78 °C solution of oxalyl chloride (0.22 mL, 2.57 mmol) in CH₂Cl₂ (15 mL) was added DMSO (0.36 mL, 5.14 mmol) and stirring was continued at -78 °C for 15 minutes. A solution of 6,6-dimethyl-1-phenylhept-4-yn-3-ol (**S19**, 463 mg, 2.14 mmol) in CH₂Cl₂ (6 mL) was slowly added and the resulting solution was stirred at -78 °C for 15 minutes. Et₃N (1.8 mL, 12.8 mmol) was added, the solution was stirred at -78 °C for 20 minutes, and then allowed to reach room temperature over 40 minutes. Saturated NaHCO₃ was added and stirring was continued for 30 minutes. The resulting mixture was extracted with CH₂Cl₂ (3x), dried over Na₂SO₄ and concentrated *in vacuo*. The desired product (396 mg, 86%) was isolated as a colorless

oil by flash chromatography using 5% EtOAc/hexanes. Spectroscopic data was in agreement with the literature.¹⁰

(3,3-Difluoro-6,6-dimethylhept-4-yn-1-yl)benzene (1h). 6,6-Dimethyl-1-phenylhept-4yn-3-one (S20, 333 mg, 1.55 mmol) was charged into a polypropylene vial. Me-DAST (0.38 mL, 3.89 mmol) was added and the mixture was stirred at 45 °C for 24 hours. It was brought back to 0 °C, diluted with EtOAc and poured into a stirring mixture of EtOAc and saturated NaHCO₃. The mixture was stirred for 30 minutes, after which the organic layer was separated, dried over Na₂SO₄ and concentrated *in vacuo*. The desired compound (128 mg, 35%) was isolated as a colorless oil by flash chromatography using hexanes. IR (ATR, ZnSe) v = 3029, 2971, 2869, 2248, 1455, 1307, 1167, 1044, 899, 697 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.30 (t, 2H, *J* = 7.5 Hz), 7.23-7.20 (m, 3H), 2.87-2.84 (m, 2H), 2.37-2.28 (m, 2H), 1.26 (s, 3H); ¹⁹F NMR (CDCl₃, 470 MHz) δ -81.9 (t, 2F, *J* = 14.3 Hz); ¹³C NMR (CDCl₃, 126 MHz) δ 140.3, 128.7, 128.5, 126.4, 114.7 (t, *J*_{C-F} = 232 Hz), 96.9 (t, *J*_{C-F} = 6.7 Hz), 72.5 (t, *J*_{C-F} = 40.1 Hz), 41.5 (t, *J*_{C-F} = 26.9 Hz), 30.4 (t, *J*_{C-F} = 1.9 Hz), 29.5 (t, *J*_{C-F} = 3.8 Hz), 27.5 (t, *J*_{C-F} = 2.0 Hz); HRMS-ESI calcd for C₁₅H₁₈F [M-F]⁺ 217.1387; found 217.1363.

1,3-Diphenylprop-2-yn-1-ol (S21). To a -78 °C solution of phenylacetylene (0.60 mL, 5.50 mmol) in THF (17 mL) was added *n*-BuLi (2.5 mol/L in hexanes, 2.2 mL, 5.50 mmol) and the mixture was stirred at -78 °C for 30 minutes, and then at room temperature for 30 minutes. The solution was brought back to -78 °C and benzaldehyde (0.51 mL, 5.00 mmol) was added. The mixture was stirred at room temperature for 1

hour, after which saturated NaHCO₃ was added. The mixture was extracted with Et_2O (3x), washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. The desired compound (893 mg, 86%) was isolated as a colorless oil by flash chromatography using 10% EtOAc/hexanes. Spectroscopic data was in agreement with the literature.¹¹

1,3-Diphenylprop-2-yn-1-one (S22). To a -78 °C solution of oxalyl chloride (0.44 mL, 5.09 mmol) in CH₂Cl₂ (35 mL) was added DMSO (0.72 mL, 10.2 mmol) and stirring was continued at -78 °C for 15 minutes. A solution of 1,3-diphenylprop-2-yn-1-ol (**S21**, 883 mg, 4.24 mmol) in CH₂Cl₂ (7 mL) was slowly added and the resulting solution was stirred at -78 °C for 15 minutes. Et₃N (3.5 mL, 25.4 mmol) was added, the solution was stirred at -78 °C for 20 minutes, and then allowed to reach room temperature over 40 minutes. Saturated NaHCO₃ was added and stirring was continued for 30 minutes. The resulting mixture was extracted with CH₂Cl₂ (3x), dried over Na₂SO₄ and concentrated *in vacuo*. The desired product (627 mg, 72%) was isolated as a pale yellow oil by flash chromatography using 5% EtOAc/hexanes. Spectroscopic data was in agreement with the literature.¹²

(3,3-Difluoroprop-1-yne-1,3-diyl)dibenzene (1i). 1,3-Diphenylprop-2-yn-1-one (S22, 512 mg, 2.48 mmol) was charged into a polypropylene vial. Me-DAST (0.61 mL, 6.21 mmol) was added and the mixture was stirred at 65 °C for 72 hours. It was brought back to 0 °C, diluted with EtOAc and poured into a stirring mixture of EtOAc and saturated NaHCO₃. The mixture was stirred for 30 minutes, after which the organic layer was separated, dried over Na₂SO₄ and concentrated *in vacuo*. The desired compound (108 mg, 19%) was isolated as a colorless oil by flash chromatography using hexanes. Spectroscopic data was in agreement with the literature.¹³

1-(4-Bromophenyl)-3-phenylprop-2-yn-1-ol (S23). To a -78 °C solution of phenylacetylene (0.60 mL, 5.50 mmol) in THF (17 mL) was added *n*-BuLi (2.5 mol/L in hexanes, 2.2 mL, 5.50 mmol) and the mixture was stirred at -78 °C for 30 minutes, and then at room temperature for 30 minutes. The solution was brought back to -78 °C and *p*-bromobenzaldehyde (925 mg, 5.00 mmol) was added. The mixture was stirred at room temperature for 1 hour, after which saturated NaHCO₃ was added. The mixture was extracted with Et₂O (3x), washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. The desired compound (1.35 g, 94%) was isolated as a pale yellow oil by flash chromatography using 25% EtOAc/hexanes. Spectroscopic data was in agreement with the literature.¹²

1-(4-Bromophenyl)-3-phenylprop-2-yn-1-one (S24). To a -78 °C solution of oxalyl chloride (0.27 mL, 3.18 mmol) in CH₂Cl₂ (20 mL) was added DMSO (0.45 mL, 6.36 mmol) and stirring was continued at -78 °C for 15 minutes. A solution of 1-(4-bromophenyl)-3-phenylprop-2-yn-1-ol (**S23**, 761 mg, 2.65 mmol) in CH₂Cl₂ (7 mL) was slowly added and the resulting solution was stirred at -78 °C for 15 minutes. Et₃N (2.2 mL, 15.9 mmol) was added, the solution was stirred at -78 °C for 20 minutes, and then allowed to reach room temperature over 40 minutes. Saturated NaHCO₃ was added and stirring was continued for 30 minutes. The resulting mixture was extracted with CH₂Cl₂ (3x), dried over Na₂SO₄ and concentrated *in vacuo*. The desired product (688 mg, 91%) was isolated as a pale yellow solid by flash chromatography using 2% EtOAc/hexanes. Spectroscopic data was in agreement with the literature.¹⁴

1-Bromo-4-(1,1-difluoro-3-phenylprop-2-yn-1-yl)benzene (1j). 1-(4-Bromophenyl)-3-phenylprop-2-yn-1-one (**S24**, 237 mg, 0.831 mmol) was charged into a polypropylene vial. Me-DAST (0.20 mL, 2.08 mmol) was added and the mixture was stirred at 75 °C for 24 hours. It was brought back to 0 °C, diluted with EtOAc and poured into a stirring mixture of EtOAc and saturated NaHCO₃. The mixture was stirred for 30 minutes, after which the organic layer was separated, dried over Na₂SO₄ and concentrated *in vacuo*. The desired compound (25 mg, 10%) was isolated as a colorless oil by flash chromatography using hexanes. Spectroscopic data was in agreement with the literature.¹³

3-Phenyl-1-(3-(trifluoromethyl)phenyl)prop-2-yn-1-ol (S25). To a -78 °C solution of phenylacetylene (0.60 mL, 5.50 mmol) in THF (17 mL) was added *n*-BuLi (2.5 mol/L in hexanes, 2.2 mL, 5.50 mmol) and the mixture was stirred at -78 °C for 30 minutes, and then at room temperature for 30 minutes. The solution was brought back to -78 °C and 3-(trifluoromethyl)benzaldehyde (0.67 mL, 5.00 mmol) was added. The mixture was stirred at room temperature for 1 hour, after which saturated NaHCO₃ was added. The mixture was extracted with Et₂O (3x), washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. The desired compound (1271 mg, 92%) was isolated as a pale yellow oil by flash chromatography using 20% EtOAc/hexanes. Spectroscopic data was in agreement with the literature.¹⁵

3-Phenyl-1-(3-(trifluoromethyl)phenyl)prop-2-yn-1-one (S26). To a -78 °C solution of oxalyl chloride (0.46 mL, 5.40 mmol) in CH₂Cl₂ (35 mL) was added DMSO (0.77 mL, 10.8 mmol) and stirring was continued at -78 °C for 15 minutes. A solution of 3-phenyl-

1-(3-(trifluoromethyl)phenyl)prop-2-yn-1-ol (**S25**, 1243 mg, 4.50 mmol) in CH₂Cl₂ (10 mL) was slowly added and the resulting solution was stirred at -78 °C for 15 minutes. Et₃N (3.8 mL, 27.0 mmol) was added, the solution was stirred at -78 °C for 20 minutes, and then allowed to reach room temperature over 40 minutes. Saturated NaHCO₃ was added and stirring was continued for 30 minutes. The resulting mixture was extracted with CH₂Cl₂ (3x), dried over Na₂SO₄ and concentrated *in vacuo*. The desired product (1052 mg, 85%) was isolated as a yellow solid by flash chromatography using 5% EtOAc/hexanes. mp 58-60 °; IR (ATR, ZnSe) v = 3069, 2203, 1645, 1332, 1276, 1160, 1111, 927, 758, 687 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.47 (s, 1H), 8.41 (d, 1H, *J* = 7.8 Hz), 7.88 (d, 1H, *J* = 7.8 Hz), 7.70-7.66 (m, 3H), 7.52 (t, 1H, *J* = 7.5 Hz), 7.44 (t, 2H, *J* = 7.5 Hz); ¹⁹F NMR (470 MHz, CDCl₃) δ -62.9 (s, 3F); ¹³C NMR (126 MHz, CDCl₃) δ 176.5, 137.4, 133.3, 132.7, 131.5 (q, *J*_{C-F} = 33.0 Hz), 131.3, 130.5, (q, *J*_{C-F} = 3.7 Hz), 129.5, 128.9, 126.4 (q, *J*_{C-F} = 3.9 Hz), 123.7 (q, *J*_{C-F} = 273 Hz), 119.8, 94.6, 86.5; HRMS-ESI calcd for C₁₆H₁₀F₃O [M+H]⁺ 275.0678; found 275.0668.

1-(1,1-Difluoro-3-phenylprop-2-yn-1-yl)-3-(trifluoromethyl)benzene (1k). 3-Phenyl-1-(3-(trifluoromethyl)phenyl)prop-2-yn-1-ol (S26, 361 mg, 1.32 mmol) was charged into a polypropylene vial. Me-DAST (0.32 mL, 3.29 mmol) was added and the mixture was stirred at 65 °C for 72 hours. It was brought back to 0 °C, diluted with EtOAc and poured into a stirring mixture of EtOAc and saturated NaHCO₃. The mixture was stirred for 30 minutes, after which the organic layer was separated, dried over Na₂SO₄ and concentrated in vacuo. The desired compound (110 mg, 28%) was isolated as a colorless oil by flash chromatography using hexanes. IR (ATR, ZnSe) v = 3084, 2239, 1491, 1445, 1335, 1276,1121, 1017, 905, 687 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.00 (s, 1H), 7.94 (d, 1H, J = 7.8 Hz), 7.76 (d, 1H, J = 7.7 Hz), 7.62 (t, 1H, J = 7.8 Hz), 7.55 (d, 2H, J = 7.2 Hz), 7.44 (t, 1H, J = 7.4 Hz), 7.38 (t, 2H, J = 7.4 Hz); ¹⁹F NMR (470 MHz, CDCl₃) δ -62.8 (s, 3F), -75.6 (s, 2F); ¹³C NMR (126 MHz, CDCl₃) δ 137.3 (t, J_{C-F} = 28.9 Hz), 132.2 (t, J_{C-F} = 2.2 Hz), 131.2 (q, *J*_{C-F} = 32.9 Hz), 130.3, 129.3, 128.9 (m), 128.6, 127.5 (m), 123.6 (q, *J*_{C-F} = 272 Hz), 122.5 (m), 119.7 ($J_{C-F} = 2.8$ Hz), 111.9 (t, $J_{C-F} = 232$ Hz), 89.6 (t, $J_{C-F} = 6.0$ Hz), 81.1 (t, $J_{C-F} = 41.5$ Hz); HRMS-APPI calcd for $C_{16}H_{10}F_5$ [M+H]⁺ 297.0697; found 297.0672.

1-(3-Fluorophenyl)-3-phenylprop-2-yn-1-ol (**S27**). To a -78 °C solution of phenylacetylene (0.60 mL, 5.50 mmol) in THF (17 mL) was added *n*-BuLi (2.5 mol/L in hexanes, 2.2 mL, 5.50 mmol) and the mixture was stirred at -78 °C for 30 minutes, and then at room temperature for 30 minutes. The solution was brought back to -78 °C and 3-fluorobenzaldehyde (0.53 mL, 5.00 mmol) was added. The mixture was stirred at room temperature for 1 hour, after which saturated NaHCO₃ was added. The mixture was extracted with Et₂O (3x), washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. The desired compound (1088 mg, 96%) was isolated as a pale yellow oil by flash chromatography using 20% EtOAc/hexanes. Spectroscopic data was in agreement with the literature.¹⁵

1-(3-Fluorophenyl)-3-phenylprop-2-yn-1-one (S28). To a -78 °C solution of oxalyl chloride (0.46 mL, 5.40 mmol) in CH₂Cl₂ (35 mL) was added DMSO (0.77 mL, 10.8 mmol) and stirring was continued at -78 °C for 15 minutes. A solution of 1-(3-fluorophenyl)-3-phenylprop-2-yn-1-ol (**S27**, 1243 mg, 4.50 mmol) in CH₂Cl₂ (10 mL) was slowly added and the resulting solution was stirred at -78 °C for 15 minutes. Et₃N (3.8 mL, 27.0 mmol) was added, the solution was stirred at -78 °C for 20 minutes, and then allowed to reach room temperature over 40 minutes. Saturated NaHCO₃ was added and stirring was continued for 30 minutes. The resulting mixture was extracted with CH₂Cl₂ (3x), dried over Na₂SO₄ and concentrated *in vacuo*. The desired product (1052 mg, 85%) was isolated a yellow solid by flash chromatography using 10% EtOAc/hexanes. Spectroscopic data was in agreement with the literature.¹⁶

1-(1,1-Difluoro-3-phenylprop-2-yn-1-yl)-3-fluorobenzene (**11**). 1-(3-Fluorophenyl)-3phenylprop-2-yn-1-one (**S28**, 319 mg, 1.42 mmol) was charged into a polypropylene vial. Me-DAST (0.35 mL, 3.56 mmol) was added and the mixture was stirred at 65 °C for 72 hours. It was brought back to 0 °C, diluted with EtOAc and poured into a stirring mixture of EtOAc and saturated NaHCO₃. The mixture was stirred for 30 minutes, after which the organic layer was separated, dried over Na₂SO₄ and concentrated *in vacuo*. The desired compound (87 mg, 25%) was isolated as a colorless oil by flash chromatography using hexanes. IR (ATR, ZnSe) v = 3065, 2238, 1597, 1488, 1448, 1298, 1118, 1013, 877, 685 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.55-7.53 (m, 3H), 7.47-7.42 (m, 3H), 7.39-7.36 (m, 2H), 7.19 (td, *J* = 8.3, 1.9 Hz); ¹⁹F NMR (CDCl₃, 470 MHz) δ -75.3 (s, 2F), -111.5 (m, 1F); ¹³C NMR (CDCl₃, 126 MHz) δ 162.7 (d, *J*_{C-F} = 248 Hz), 138.6 (td, *J*_{C-F} = 29.0, 7.6 Hz), 132.3 (t, *J*_{C-F} = 2.3 Hz), 130.5 (d, *J* = 8.1 Hz), 130.3, 128.7, 121.3 (td, *J*_{C-F} = 4.7, 3.1 Hz), 120.0 (t, *J*_{C-F} = 2.8 Hz), 117.9 (dt, *J*_{C-F} = 21.1, 1.6 Hz), 113.0 (dt, *J*_{C-F} = 41.5 Hz); HRMS-ESI calcd for C₁₅H₉F₂ [M-F]⁺ 227.0667; found 227.0663.

1-(3-Methoxyphenyl)-3-phenylprop-2-yn-1-ol (S29). To a -78 °C solution of phenylacetylene (0.60 mL, 5.50 mmol) in THF (17 mL) was added *n*-BuLi (2.5 mol/L in hexanes, 2.2 mL, 5.50 mmol) and the mixture was stirred at -78 °C for 30 minutes, and then at room temperature for 30 minutes. The solution was brought back to -78 °C and *m*-anisaldehyde (0.61 mL, 5.00 mmol) was added. The mixture was stirred at room

temperature for 1 hour, after which saturated NaHCO₃ was added. The mixture was extracted with Et_2O (3x), washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. The desired compound (852 mg, 72%) was isolated as a pale yellow oil by flash chromatography using 20% EtOAc/hexanes. Spectroscopic data was in agreement with the literature.¹¹

1-(3-Methoxyphenyl)-3-phenylprop-2-yn-1-one (S30). To a -78 °C solution of oxalyl chloride (0.37 mL, 4.29 mmol) in CH₂Cl₂ (25 mL) was added DMSO (0.61 mL, 8.58 mmol) and stirring was continued at -78 °C for 15 minutes. A solution of 1-(3-methoxyphenyl)-3-phenylprop-2-yn-1-ol (**S29**, 852 mg, 3.58 mmol) in CH₂Cl₂ (11 mL) was slowly added and the resulting solution was stirred at -78 °C for 15 minutes. Et₃N (3.0 mL, 21.5 mmol) was added, the solution was stirred at -78 °C for 20 minutes, and then allowed to reach room temperature over 40 minutes. Saturated NaHCO₃ was added and stirring was continued for 30 minutes. The resulting mixture was extracted with CH₂Cl₂ (3x), dried over Na₂SO₄ and concentrated *in vacuo*. The desired product (758 mg, 90%) was isolated as an orange oil by flash chromatography using 10% EtOAc/hexanes. Spectroscopic data was in agreement with the literature.¹³

1-(1,1-Difluoro-3-phenylprop-2-yn-1-yl)-3-methoxybenzene (1m). 1-(3-Methoxyphenyl)-3-phenylprop-2-yn-1-one (S30, 237 mg, 0.831 mmol) was charged into a polypropylene vial. Me-DAST (0.20 mL, 2.08 mmol) was added and the mixture was stirred at 75 °C for 24 hours. It was brought back to 0 °C, diluted with EtOAc and poured into a stirring mixture of EtOAc and saturated NaHCO₃. The mixture was stirred for 30 minutes, after which the organic layer was separated, dried over Na₂SO₄ and concentrated *in vacuo*. The desired compound (25 mg, 10%) was isolated as a colorless oil by flash chromatography using hexanes. Spectroscopic data was in agreement with the literature.¹³

Undec-2-yn-1-ol (S31). To a -78 °C solution of 1-decyne (1.59 mL, 8.80 mmol) in THF (27 mL) was added *n*-BuLi (2.5 mol/L in hexanes, 3.5 mL, 8.80 mmol) and the mixture was stirred at -78 °C for 30 minutes, and then at room temperature for 30 minutes. The solution was brought back to -78 °C and paraformaldehyde (240 mg, 8.00 mmol) was added. The mixture was stirred at room temperature for 1 hour, after which saturated NaHCO₃ was added. The mixture was extracted with Et_2O (3x), washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. The desired compound (1072 mg, 80%) was isolated as a colorless oil by flash chromatography using 10% EtOAc/hexanes. Spectroscopic data was in agreement with the literature.¹⁷

Undec-2-ynal (S32). PCC was charged into a round-bottom flask, after which CH_2Cl_2 (25 mL) was added, and the resulting suspension was stirred for 30 minutes at room temperature. A solution of undec-2-yn-1-ol (**S31**, 1068 mg, 6.35 mmol) in CH_2Cl_2 (7 mL) was then added dropwise, and the resulting mixture was stirred at room temperature for 1 hour. The solution was then filtered through a short pad of silica, washing with CH_2Cl_2 . The solvent was removed *in vacuo*. The desired compound (723 mg, 68%) was isolated as a yellow oil by flash chromatography using 5% EtOAc/hexanes. Spectroscopic data was in agreement with the literature.¹⁷

1,1-Difluoroundec-2-yne (1n). Undec-2-ynal (**S32**, 643 mg, 3.87 mmol) was charged into a polypropylene vial. Me-DAST (0.94 mL, 9.67 mmol) was added and the mixture was stirred at room temperature for 18 hours. It was then brought to 0 °C, diluted with EtOAc and poured into a stirring mixture of EtOAc and saturated NaHCO₃. The mixture was stirred for 30 minutes, after which the organic layer was separated, dried over

Na₂SO₄ and concentrated *in vacuo*. The desired compound (380 mg, 52%) was isolated as a colorless oil by flash chromatography using hexanes. IR (ATR, ZnSe) v = 2925, 2856, 2338, 2254, 1459, 1372, 1165, 1038, 835, 723 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 6.17 (t, 1H, *J* = 55.6 Hz), 2.30-2.25 (m, 2H), 1.55 (p, 2H, *J* = 7.3 Hz), 1.38 (p, 2H, *J* = 6.7 Hz), 1.32-1.24 (m, 8H); ¹⁹F NMR (CDCl₃, 470 MHz) δ -103.9 (dt, 2F, *J* = 56.0, 5.3 Hz); ¹³C NMR (CDCl₃, 126 MHz) δ 104.0 (t, *J*_{C-F} = 231 Hz), 91.0 (t, *J*_{C-F} = 7.0 Hz), 72.3 (t, *J*_{C-F} = 33.5 Hz), 31.9, 29.3, 29.1, 28.9, 27.8 (t, *J*_{C-F} = 2.3 Hz), 22.8, 18.5 (t, *J*_{C-F} = 2.6 Hz), 14.2; HRMS-ESI calcd for C₂₂H₄₀F₂N [2M+NH₄]⁺ 394.3091; found 394.3119.

3-Phenylprop-2-yn-1-ol (S33). To a -78 °C solution of phenylacetylene (0.90 mL, 8.20 mmol) in THF (20 mL) was added *n*-BuLi (2.5 mol/L in hexanes, 3.3 mL, 8.20 mmol) and the mixture was stirred at -78 °C for 30 minutes, and then at room temperature for 30 minutes. The solution was brought back to -78 °C and paraformaldehyde (224 mg, 7.45 mmol) was added. The mixture was stirred at room temperature for 1 hour, after which saturated NaHCO₃ was added. The mixture was extracted with Et₂O (3x), washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. The desired compound (861 mg, 87%) was isolated as a colorless oil by flash chromatography using 20% EtOAc/hexanes. Spectroscopic data was in agreement with the literature.¹⁸

3-Phenylpropiolaldehyde (S34). DDQ (148 mg, 0.651 mmol) was charged into a roundbottom flask, after which CH_2Cl_2 (25 mL) and AcOH (3 mL) were added, followed by a solution of 3-phenylprop-2-yn-1-ol (**S33**, 860 mg, 6.51 mmol) in CH_2Cl_2 (5 mL). NaNO₂ (45 mg, 0.651 mmol) was added in one portion, and the mixture was stirred under air and at room temperature for 22 hours. The solution was then filtered through a short pad of silica, washing with CH_2Cl_2 . The solvent was removed *in vacuo*. The desired compound (575 mg, 68%) was isolated as a yellow oil by flash chromatography using 10% EtOAc/hexanes. Spectroscopic data was in agreement with the literature.¹⁹

(3,3-Difluoroprop-1-yn-1-yl)benzene (10). 3-Phenylpropiolaldehyde (S34, 296 mg, 2.27 mmol) was charged into a polypropylene vial. Me-DAST (0.56 mL, 5.69 mmol) was added and the mixture was stirred at room temperature for 18 hours. It was then brought to 0 °C, diluted with EtOAc and poured into a stirring mixture of EtOAc and saturated NaHCO₃. The mixture was stirred for 30 minutes, after which the organic layer was separated, dried over Na₂SO₄ and concentrated *in vacuo*. The desired compound (157 mg, 45%) was isolated as a colorless oil by flash chromatography using hexanes. IR (ATR, ZnSe) v = 3063, 2975, 2248, 2221, 1490, 1369, 1258, 1086, 967, 687 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.52 (d, 2H, *J* = 7.2 Hz), 7.43 (t, 1H, *J* = 7.4 Hz), 7.37 (t, 2H, *J* = 7.4 Hz), 6.42 (t, 1H, *J* = 55.1 Hz); ¹⁹F NMR (CDCl₃, 470 MHz) δ -105.3 (t, 2F, *J* = 54.8 Hz); ¹³C NMR (CDCl₃, 126 MHz) δ 132.3 (t, *J*_{C-F} = 2.7 Hz), 130.3, 128.7, 120.0 (t, *J*_{C-F} = 3.1 Hz), 104.4 (t, *J*_{C-F} = 232 Hz), 88.6 (t, *J*_{C-F} = 7.3 Hz), 79.9 (t, *J*_{C-F} = 33.9 Hz); HRMS-ESI calcd for C₉H₇F₂ [M+H]⁺ 153.0510; found 153.0517.

5-Phenylpent-1-yn-3-ol (S35). To a 0 °C solution of hydrocinnamaldehyde (1.46 mL, 10 mmol) in Et₂O (20 mL) was slowly added ethynylmagnesium bromide (0.5 mol/L in THF, 24 mL, 12 mmol), and the resulting mixture was stirred at 0 °C for 30 minutes, and then at room temperature for 2 hours. Saturated NH₄Cl was added and the mixture was

extracted with Et_2O (3x), washed with brine, dried over MgSO₄ and concentrated *in vacuo*. The desired compound (1.40 g, 88%) was isolated as a pale yellow oil by flash chromatography using 20% EtOAc/hexanes. Spectroscopic data was in agreement with the literature.²⁰

5-Phenylpent-1-yn-3-one (S36). To a 30 °C solution of 5-phenylpent-1-yn-3-ol (**S35**, 728 mg, 4.54 mmol) in THF (7 mL) and DMSO (29 mL) was added 2-iodoxybenzoic acid (IBX, 3.82 g, 13.6 mmol). The resulting mixture was stirred at 30 °C for 5 hours, after which water was added and stirring was continued for 10 minutes. The suspension was filtered to remove the solids. It was then extracted with Et_2O , washed with brine, dried over MgSO₄ and concentrated *in vacuo*. The desired compound (636 mg, 89%) was isolated as a pale yellow oil by flash chromatography using 10% EtOAc/hexanes. Spectroscopic data was in agreement with the literature.²¹

(3,3-Difluoropent-4-yn-1-yl)benzene (1p). 5-Phenylpent-1-yn-3-one (S36, 574 mg, 3.46 mmol) was charged into a polypropylene vial. Me-DAST (0.85 mL, 8.66 mmol) was added and the mixture was stirred at 55 °C for 5 hours. It was brought back to 0 °C, diluted with EtOAc and poured into a stirring mixture of EtOAc and saturated NaHCO₃. The mixture was stirred for 30 minutes, after which the organic layer was separated, dried over Na₂SO₄ and concentrated *in vacuo*. The desired compound (267 mg, 43%) was isolated as a colorless oil by flash chromatography using hexanes. IR (ATR, ZnSe) v = 3302, 3030, 2937, 2135, 1455, 1303, 1171, 1047, 952, 695 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.31 (t, 2H, *J* = 7.4 Hz), 7.24-7.20 (m, 2H), 2.90-2.87 (m, 2H), 2.81 (t, 1H, *J* = 5.0 Hz), 2.41-2.32 (m, 2H); ¹⁹F NMR (CDCl₃, 470 MHz) δ -84.7 (td, 2F, *J* = 14.4, 5.2 Hz); ¹³C NMR (CDCl₃, 126 MHz) δ 139.8, 128.8, 128.4, 126.6, 113.9 (t, *J*_{C-F} = 234 Hz), 76.5 (t, *J*_{C-F} = 40.9 Hz), 75.6 (t, *J*_{C-F} = 6.9 Hz), 41.0 (t, *J*_{C-F} = 25.8 Hz), 29.1 (t, *J*_{C-F} = 4.1 Hz); HRMS-ESI calcd for C₁₁H₁₀F [M-F]⁺ 161.0761; found 161.0784.

4. Gold-catalyzed formal hydration of propargylic gem-difluorides

General procedure A for the gold-catalyzed formal hydration of propargylic *gem***-difluorides**: Chloro(triphenylphosphine)gold(I) (5 mol %) and silver trifluoromethanesulfonate (5 mol %) were charged into a glass vial. A magnetic stir bar was added, and then the vial was sealed and flushed with argon, after which a solution of the propayglic *gem*-difluoride (1 equiv) in THF/MeOH (9:1, 0.1 M) was added. The vial was wrapped with aluminum foil, and the reaction mixture was stirred at room temperature for 18 hours. The reaction was then transferred to a round-bottom flask, using CH₂Cl₂ to rinse the vial. The volatiles were removed *in vacuo*, after which 3 mL of CH₂Cl₂ and 3 mL of HCl 3 N were added. The mixture was stirred at room temperature for 3 hours. The layers were separated, and the aqueous layer was extracted with CH₂Cl₂ two more times. The combined organic layers were washed with water, dried over Na₂SO₄ and concentrated *in vacuo*. The residue was the purified by flash chromatography.

General procedure B for the gold-catalyzed formal hydration of propargylic gemdifluorides: Chloro(triphenylphosphine)gold(I) (5 mol %) and silver trifluoromethanesulfonate (5 mol %) were charged into a glass vial. A magnetic stir bar was added, and then the vial was sealed and flushed with argon, after which a solution of the propayglic gem-difluoride (1 equiv) in THF/MeOH (9:1, 0.1 M) was added. The vial was wrapped with aluminum foil, and the reaction mixture was stirred at room temperature for 18 hours. The reaction was then transferred to a round-bottom flask, using CH₂Cl₂ to rinse the vial. The volatiles were removed *in vacuo*, after which 3 mL of CH₂Cl₂ and 3 mL of HCl 3 N were added. The mixture was stirred at room temperature for 24 hours. The layers were separated, and the aqueous layer was extracted with CH₂Cl₂ two more times. The combined organic layers were washed with water, dried over Na₂SO₄ and concentrated *in vacuo*. The residue was the purified by flash chromatography.

General procedure C for the gold-catalyzed formal hydration of propargylic *gem*difluorides: Chloro(triphenylphosphine)gold(I) (5 mol %) and silver trifluoromethanesulfonate (5 mol %) were charged into a glass vial. A magnetic stir bar was added, and then the vial was sealed and flushed with argon, after which a solution of the propayglic *gem*-difluoride (1 equiv) in THF/MeOH (9:1, 0.1 M) was added. The vial was wrapped with aluminum foil, and the reaction mixture was stirred at 40 °C for 48 hours. The reaction was then transferred to a round-bottom flask, using CH_2Cl_2 to rinse the vial. The volatiles were removed *in vacuo*, after which 3 mL of CH_2Cl_2 and 3 mL of HCl 3 N were added. The mixture was stirred at room temperature for 3 hours. The layers were separated, and the aqueous layer was extracted with CH_2Cl_2 two more times. The combined organic layers were washed with water, dried over Na_2SO_4 and concentrated *in vacuo*. The residue was the purified by flash chromatography.

General procedure D for the gold-catalyzed formal hydration of propargylic gemdifluorides: Chloro(triphenylphosphine)gold(I) (5 mol %) and silver trifluoromethanesulfonate (5 mol %) were charged into a glass vial. A magnetic stir bar was added, and then the vial was sealed and flushed with argon, after which a solution of the propayglic gem-difluoride (1 equiv) in THF/MeOH (9:1, 0.1 M) was added. The vial was wrapped with aluminum foil, and the reaction mixture was stirred at 40 °C for 48 hours. The reaction was then transferred to a round-bottom flask, using CH₂Cl₂ to rinse the vial. The volatiles were removed *in vacuo*, after which 3 mL of CH₂Cl₂ and 3 mL of HCl 3 N were added. The mixture was stirred at room temperature for 24 hours. The layers were separated, and the aqueous layer was extracted with CH₂Cl₂ two more times. The combined organic layers were washed with water, dried over Na₂SO₄ and concentrated *in vacuo*. The residue was the purified by flash chromatography.

3,3-Difluoro-1-phenylhexan-1-one (2a). Following general procedure A for the goldcatalyzed formal hydration of propargylic *gem*-difluoride **1a** on a 0.154 mmol scale, the desired product (26.9 mg, 82%) was isolated as a colorless oil by flash chromatography using 5% EtOAc/hexanes. IR (ATR, ZnSe) v = 2966, 2935, 2878, 1683, 1449, 1139, 984, 861, 753, 687 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.97 (d, 2H, *J* = 8.2 Hz), 7.60 (t, 1H, *J* = 7.4 Hz), 7.49 (t, 2H, *J* = 7.8 Hz), 3.54 (t, 2H, *J* = 14.5 Hz), 2.11-2.01 (m, 2H), 1.591.52 (sext, 2H, J = 7.5 Hz), 0.98 (t, 3H, J = 7.4 Hz); ¹⁹F NMR (CDCl₃, 470 MHz) δ -91.5 (p, 2F, J = 16.1 Hz); ¹³C NMR (CDCl₃, 126 MHz) δ 194.0 (t, $J_{C-F} = 5.7$ Hz), 136.9 (t, $J_{C-F} = 1.7$ Hz), 133.8, 128.9, 128.7, 123.2 (t, $J_{C-F} = 242$ Hz), 44.6 (t, $J_{C-F} = 26.7$ Hz), 38.4 (t, $J_{C-F} = 23.8$ Hz), 15.9 (t, $J_{C-F} = 4.8$ Hz), 14.0. HRMS-ESI calcd for C₁₂H₁₅F₂O [M+H]⁺ 213.1086; found 213.1085.

3,3-Difluoro-1,5-diphenylpentan-1-one (2b). Following general procedure A for the gold-catalyzed formal hydration of propargylic *gem*-difluoride **1b** on a 0.117 mmol scale, the desired product (23.2 mg, 72%) was isolated as a colorless oil by flash chromatography using 5% EtOAc/hexanes. IR (ATR, ZnSe) v = 3062, 3028, 2933, 1683, 1449, 1363, 1049, 908, 731, 687 cm^{-1; 1}H NMR (CDCl₃, 500 MHz) δ 7.96-7.94 (m, 2H), 7.60 (t, 1H, *J* = 7.4 Hz), 7.49 (t, 2H, *J* = 7.8 Hz), 7.28 (t, 2H, *J* = 7.6 Hz), 7.22-7.17 (m, 3H), 3.57 (t, 2H, *J* = 14.4 Hz), 2.88-2.85 (m, 2H), 2.48-2.37 (m, 2H); ¹⁹F NMR (CDCl₃, 470 MHz) δ -92.1 (p, 2F, *J* = 15.9 Hz); ¹³C NMR (CDCl₃, 126 MHz) δ 193.8 (t, *J*_{C-F} = 5.9 Hz), 140.5, 136.8 (t, *J*_{C-F} = 1.7 Hz), 133.9, 128.9, 128.7, 128.6, 128.5, 126.4, 122.7 (t, *J*_{C-F} = 243 Hz), 44.7 (t, *J*_{C-F} = 26.6 Hz), 38.1 (t, *J*_{C-F} = 24.0 Hz), 28.6 (t, *J*_{C-F} = 5.1 Hz); HRMS-ESI calcd for C₁₇H₁₇F₂O [M+H]⁺ 275.1242; found 275.1244.

Ethyl 5,5-difluoro-7-oxo-7-phenylheptanoate (2c). Following general procedure A for the gold-catalyzed formal hydration of propargylic *gem*-difluoride 1c on a 0.113 mmol scale, the desired product (26.8 mg, 84%) was isolated as a colorless oil by flash chromatography using 15% EtOAc/hexanes. IR (ATR, ZnSe) v = 2982, 2256, 1729,

1688, 1449, 1367, 1182, 908, 728, 688 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, 2H, J = 8.5 Hz), 7.61 (t, 1H, J = 7.4 Hz), 7.49 (t, 2H, J = 7.8 Hz), 4.14 (q, 2H, J = 7.1 Hz), 3.56 (t, 2H, J = 14.4 Hz), 2.38 (t, 2H, J = 7.5 Hz), 2.21-2.11 (m, 2H), 1.91-1.84 m, 2H), 1.26 (t, 3H, J = 7.1 Hz); ¹⁹F NMR (470 MHz, CDCl₃) δ -91.2 (m, 2F); ¹³C NMR (126 MHz, CDCl₃) δ 193.8 (t, $J_{C-F} = 5.7$ Hz), 173.1, 136.8, 133.9, 128.9, 128.6, 122.9 (t, $J_{C-F} = 243$ Hz), 60.6, 44.6 (t, $J_{C-F} = 26.7$ Hz), 35.6 (t, $J_{C-F} = 24.3$ Hz), 33.7, 17.9 (t, $J_{C-F} = 5.0$ Hz), 14.4; HRMS-APPI calcd for C₁₅H₁₉F₂O₃ [M+H]⁺ 285.1297; found 285.1268.

Benzyl 4-(1,1-difluoro-3-oxo-3-phenylpropyl)piperidine-1-carboxylate (2d). Following general procedure C for the gold-catalyzed formal hydration of propargylic *gem*-difluoride 1d on a 0.0812 mmol scale, the desired product (22.5 mg, 72%) was isolated as a colorless oil by flash chromatography using 20% EtOAc/hexanes. IR (ATR, ZnSe) v = 3061, 2931, 2858, 1686, 1427, 1324, 1231, 1119, 1025, 748 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, 2H, J = 7.4 Hz), 7.61 (t, 1H, J = 7.4 Hz), 7.49 (t, 2H, J = 7.7 Hz), 7.37-7.31 (m, 5H), 5.13 (s, 2H), 4.30 (bs, 2H), 3.55 (t, 2H, J = 15.1 Hz), 2.77 (bs, 1H), 2.45-2.34 (m, 1H), 1.84 (d, 2H, J = 12.8 Hz), 1.54-1.47 (m, 2H); ¹⁹F NMR (470 MHz, CDCl₃) δ -99.7 (m, 2F); ¹³C NMR (126 MHz, CDCl₃) δ 193.7 (t, $J_{C-F} = 5.5$ Hz), 155.1, 136.7, 136.6, 133.9, 128.8, 128.5, 128.5, 128.0, 127.9, 123.2 (t, $J_{C-F} = 245$ Hz), 67.1, 43.4, 42.3 (t, $J_{C-F} = 26.9$ Hz), 41.4 (t, $J_{C-F} = 23.3$ Hz), 24.8 (t, $J_{C-F} = 4.4$ Hz); HRMS-APPI calcd for C₂₂H₂₄F₂NO₃ [M+H]⁺ 388.1719; found 388.1696.

5-(Benzo[d][1,3]dioxol-5-yl)-3,3-difluoro-2-methyl-1-phenylpentan-1-one (2e). Following general procedure C for the gold-catalyzed formal hydration of propargylic *gem*-difluoride **1e** on a 0.0954 mmol scale, the desired product (19.4 mg, 61%) was isolated as a colorless oil by flash chromatography using 7% EtOAc/hexanes. IR (ATR, ZnSe) v = 2976, 2886, 1683, 1488, 1442, 1244, 1036, 927, 808, 686 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.95 (d, 2H, J = 7.4 Hz), 7.60 (t, 1H, J = 7.4 Hz), 7.49 (t, 2H, J = 7.7 Hz), 6.72 (d, 1H, J = 7.9 Hz), 6.68 (s, 1H), 6.63 (d, 1H, J = 7.9 Hz), 5.90 (d, 1H, J = 10.9 Hz), 5.89 (d, 1H, J = 10.9 Hz), 3.58 (td, 2H, J = 15.8, 3.5 Hz), 3.06 (dd, 1H, J = 13.6, 3.9 Hz), 2.62-2.49 (m, 1H), 2.34 (dd, 1H, J = 13.5, 10.6 Hz), 0.98 (t, 3H, J = 6.9 Hz); ¹⁹F NMR (470 MHz, CDCl₃) δ -99.0 (m, 2F); ¹³C NMR (126 MHz, CDCl₃) δ 194.0 (t, J = 5.2 Hz), 147.8, 146.1, 137.0, 133.7, 133.3, 128.8, 128.7, 124.4 (t, $J_{C-F} = 246$ Hz), 122.2, 109.6, 108.3, 101.0, 43.1 (t, $J_{C-F} = 26.8$ Hz), 41.2 (t, $J_{C-F} = 22.4$ Hz), 35.8 (t, $J_{C-F} = 4.8$ Hz); 12.7 (t, $J_{C-F} = 4.8$ Hz); HRMS-APPI calcd for C₁₉H₁₉F₂O₃ [M+H]⁺ 333.1272; found 333.1297.

5,5-Difluoro-1-phenyltridecan-3-one (2f). Following general procedure A for the goldcatalyzed formal hydration of propargylic *gem*-difluoride **1f** on a 0.103 mmol scale, the desired product (28.3 mg, 89%) was isolated as a colorless oil by flash chromatography using 5% EtOAc/hexanes. IR (ATR, ZnSe) v = 2954, 2916, 2848, 1715, 1372, 1150, 1026, 969, 921, 703 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.28 (t, 2H, J = 7.4 Hz), 7.21-7.17 (m, 3H), 2.97-2.84 (m, 6H), 1.94-1.84 (m, 2H), 1.46-1.39 (m, 2H), 1.32-1.24 (m, 10H), 0.88 (t, 3H, J = 6.9 Hz); ¹⁹F NMR (CDCl₃, 470 MHz) -92.8 (p, 2F, J = 16.3 Hz); ¹³C NMR (CDCl₃, 126 MHz) δ 203.8 (t, $J_{C-F} = 4.4$ Hz), 140.7, 128.7, 128.5, 126.3, 122.9 (t, $J_{C-F} = 242$ Hz), 49.3 (t, $J_{C-F} = 26.2$ Hz), 45.8 (t, $J_{C-F} = 2.1$ Hz), 36.6 (t, $J_{C-F} = 24.1$ Hz), 31.9, 29.5, 29.4, 29.3, 29.3, 22.8, 22.3 (t, $J_{C-F} = 4.5$ Hz), 14.3; HRMS-ESI calcd for C₁₉H₂₉F₂O [M+H]⁺ 311.2181; found 311.2175.

3,3-Difluoro-1-phenyltridecan-5-one (2g). Following general procedure A for the goldcatalyzed formal hydration of propargylic *gem*-difluoride **1g** on a 0.103 mmol scale, the desired product (26.8 mg, 84%) was isolated as a colorless oil by flash chromatography using 2% EtOAc/hexanes. IR (ATR, ZnSe) v = 2953, 2925, 2855, 1721, 1530, 1350, 1072, 812, 724, 698 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.31-7.28 (m, 2H), 7.22-7.19 (m, 3H), 2.98 (t, 2H, *J* = 15.3 Hz), 2.83-2.79 (m, 2H), 2.48 (t, 2H, *J* = 7.3 Hz), 2.34-2.24 (m, 2H), 1.59-1.53 (m, 2H), 1.31-1.25 (m, 10H), 0.88 (t, 3H, *J* = 6.9 Hz); ¹⁹F NMR (CDCl₃, 470 MHz) δ -93.3 (p, 2F, *J* = 16.2 Hz); ¹³C NMR (CDCl₃, 126 MHz) δ 204.7 (t, *J*_{C-F} = 4.6 Hz), 140.4, 128.7, 128.5, 126.4, 122.4 (t, *J*_{C-F} = 242.7 Hz), 48.9 (t, *J*_{C-F} = 26.0 Hz), 44.5 (t, *J*_{C-F} = 1.9 Hz), 38.2 (t, *J*_{C-F} = 24.1 Hz), 32.0, 29.5, 29.2, 29.2, 28.6 (t, *J*_{C-F} = 5.0 Hz), 23.4, 22.8, 14.2; HRMS-ESI calcd for C₁₉H₂₉F₂O [M+H]⁺ 311.2181; found 311.2173.

5,5-Difluoro-2,2-dimethyl-7-phenylheptan-3-one (**2h**). Chloro(triphenylphosphine) gold(I) (3.1 mg, 0.0063 mmol, 5 mol %) and silver trifluoromethanesulfonate (1.6 mg, 0.0063 mmol, 5 mol %) were charged into a glass vial. A magnetic stir bar was added, and then the vial was sealed and flushed with argon, after which a solution of (3,3-difluoro-6,6-dimethylhept-4-yn-1-yl)benzene (**1h**, 30 mg, 0.127 mmol) in THF/MeOH (9:1, 1.27 mL) was added. The vial was wrapped with aluminum foil, and the reaction mixture was stirred at 70 °C for 18 hours. The reaction was then transferred to a round-bottom flask, using CH₂Cl₂ to rinse the vial. The volatiles were removed *in vacuo*, after
which 3 mL of CH₂Cl₂ and 3 mL of HCl 3 N were added. The mixture was stirred at room temperature for 3 hours, at which point 2-fluoro-4-nitrotoluene (28.3 mg, 0.182 mmol) was added as an internal standard. The layers were separated, and the aqueous layer was extracted with CH₂Cl₂ two more times. The combined organic layers were washed with water, dried over Na₂SO₄ and concentrated *in vacuo*. An NMR yield of 7% was estimated by ¹⁹F NMR analysis of the crude reaction mixture. ¹⁹F NMR (CDCl₃, 470 MHz) δ -92.2 (p, 2F, *J* = 15.6 Hz, 0.0145 mmol, 7%).

3,3-Difluoro-1,3-diphenylpropan-1-one (**2i**). Following general procedure B for the gold-catalyzed formal hydration of propargylic *gem*-difluoride **1i** on a 0.131 mmol scale, the desired product (21.1 mg, 65%) was isolated as a white solid by flash chromatography using hexanes. mp 57-59 °C; IR (ATR, ZnSe) v = 3061, 2924, 1692, 1596, 1311, 1209, 1147, 984, 819, 686 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.91 (d, 2H, *J* = 8.5 Hz), 7.60-7.53 (m, 3H), 7.48-7.42 (m, 5H), 3.87 (t, 2H, *J* = 14.7 Hz); ¹⁹F NMR (470 MHz, CDCl₃) δ -90.3 (t, 2F, *J* = 14.9 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 192.8 (t, *J*_{C-F} = 4.1 Hz), 136.7 (t, *J*_{C-F} = 1.4 Hz), 133.6, 130.0 (t, *J*_{C-F} = 1.9 Hz), 128.7, 128.5, 128.4, 127.2, 125.1 (t, *J*_{C-F} = 6.2 Hz), 120.5 (t, *J*_{C-F} = 245 Hz), 47.1 (t, *J*_{C-F} = 28.2 Hz; HRMS-APPI calcd for C₁₅H₁₂FO [M-F]⁺ 227.0867; found 227.0868.

3-(4-Bromophenyl)-3,3-difluoro-1-phenylpropan-1-one (**2j**). Following general procedure A for the gold-catalyzed formal hydration of propargylic *gem*-difluoride **1j** on a 0.0977 mmol scale, the desired product (26.0 mg, 82%) was isolated as a colorless oil by flash chromatography using 10% EtOAc/hexanes. IR (ATR, ZnSe) v = 3061, 2923, 1675, 1488, 1312, 1208, 1008, 825, 757, 686 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.90 (d, 2H, J = 7.6 Hz), 7.61-7.55 (m, 3H), 7.47 (t, 2H, J = 7.7 Hz), 7.42 (d, 2H, J = 8.3 Hz), 3.87 (t, 2H, J = 14.3 Hz); ¹⁹F NMR (470 MHz, CDCl₃) δ -90.0 (t, 2F, J = 14.2 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 192.6 (t, $J_{C-F} = 4.5$ Hz), 136.6, 135.6 (t, $J_{C-F} = 26.2$ Hz), 133.9, 131.8, 128.9, 128.6, 127.2 (t, $J_{C-F} = 6.2$ Hz), 124.6 (t, $J_{C-F} = 2.1$ Hz), 120.4 (t, $J_{C-F} = 245$ Hz), 47.0 (t, $J_{C-F} = 28.2$ Hz); HRMS-APPI calcd for C₂₃H₁₂BrF₂O [M+H]⁺ 325.0034; found 325.0061.

3,3-Difluoro-1-phenyl-3-(3-(trifluoromethyl)phenyl)propan-1-one (**2k**). Following general procedure B for the gold-catalyzed formal hydration of propargylic *gem*-difluoride **1k** on a 0.101 mmol scale, the desired product (19.0 mg, 60%) was isolated as a colorless oil by flash chromatography using 30% DCM/hexanes. IR (ATR, ZnSe) v = 2928, 1693, 1598, 1449, 1344, 1279, 1122, 1075, 908, 812 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.90 (d, 2H, *J* = 7.3 Hz), 7.80 (s, 1H), 7.77 (d, 1H, *J* = 7.9 Hz), 7.70 (d, 1H, *J* = 7.8 Hz), 7.61-7.55 (m, 2H), 7.47 (t, 2H, *J* = 7.8 Hz), 3.92 (t, 2H, *J* = 14.3 Hz); ¹⁹F NMR (470 MHz, CDCl₃) δ -62.8 (s, 3F), -90.4 (t, 2F, *J* = 14.5 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 192.4 (t, *J* = 4.7 Hz), 137.6 (t, *J* = 26.5 Hz), 136.5 (t, *J* = 1.7 Hz), 134.0, 131.1 (q, *J* = 32.9 Hz), 129.2, 128.9, 128.5, 127.0 (m), 123.8 (q, *J* = 272 Hz), 122.5 (m), 120.6 (t, *J* = 245 Hz), 47.0 (t, *J* = 27.9 Hz); HRMS-APPI calcd for C₁₆H₁₂F₅O [M+H]⁺ 315.0803; found 315.0773.

3,3-Difluoro-3-(3-fluorophenyl)-1-phenylpropan-1-one (**2l**). Following general procedure D for the gold-catalyzed formal hydration of propargylic *gem*-difluoride **1** on a 0.122 mmol scale, the desired product (15.8 mg, 49%) was isolated as a pale orange oil by flash chromatography using 10% EtOAc/hexanes. IR (ATR, ZnSe) v = 3066, 2934,2851, 1689, 1593, 1321, 1221, 1184, 991, 872 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.90 (d, 2H, J = 7.6 Hz), 7.59 (t, 1H, J = 7.4 Hz), 7.47 (t, 2H, J = 7.7 Hz), 7.39 (q, 1H, J = 7.8Hz), 7.32 (d, 1H, J = 7.7 Hz), 7.26 (d, 1H, J = 7.4 Hz), 7.12 (t, 1H, J = 8.1 Hz), 3.87 (t, 2H. J = 14.5 Hz); ¹⁹F NMR (470 MHz, CDCl₃) δ -90.2 (t, 2F, J = 14.3 Hz), -111.8 (q, 1F, J = 8.3 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 192.5 (t, $J_{C-F} = 4.3$ Hz), 162.6 (d, $J_{C-F} =$ 247.0 Hz), 138.8 (td, $J_{C-F} = 26.4$, 7.2 Hz), 133.9, 130.4 (d, $J_{C-F} = 7.9$ Hz), 128.9, 128.6, 121.1 (td, $J_{C-F} = 6.3$, 3.3 Hz), 119.9 (td, $J_{C-F} = 245$, 1.9 Hz), 118.7 (d, $J_{C-F} = 21.3$ Hz), 117.2 (d, $J_{C-F} = 21.0 \text{ Hz}$), 112.9 (dt, $J_{C-F} = 23.8$, 6.5 Hz), 47.0 (t, $J_{C-F} = 27.9 \text{ Hz}$); HRMS-APPI calcd for $C_{15}H_{11}F_2O[M-F]^+$ 245.0772; found 245.0746.

1,1-Difluoroundecan-3-one (2n). Following general procedure A for the gold-catalyzed formal hydration of propargylic *gem*-difluoride **1n** on a 0.159 mmol scale, the desired product (25.8 mg, 78%) was isolated as a colorless oil by flash chromatography using 3% EtOAc/hexanes. IR (ATR, ZnSe) v = 2925, 2855, 1719, 1465, 1418, 1391, 1302, 1114, 1043, 1015 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 6.17 (t, 1H, *J* = 55.5), 2.31-2.25 (m, 2H), 1.55 (p. 2H, *J* = 7.7 Hz), 1.38 (p, 2H, *J* = 6.8 Hz), 1.32-1.24 (m, 8H), 0.89 (t, 3H, *J* = 6.9

Hz); ¹⁹F NMR (470 MHz, CDCl₃) δ -103.9 (dt, 2F, J = 56.0, 5.4 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 104.0 (t, $J_{C-F} = 231$ Hz), 91.0 (t, $J_{C-F} = 7.0$ Hz), 72.3 (t, $J_{C-F} = 33.5$ Hz), 31.9, 29.3, 29.1, 28.9, 27.8 (t, $J_{C-F} = 2.2$ Hz), 22.8, 18.5 (t, $J_{C-F} = 2.6$ Hz), 14.2; HRMS-APPI calcd for C₁₁H₂₁F₂O [M+H]⁺ 207.1555; found 207.1526.

3,3-Difluoro-1-phenylpropan-1-one (20). Following general procedure A for the goldcatalyzed formal hydration of propargylic *gem*-difluoride **10** on a 0.197 mmol scale, the desired product (21.6 mg, 64%) was isolated as a colorless oil by flash chromatography using 5% EtOAc/hexanes. IR (ATR, ZnSe) v = 3063, 2930, 1685, 1597, 1421, 1325, 1215, 1118, 1036, 881 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.94 (d, 2H, *J* = 8.5 Hz), 7.63 (t, 1H, *J* = 7.4 Hz), 7.51 (t, 2H, *J* = 7.8 Hz), 6.41 (tt, 1H, *J* = 55.5, 4.6 Hz), 3.55 (td, 2H, *J* = 15.2, 4.6 Hz); ¹⁹F NMR (470 MHz, CDCl₃) δ -116.9 (dt, 2F, *J* = 55.1, 15.1 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 193.9 (t, *J*_{C-F} = 6.6 Hz), 136.1 (t, *J*_{C-F} = 1.8 Hz), 134.2, 129.0, 128.3, 115.0 (t, *J*_{C-F} = 238.4 Hz), 43.1 (t, *J*_{C-F} = 23.4 Hz); HRMS-APPI calcd for C₉H₉F₂O [M+H]⁺ 171.0616; found 171.0595.

3,3-Difluoro-3-phenylpropanal (2p). (JohnPhos)AuCl (2.7 mg, 0.0050 mmol, 3 mol %) and silver trifluoromethanesulfonate (1.3 mg, 0.0050 mmol, 3 mol %) were charged into a glass vial. A magnetic stir bar was added, and then the vial was sealed and flushed with argon, after which a solution of (3,3-difluoropent-4-yn-1-yl)benzene (**1p**, 30 mg, 0.166 mmol) in dioxane/MeOH (9:1, 1.66 mL) was added. The vial was wrapped with aluminum foil, and the reaction mixture was stirred at 50 °C for 18 hours. The reaction was then transferred to a round-bottom flask, using CH₂Cl₂ to rinse the vial. The volatiles were removed *in vacuo*, after which 2.5 mL of CH₂Cl₂ and 0.5 mL of TFA were added. The mixture was stirred at room temperature for 3 hours and then quenched by the addition of H₂O. The resulting mixture was extracted with CH₂Cl₂ (3x), dried over Na₂SO₄ and concentrated *in vacuo*. Fluorobenzene (40 µL, 0.429 mmol) was added mixture as an internal standard and an NMR yield of 82% was estimated by ¹⁹F NMR analysis of the crude reaction mixture. ¹⁹F NMR (CDCl₃, 470 MHz) δ -94.6 (p, 2F, *J* = 16.5 Hz, 0.1370 mmol, 82%).

3,3-Difluoro-3-phenylpropan-1-ol (16). The crude reaction mixture was dissolved in MeOH (0.8 mL) and sodium borohydride (12.6 mg, 0.333 mmol) was added. The resulting mixture was stirred at room temperature for 2 hours. Water was added and the mixture was extracted with Et₂O (3x). The combined organic layers were washed with brine and concentrated *in vacuo*. The desired compound (23.1 mg, 69%) was isolated as a pale yellow oil by flash chromatography using 25% EtOAc/hexanes. IR (ATR, ZnSe) v = 3357, 2934, 1497, 1455, 1379, 1054, 926, 845, 746, 697 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.32-7.29 (m, 2H), 7.23-7.20 (m, 3H), 3.89 (t, 2H, *J* = 6.1 Hz), 2.85-2.81 (m, 2H), 2.25-2.13 (m, 4H), 1.59 (bs, 1H); ¹⁹F NMR (470 MHz, CDCl₃) δ -97.8 (p, 2F, *J* = 16.7 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 140.6, 128.7, 128.4, 126.4, 124.7 (t, *J*_{C-F} = 241 Hz), 57.3 (t, *J*_{C-F} = 5.5 Hz), 39.3 (t, *J*_{C-F} = 24.2 Hz), 39.1 (t, *J*_{C-F} = 25.0 Hz), 28.5 (t, *J*_{C-F} = 5.2 Hz); HRMS-APPI calcd for C₁₁H₁₈F₂NO [M+NH₄]⁺ 218.1351; found 218.1344.

5. Reduction of 3,3-difluoroketone 2f

3,3-Difluoro-1-phenyltridecan-5-ol (8). To a stirring solution of 3,3-difluoro-1phenyltridecan-5-one (26 mg, 0.0838 mmol) in MeOH (0.4 mL) was added sodium borohydride (6.3 mg, 0.168 mmol). The resulting mixture was stirred at room temperature for 2 hours. Water was added and the mixture was extracted with Et₂O (3x). The combined organic layers were washed with brine and concentrated *in vacuo*. The desired compound (24.3 mg, 93%) was isolated as a white solid by flash chromatography using 15% EtOAc/hexanes. mp 37-38 °C; IR (ATR, ZnSe) v = 3385, 2955, 2916, 2849, 1456, 1386, 1149, 1030, 848, 698 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.30 (t, 2H, *J* = 7.5 Hz), 7.23-7.20 (m, 3H), 4.05-3.99 (m, 1H), 2.88-2.77 (m, 2H), 2.27-2.17 (m, 2H), 2.07-1.98 (m, 2H), 1.86 (m, 1H), 1.51-1.41 (m, 3H), 1.34-1.26 (m, 12H); ¹⁹F NMR (470 MHz, CDCl₃) δ -96.7 (m, 2F); ¹³C NMR (126 MHz, CDCl₃) δ 140.7, 128.7, 128.5, 126.4, 125.1 (t, *J*_{C-F} = 241 Hz), 67.0 (t, *J*_{C-F} = 4.3 Hz), 43.7 (t, *J* = 23.4 Hz), 39.2 (t, *J* = 25.0 Hz), 37.9, 32.0, 29.7, 29.6, 29.4, 28.6 (t, *J* = 5.2 Hz), 25.5, 22.8, 14.3; HRMS-APPI calcd for C₁₉H₃₄F₂NO [M+NH₄]⁺ 330.2603; found 330.2576.

6. Hydration of non-fluorinated substrates

Chloro(triphenylphosphine)gold(I) (5.7 mg, 0.0115 mmol, 5 mol %) and silver trifluoromethanesulfonate (3.0 mg, 0.0115 mmol, 5 mol %) were charged into a glass vial. A magnetic stir bar was added, and then the vial was sealed and flushed with argon, after which a solution of 1-phenyl-1-butyne (**5**, 30 mg, 0.230 mmol) in THF/MeOH (9:1, 2.3 mL) was added. The vial was wrapped with aluminum foil, and the reaction mixture was stirred at room temperature for 18 hours. The reaction was then transferred to a round-bottom flask, using CH₂Cl₂ to rinse the vial. The volatiles were removed *in vacuo*, after which 3 mL of CH₂Cl₂ and 3 mL of HCl 3 N were added. The mixture was stirred at room temperature for 3 hours, at which point 1,4-dimethoxybenzene (11.3 mg, 0.0818 mmol) was added as an internal standard. The layers were separated, and the aqueous layer was extracted with CH₂Cl₂ two more times. The combined organic layers were washed with water, dried over Na₂SO₄ and concentrated *in vacuo*. Yields were estimated by NMR analysis of the crude reaction mixture. ¹H NMR (CDCl₃, 500 MHz) δ 2.95 (**6**,²² t, 2H, *J* = 7.3 Hz, 0.0956 mmol, 41%), 2.47 (**7**,²³ q, 2H, *J* = 7.3 Hz, 0.0680 mmol, 30%), 2.42 (**5**,²⁴ q, 2H, *J* = 7.5 Hz, 0.0422 mmol, 18%).

Chloro(triphenylphosphine)gold(I) (4.0 mg, 0.0081 mmol, 5 mol %) and silver trifluoromethanesulfonate (2.1 mg, 0.0081 mmol, 5 mol %) were charged into a glass vial. A magnetic stir bar was added, and then the vial was sealed and flushed with argon, after which a solution of (3,3-dichloroprop-1-yn-1-yl)benzene²⁵ (**8**, 30 mg, 0.162 mmol) in THF/MeOH (9:1, 1.6 mL) was added. The vial was wrapped with aluminum foil, and the reaction mixture was stirred at room temperature for 18 hours. The reaction was then transferred to a round-bottom flask, using CH₂Cl₂ to rinse the vial. The volatiles were removed *in vacuo*, after which 3 mL of CH₂Cl₂ and 3 mL of HCl 3 N were added. The mixture was stirred at room temperature for 3 hours, at which point 1,4-dimethoxybenzene (9.3 mg, 0.0673 mmol) was added as an internal standard. The layers were separated, and the aqueous layer was extracted with CH₂Cl₂ two more times. The combined organic layers were washed with water, dried over Na₂SO₄ and concentrated *in vacuo*. Yields were estimated by NMR analysis of the crude reaction mixture. ¹H NMR (CDCl₃, 500 MHz) δ 6.49 (**8**,²⁵ s, 1H, 0.1600 mmol, 99%), 6.31 (**9**,²⁶ s, 1H, 0.0007 mmol, <1%).

Chloro(triphenylphosphine)gold(I) (4.7 mg, 0.0095 mmol, 5 mol %) and silver trifluoromethanesulfonate (2.4 mg, 0.0095 mmol, 5 mol %) were charged into a glass vial. A magnetic stir bar was added, and then the vial was sealed and flushed with argon, after which a solution of (3,3-dimethylbut-1-yn-1-yl)benzene²⁷ (**11**, 30 mg, 0.190 mmol) in THF/MeOH (9:1, 1.9 mL) was added. The vial was wrapped with aluminum foil, and the reaction mixture was stirred at room temperature for 18 hours. The reaction was then transferred to a round-bottom flask, using CH₂Cl₂ to rinse the vial. The volatiles were removed *in vacuo*, after which 3 mL of CH₂Cl₂ and 3 mL of HCl 3 N were added. The mixture was stirred at room temperature for 3 hours, at which point 1,4-dimethoxybenzene (9.6 mg, 0.0695 mmol) was added as an internal standard. The layers were separated, and the aqueous layer was extracted with CH₂Cl₂ two more times. The combined organic layers were washed with water, dried over Na₂SO₄ and concentrated *in vacuo*. Yields were estimated by NMR analysis of the crude reaction mixture. ¹H NMR (CDCl₃, 500 MHz) δ 1.32 (**11**,²⁷ s, 9H, 0.1787 mmol, 94%), 1.23 (**13**,²⁸ s, 9H, 0.0011 mmol, <1%), 1.06 (**12**,²⁹ 9H, 0.0072 mmol, 4%).

7. ¹H, ¹⁹F and ¹³C NMR spectra

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -2(f1 (ppm)

Ph

1a

20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-21
f1 (ppm)																						

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 δ (ppm)

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -24 δ (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 δ (ppm)

																						•	
30	20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-21
											δ (p	opm)											

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 δ(ppm)

30	20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-21
											δ (p	pm)											

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 δ (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-2(
									f1 (p	opm)											

0	20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-21
											δ (p	opm)											

30	20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-2(
											f1 (p	opm)											

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -2(δ (ppm)

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -2(δ (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 δ (ppm)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -2ι δ (ppm) 20 10

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 δ (ppm)

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -20 f1 (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -20 f1 (ppm)

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -2(δ (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 δ (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 δ (ppm)

8. DFT calculations

All computations were performed using the May 1, 2013 (R1) version of the GAMESS (US)³⁰ software package. The program MacMolPlt (version 7.7)³¹ was used to help create the input files for each computation. Structure optimizations were performed using the standard convergence criteria of the GAMESS program. Vibrational frequency calculations were performed for all optimized structures in order to verify that the stationary points were true minima, and not transition structures or higher-order loci on the potential energy surface. Each structure was optimized and verified at the DFT level using the BP86 functional and the def2-TZVP basis set³² obtained from the Basis Set Exchange³³ website. Scalar relativistic effects were introduced by using an effective core potential on gold to describe the innermost 60 electrons with the associated basis set. Solvation effects were considered using the SMD model³⁴ for ethanol to approximate the 1:1 THF/methanol solvent, by taking a mole fraction-weighted average of the published solvent descriptors.³⁵

Scheme S1. Summary of the Structures Computed in this Study.

Table S1.	Computed B2PLYP/def2-TZVP//BP86/def2-TZVP Energies for
Confirme	d Structures

	B2PLYP	BP86	
Species	$\mathbf{G}(\mathbf{Total})^{b}$	E(Zero-Pt.)	G(Total) + E(Zero-Pt.)
Alkyne-Reactant	-663.8840313651	0.201371	-663.6826603651
Au-Reactant	-596.2949125978	0.112989	-596.1819235978
Methanol	-115.6853347576	0.049466	-115.6358687576
INT1-BOT	-1260.2231678204	0.314107	-1259.9090608204
INT2-BOT-C1	-1375.9006210697	0.369918	-1375.5307030697
INT2-BOT-C2	-1375.8901970183	0.369856	-1375.5203410183
INT1-TOP	-1260.2246108570	0.315270	-1259.9093408570
INT2-TOP-C1	-1375.8884864940	0.369097	-1375.5193894940
INT2-TOP-C2	-1375.8862211619	0.369383	-1375.5168381619
TS1-BOT-C1	-1375.8925341358	0.366137	-1375.5263971358
TS1-BOT-C2	-1375.8827275847	0.366000	-1375.5167275847
TS1-TOP-C1	-1375.8857605657	0.366938	-1375.5188225657
TS1-TOP-C2	-1375.8829889908	0.366726	-1375.5162629908
PROD-BOT-C1	-779.6086992579	0.255142	-779.3535572579
PROD-BOT-C2	-779.6046433722	0.255136	-779.3495073722
PROD-TOP-C1	-779.6084088978	0.255273	-779.3531358978
PROD-TOP-C2	-779.6062960248	0.256042	-779.3502540248

^{*a*}In hartree units. ^{*b*}Total free energy in solution.

Table S2. Optimized Coordinates for [MeOH]

С	6.0	1.41056168	0.45835948	1.23810661
Η	1.0	2.51315022	0.41635731	1.27327657
Н	1.0	1.04618871	1.03020859	2.10936904
Н	1.0	1.01840544	-0.56598091	1.30051684
0	8.0	0.93659759	1.01517749	-0.00165869
Η	1.0	1.28722668	1.92084801	-0.08136030

Table S3. Vibrational Frequency Data for [MeOH]

MODE 1	FREQ(CM**-1)	SYMMETRY A	RED. MASS 1 070703	IR INTENS.
2	6.570	A	2.639427	0.140401
3	2.611	A	2.508256	0.327524
4	0.081	A	5.218692	0.000127
5	0.114	A	5.333318	0.000088
6	0.288	A	5.296226	0.003443
7	289.432	A	1.073498	4.034713
8	987.385	A	5.623363	3.836276
9	1057.961	A	1.171525	0.243237
10	1129.784	A	1.265742	0.009997
11	1341.504	A	1.264713	0.951008
12	1418.297	A	1.119372	0.092189
13	1425.685	A	1.051834	0.137198
14	1446.961	A	1.043279	0.210273
15	2926.720	A	1.033433	1.719422
16	2979.878	A	1.105969	1.722393
17	3042.396	A	1.100239	0.855622
18	3667.167	A	1.066191	1.616257

Table S4. Optimized Coordinates for [Au–PMe₃⁺]

Au	79.0	-0.54488361	-2.27671814	0.01979788
Р	15.0	-0.71031946	-0.04842601	0.18718940
С	6.0	-1.04239726	0.39768538	1.90722024
С	6.0	-2.07999086	0.51739067	-0.85204870
Н	1.0	-1.90039647	0.24513951	-1.90131974
Η	1.0	-2.16351652	1.61376154	-0.77367342
Н	1.0	-3.02188206	0.06313577	-0.51594555
Н	1.0	-0.21986878	0.06335580	2.55524349
Н	1.0	-1.97628486	-0.07612522	2.24064803
Η	1.0	-1.14122951	1.49297774	1.98351669
С	6.0	0.82897812	0.72883385	-0.35682344
Η	1.0	1.66607833	0.39477822	0.27187780
Η	1.0	0.72099197	1.82156646	-0.26353872
Н	1.0	1.03710103	0.47803438	-1.40607369

Table S5. Vibrational Frequency Data for [Au–PMe₃⁺]

MODE	FREQ(CM**-1)	SYMMETRY	RED. MASS	IR INTENS.
1	27.931	A	4.114688	0.073681
2	12.148	A	3.273388	0.024593
3	8.996	A	5.174014	0.103394
4	0.134	А	19.693116	0.00002
5	0.060	А	19.484114	0.00001
6	0.119	А	19.682134	0.00001
7	153.352	А	2.970574	0.001505
8	167.252	А	2.942888	0.017991
9	218.598	А	3.383841	0.019918
10	241.286	А	1.357561	0.003142
11	246.154	A	2.003442	0.015677
12	255.738	A	1.895421	0.026184
13	288.851	А	1.084134	0.007743
14	311.776	А	1.088507	0.038881
15	431.949	A	3.858296	1.514874
16	650.165	A	4.325483	0.743348
17	747.178	A	3.793125	0.424590
18	762.652	A	3.745267	0.371387
19	788.360	A	1.188329	0.037503
20	853.200	A	1.312785	0.256210
21	877.379	A	1.254160	0.166921
22	951.654	A	1.459130	3.065824
23	958.349	A	1.411705	1.647480
24	978.231	A	1.384513	5.694196
25	1276.063	A	1.188503	0.525288
26	1307.397	A	1.173994	0.525592
27	1332.128	A	1.154864	0.188035
28	1369.026	A	1.047767	0.119289
29	1389.347	A	1.045480	0.280591
30	1403.894	A	1.044070	0.528822
31	1418.729	A	1.047372	0.132399
32	1424.481	A	1.046089	0.367168
33	1446.357	A	1.039826	0.415548
34	2976.485	A	1.032940	0.267169
35	2977.091	A	1.033552	0.183149
36	2978.781	A	1.033406	0.170264
37	3059.555	A	1.101695	0.047741
38	3060.686	A	1.102112	0.004798
39	3063.012	A	1.102065	0.270041
40	3071.819	A	1.103008	0.077371
41	3079.590	A	1.103928	0.044395
42	3080.033	А	1.104550	0.127/05

Table S6. Optimized Coordinates for [Alkyne-SM]

С	6.0	-6.21062326	2.24436569	-2.99472475
С	6.0	-5.00535440	1.97153640	-2.09007311
Η	1.0	-7.12877798	2.36279964	-2.39955759
Η	1.0	-6.37704182	1.41926146	-3.70540047
Η	1.0	-6.07307577	3.16757131	-3.58039713
Η	1.0	-5.18699598	1.06571281	-1.49033785
Η	1.0	-4.88125849	2.80327344	-1.37912118
С	6.0	-3.71770430	1.79771233	-2.90619755
Η	1.0	-3.79961896	0.93576765	-3.58844066
С	6.0	-2.46310019	1.58702111	-2.06938410
Η	1.0	-3.53589773	2.68264866	-3.53818965
F	9.0	-2.61395693	0.44809729	-1.26004815
F	9.0	-2.31155396	2.64596057	-1.16190517
С	6.0	-1.23540497	1.46099234	-2.84621882
С	6.0	-0.24825270	1.40943336	-3.55725074
С	6.0	0.90772885	1.39336419	-4.39000893
С	6.0	1.05431700	0.42336744	-5.40539694
С	6.0	1.90731680	2.37649465	-4.21944618
С	6.0	2.17589545	0.44814044	-6.23488808
С	6.0	3.02183652	2.39165330	-5.05751181
С	6.0	3.15811086	1.43167973	-6.06744051
Η	1.0	0.28369194	-0.33822840	-5.53857136
Η	1.0	1.79506063	3.12369370	-3.43158865
Η	1.0	3.78741074	3.15881467	-4.92273712
Η	1.0	2.28197026	-0.30266434	-7.02114820
Η	1.0	4.03024721	1.45010006	-6.72486591

Table S7. Vibrational Frequency Data for [Alkyne-SM]

MODE	FREQ(CM**-1)	SYMMETRY	RED. MASS	IR INTENS.
1	25.160	A	4.137732	0.015562
2	11.845	А	4.888321	0.002017
3	6.328	A	5.556799	0.008277
4	0.362	А	7.462007	0.000028
5	0.227	А	7.459439	0.000005
6	0.024	А	7.457074	0.00001
7	32.799	А	3.978830	0.017022
8	42.390	А	4.788582	0.025767
9	83.382	А	5.207892	0.003898
10	86.777	А	2.234788	0.024576
11	119.029	A	3.753648	0.004879
12	126.168	А	3.391840	0.011204
13	171.887	А	6.490085	0.014616
14	201.799	А	4.912720	0.132711
15	245.202	A	1.149712	0.000229
16	254.360	A	6.631141	0.009097
17	310.854	A	3.539964	0.056168
18	332.870	А	4.696733	0.045562
19	355.260	A	3.439661	0.026962
20	385.383	A	2.928879	0.001039
21	425.864	A	7.321666	0.035043
22	499.511	А	6.595759	0.057191
23	520.033	A	5.515000	0.119864
24	536.912	А	6.068321	0.363564
25	560.029	А	7.327354	0.109936
26	594.132	А	7.364800	0.887030
27	625.074	А	6.658644	0.003260
28	678.182	А	1.812848	1.712216
29	726.409	А	4.064738	0.503070
30	732.727	А	1.260828	0.101816
31	747.758	А	1.912638	1.725864
32	806.046	А	5.715899	1.683775
33	817.674	A	2.124762	3.412984
34	823.184	A	1.256790	0.030580
35	891.717	A	1.911289	0.146573
36	902.780	A	1.402231	0.115356
37	906.625	А	1.818538	3.009760
38	941.161	А	1.360008	0.006782
39	965.481	А	1.282775	0.003500
40	988.045	А	6.106649	0.272087
41	1013.924	A	3.341638	2.458686
42	1030.001	A	2.804734	0.093416
43	1044.784	A	2.362167	2.493735
44	1091.905	A	1.602378	0.203762
45	1108.997	А	3.827880	6.376302

46	1109.443	A	1.864181	1.208350
47	1115.286	A	3.147304	3.589069
48	1165.120	А	1.082031	0.007953
49	1184.690	A	1.137398	0.004203
50	1230.907	А	1.262097	0.177582
51	1263.203	А	2.290849	0.719844
52	1297.892	А	1.166771	0.249186
53	1303.895	А	1.754738	1.737866
54	1310.791	А	2.262408	0.083607
55	1345.052	А	2.397260	0.025828
56	1351.754	А	1.422384	0.655263
57	1361.013	А	1.392645	0.713130
58	1424.251	А	1.037664	0.231689
59	1426.436	А	1.060175	0.177739
60	1430.535	А	1.057240	0.160506
61	1445.882	А	2.183758	0.255871
62	1453.328	А	1.097348	0.372111
63	1495.360	А	2.196875	0.836820
64	1571.459	А	5.058479	0.054648
65	1598.301	А	5.356626	0.001246
66	2245.309	А	11.998705	6.557196
67	2954.541	А	1.036088	0.815608
68	2967.575	А	1.059301	0.092932
69	2977.738	А	1.060019	0.997197
70	2996.775	А	1.100180	0.026951
71	3012.927	А	1.102730	0.039686
72	3027.112	А	1.102063	1.261194
73	3029.012	А	1.102920	1.419512
74	3100.340	А	1.086175	0.022088
75	3107.245	А	1.088456	0.064617
76	3114.825	А	1.092336	0.220409
77	3121.348	А	1.094857	0.278149
78	3125.231	A	1.097490	0.118436

Table S8. Optimized Coordinates for [INT1-BOT]

С	6.0	-3.21411204	2.12317348	0.93270832
С	6.0	-2.92452621	1.90787804	2.13075924
С	6.0	-2.78040123	2.10537696	-0.49830440
С	6.0	-2.57113934	1.60820925	3.46565008
С	6.0	-2.01132178	2.60362411	4.30325079
С	6.0	-2.74373960	0.28652480	3.94599581
С	6.0	-1.62473536	2.26883650	5.59761667
С	6.0	-2.34851766	-0.02874589	5.24193525
С	6.0	-1.79071832	0.95830780	6.06571484
Η	1.0	-1.88280630	3.62006855	3.92641640
Η	1.0	-1.19059920	3.03238797	6.24555779
Η	1.0	-3.17692447	-0.47247639	3.29245210
Η	1.0	-2.47499681	-1.04755616	5.61380291
Η	1.0	-1.48152661	0.70282191	7.08214521
С	6.0	-2.83653402	3.45807910	-1.18742907
F	9.0	-3.58081841	1.18332911	-1.17067277
F	9.0	-1.49463904	1.57949364	-0.54571557
Η	1.0	-3.88756084	3.78879547	-1.13878357
С	6.0	-2.33458996	3.45098400	-2.63731408
Η	1.0	-2.25482345	4.16516924	-0.57308376
Η	1.0	-2.90182447	2.70807838	-3.22001576
Η	1.0	-1.27966380	3.13549137	-2.65818954
С	6.0	-2.47634459	4.83049488	-3.28556871
Η	1.0	-3.52648497	5.16319704	-3.29763985
Η	1.0	-2.12205482	4.81290436	-4.32732010
Η	1.0	-1.88953602	5.59280062	-2.74841452
Au	79.0	-5.12048817	2.87549829	1.61205065
Ρ	15.0	-7.22800684	3.74220037	1.93657994
С	6.0	-7.20264149	5.33709383	2.80991626
С	6.0	-8.29419327	2.63376141	2.90949583
Η	1.0	-6.60882282	6.06656599	2.24160504
Η	1.0	-6.75104618	5.21391916	3.80439186
Η	1.0	-8.22933006	5.71708918	2.92502284
Η	1.0	-8.39419842	1.66434789	2.40084863
Η	1.0	-9.29246330	3.08291316	3.02740383
Η	1.0	-7.85406303	2.46469188	3.90252709
С	6.0	-8.09004593	4.03780317	0.36209708
Η	1.0	-7.51629972	4.74296761	-0.25595260
Η	1.0	-9.08544064	4.46404839	0.56122351
Η	1.0	-8.20952129	3.09645176	-0.19306393

Table S9. Vibrational Frequency Data for [INT1-BOT]

MODE	FREQ(CM**-1)	SYMMETRY	RED. MASS	IR INTENS.
1	19.946	A	5.733261	0.021557
2	8.836	A	5.836321	0.031224
3	7.039	A	5.073277	0.042065
4	0.503	A	11.678887	0.000045
5	0.228	A	11.653591	0.00002
6	0.090	A	11.662452	0.00003
7	22.865	A	4.486668	0.017281
8	29.123	A	4.447233	0.026026
9	34.417	A	4.154234	0.035891
10	38.150	A	3.958754	0.003425
11	39.971	A	5.411044	0.078157
12	52.251	A	4.046677	0.007734
13	68.607	A	5.673293	0.198023
14	73.500	A	5.712531	0.021516
15	89.256	A	2.029173	0.018980
16	104.959	A	3.049902	0.004542
17	117.166	A	4.909112	0.179489
18	127.830	A	4.899258	0.145884
19	165.678	A	2.811268	0.093399
20	175.228	A	2.574004	0.050012
21	183.362	A	1.304080	0.028109
22	192.792	A	3.071009	0.040746
23	204.971	A	5.898149	0.064540
24	216.169	A	6.924164	0.062953
25	221.712	A	1.132847	0.012678
26	257.412	A	2.631345	0.059023
27	260.830	A	1.655281	0.042075
28	268.147	А	2.145210	0.109969
29	272.571	A	2.560516	0.041624
30	317.894	A	1.020934	0.005263
31	318.753	А	3.228323	0.025790
32	343.780	A	4.791459	1.306695
33	362.580	A	3.965685	0.536318
34	376.494	А	3.402286	0.206857
35	388.436	А	2.906252	0.000385
36	441.953	A	8.319310	0.025742
37	502.541	A	6.343434	0.125725
38	515.869	А	5.671520	1.011234
39	534.408	А	8.073988	0.638621
40	567.315	А	7.440110	0.330664
41	607.815	A	6.687505	0.031411
42	620.255	A	7.984644	6.307429
43	659.181	A	4.261755	0.692728
44	673.226	A	1.837308	1.591989
45	726.932	A	1.250907	0.015413

46	735.601	A	3.808820	0.534865
47	736.305	A	3.711660	0.354244
48	737.786	A	4.262311	0.231153
49	756.373	A	1.793163	1.484688
50	784.168	A	1.195000	0.040156
51	807.517	A	5.266771	1.830429
52	836.455	A	1.258270	0.139971
53	838.207	A	1.666403	1.631150
54	840.397	A	1.280426	0.235843
55	846.282	A	1.260089	0.424067
56	895.405	A	2.045265	0.692711
57	928.876	А	2.385912	4.165220
58	931.723	А	1.370791	0.097377
59	935.985	А	1.438642	4.160134
60	945.942	А	1.451640	7.123954
61	951.823	A	1.404496	1.314532
62	966.655	A	1.371428	0.041772
63	982.800	A	5.235959	0.490124
64	986.513	A	1.346580	0.008513
65	1013.507	A	3.204822	3.025666
66	1020.935	A	2.300469	1.090637
67	1033.263	А	2.914687	1.300265
68	1083.507	A	1.593420	0.216360
69	1108.475	А	2.768112	5.097444
70	1115.827	A	1.864654	1.184871
71	1126.955	А	5.094318	4.624417
72	1165.736	A	1.091958	0.169501
73	1185.717	A	1.158671	0.511023
74	1235.598	A	1.415559	0.720700
75	1246.440	A	2.750012	0.551927
76	1275.502	A	1.202239	0.467514
77	1283.698	А	1.198538	0.422847
78	1298.978	A	1.317537	0.220474
79	1301.529	A	1.676432	0.016590
80	1303.365	A	1.182961	0.082790
81	1304.269	A	1.260252	0.183609
82	1335.783	A	3.606695	0.364758
83	1359.109	A	1.380197	0.393056
84	1367.252	A	1.356924	0.503158
85	1385.531	A	1.044656	0.194702
86	1389.159	A	1.048740	0.022945
87	1397.780	A	1.044791	0.017710
88	1406.691	A	1.044498	0.397437
89	1412.143	A	1.044878	0.579307
90	1414.463	A	1.082737	0.105620
91	1421.370	A	1.042170	0.194348
92	1430.193	A	1.042366	0.113736
93	1435.288	A	2.185074	0.732631

94	1441.132	А	1.037829	0.413387
95	1451.857	А	1.096804	0.305555
96	1476.506	А	2.063222	0.159032
97	1554.351	А	4.825087	0.011777
98	1580.700	А	5.198107	2.959092
99	2045.826	А	11.993597	21.615772
100	2955.500	А	1.036361	0.829543
101	2965.124	А	1.059361	0.194961
102	2970.823	А	1.033750	0.021980
103	2972.021	А	1.033898	0.010197
104	2974.182	A	1.033905	0.001932
105	2975.192	А	1.059516	1.114801
106	2995.163	А	1.100742	0.014033
107	3012.060	A	1.102631	0.030978
108	3026.826	А	1.103335	1.432173
109	3028.485	А	1.101435	1.213250
110	3056.264	А	1.101532	0.003152
111	3056.389	А	1.102686	0.004057
112	3056.929	A	1.102422	0.006694
113	3066.383	А	1.102490	0.000768
114	3069.904	А	1.103065	0.000357
115	3070.216	A	1.102547	0.004043
116	3106.035	A	1.086487	0.023350
117	3113.568	А	1.087971	0.054729
118	3119.811	A	1.091986	0.015574
119	3127.842	A	1.094781	0.064927
120	3130.872	А	1.097398	0.146945

Table S10. Optimized Coordinates for [TS1-BOT-C1]

С	6.0	-0.97962731	1.23378098	0.73202091
С	6.0	-0.87008125	0.66923940	1.89152396
С	6.0	0.02707388	1.29754305	-0.38778934
С	6.0	-1.52213764	0.18940629	3.07673120
С	6.0	-1.12914693	0.60655367	4.36721468
С	6.0	-2.59773493	-0.71670347	2.92913604
С	6.0	-1.81764984	0.13618100	5.48330116
С	6.0	-3.28055239	-1.17492163	4.05417347
С	6.0	-2.89256167	-0.75006539	5.33009720
Н	1.0	-2.88425231	-1.04964530	1.92991233
Н	1.0	-4.11458397	-1.86939108	3.93427062
Н	1.0	-3.42775035	-1.11238372	6.21066141
С	6.0	-0.39914343	2.00896764	-1.65598416
F	9.0	0.42293358	-0.00996967	-0.69665343
F	9.0	1.20731735	1.90151215	0.11336775
Н	1.0	-1.29008770	1.47918344	-2.03451681
С	6.0	0.68257105	2.08977318	-2.74082518
Н	1.0	-0.73616397	3.01778126	-1.36421537
Н	1.0	1.01083720	1.07414556	-3.01298976
Н	1.0	1.56603563	2.61226511	-2.34157610
С	6.0	0.17759174	2.81716299	-3.98987556
Н	1.0	-0.68751121	2.29954386	-4.43413353
Н	1.0	0.96435010	2.87095666	-4.75755215
Н	1.0	-0.13170971	3.84910035	-3.75855827
Au	79.0	-2.87435150	2.16847253	0.63993472
Ρ	15.0	-4.88251495	3.27863383	0.47876379
С	6.0	-5.42239904	3.55150938	-1.24089420
С	6.0	-4.84296227	4.93095732	1.25047302
Н	1.0	-5.55046701	2.58855844	-1.75560665
Η	1.0	-4.66638565	4.13817167	-1.78154099
Н	1.0	-6.37940359	4.09599113	-1.26044619
Η	1.0	-4.57820797	4.84310293	2.31369686
Н	1.0	-5.82566595	5.42045069	1.16607904
Н	1.0	-4.08777523	5.55656433	0.75394911
С	6.0	-6.25711918	2.39339900	1.28752291
Н	1.0	-6.41628981	1.41943896	0.80224830
Н	1.0	-7.18478870	2.98188758	1.21669781
Η	1.0	-6.02249289	2.21942949	2.34702444
0	8.0	0.98909152	0.14685060	2.29503441
С	6.0	1.27202463	-1.27947700	2.34238839
Н	1.0	1.05026388	-1.76590478	1.38299549
Η	1.0	0.64583027	-1.70108557	3.13697076
Н	1.0	2.33114529	-1.41466594	2.60351253
Н	1.0	1.52428949	0.57282096	1.59011734
Η	1.0	-1.51639998	0.46573141	6.47981787
Н	1.0	-0.29200944	1.29604006	4.48253059

Table S11. Vibrational Frequency Data for [TS1-BOT-C1]

MODE	FREQ(CM**-1)	SYMMETRY	RED. MASS	IR INTENS.
1	-197.909	A	7.718939	11.657297
2	13.704	A	4.937498	0.006158
3	8.967	A	5.334148	0.008229
4	6.789	A	5.227823	0.004952
5	0.792	A	10.907501	0.00035
6	0.332	A	10.867178	0.00007
7	0.283	A	10.824373	0.00007
8	29.601	A	4.050334	0.110330
9	36.230	A	4.413903	0.047442
10	40.977	A	4.187276	0.021375
11	49.395	A	4.437829	0.056085
12	52.156	A	2.232232	0.068961
13	56.692	A	3.209343	0.023483
14	61.071	A	2.631652	0.055451
15	78.448	A	4.240091	0.037775
16	87.301	A	2.759240	0.001532
17	98.908	A	3.941711	0.131946
18	111.951	A	3.261819	0.048540
19	114.565	A	2.331005	0.022859
20	131.977	A	4.104793	0.084635
21	156.048	A	3.702675	0.024702
22	162.871	A	2.328022	0.006993
23	170.120	A	1.351013	0.024018
24	173.999	A	2.647904	0.072363
25	179.857	A	2.268769	0.037382
26	193.000	A	3.841342	0.024098
27	199.829	A	4.066377	0.112504
28	219.502	A	1.137503	0.003831
29	223.835	A	5.448841	0.126470
30	229.916	A	6.135159	0.597654
31	245.622	A	3.476131	1.590786
32	255.610	A	1.268673	0.013554
33	267.595	A	2.563015	0.049323
34	278.232	A	2.594436	0.103630
35	282.319	A	5.269079	0.556734
36	294.275	A	1.028780	0.001525
37	325.691	A	3.351894	0.091379
38	352.621	A	4.875219	0.905989
39	357.719	A	3.949322	0.221799
40	385.714	A	3.070676	0.099940
41	392.404	A	2.854124	0.008181
42	491.116	A	6.146771	1.079863
43	507.948	A	4.201840	0.561899
44	519.503	A	3.709968	0.852212
45	542.833	А	4.225911	1.345752

46	583.017	А	2.505054	2.891997
47	594.518	А	3.509602	2.373914
48	621.685	A	6.533607	0.239335
49	661.019	A	4.212655	0.571989
50	680.017	A	1.708199	2.066644
51	711.098	A	4.843552	1.441733
52	729.252	A	3.903046	0.508157
53	732.457	А	3.859198	0.476597
54	739.600	A	1.176839	0.084298
55	757.055	A	2.045118	1.037308
56	782.660	A	2.824820	1.868036
57	782.922	А	1.603511	0.740192
58	796.751	А	4.875653	2.161120
59	822.923	А	2.130072	2.508653
60	826.561	А	1.248760	0.001225
61	845.211	А	1.276062	0.338745
62	847.628	А	1.261196	0.274494
63	898.127	А	1.998634	0.402002
64	910.724	А	1.792939	2.136067
65	925.102	А	1.384165	0.073760
66	939.837	А	1.399194	1.292763
67	945.133	А	1.587365	8.996390
68	949.703	А	1.646304	4.147824
69	953.879	А	2.441773	0.628171
70	954.892	А	1.691115	0.256770
71	978.863	А	1.325620	0.009610
72	986.088	А	5.790351	0.408158
73	1015.364	А	3.106328	2.894811
74	1020.382	A	2.262493	0.661390
75	1038.079	А	2.958969	2.217029
76	1064.553	А	1.151547	1.171109
77	1081.037	А	1.528200	0.257245
78	1111.802	А	2.042034	2.022244
79	1117.415	А	2.488332	3.903513
80	1136.527	A	2.400707	2.793848
81	1138.675	А	1.471743	0.340412
82	1166.980	А	1.206233	0.005990
83	1183.289	A	1.126192	0.001334
84	1225.862	А	3.177250	0.293191
85	1237.494	А	1.269407	0.112180
86	1277.219	А	1.201231	0.392882
87	1285.089	A	1.202884	0.522585
88	1293.512	A	1.579290	0.096358
89	1296.393	А	1.506937	0.443379
90	1300.360	A	1.138200	0.247861
91	1305.353	A	1.188506	0.098457
92	1312.608	A	1.231854	0.694499
93	1336.852	A	4.780040	0.413413

94	1360.739	А	1.580096	1.082011
95	1369.417	А	1.269964	0.246921
96	1382.498	А	1.049473	0.048358
97	1391.872	A	1.045625	0.011036
98	1394.683	А	1.045189	0.094211
99	1398.202	А	1.046136	0.555382
100	1410.273	А	1.085654	0.085586
101	1411.097	A	1.077274	0.258168
102	1411.273	A	1.073647	0.466264
103	1422.152	А	1.041168	0.319421
104	1426.157	А	1.051564	0.559812
105	1428.378	А	1.042809	0.094912
106	1437.618	А	1.039752	0.411470
107	1439.371	A	2.130526	0.488408
108	1449.533	А	1.051342	0.217617
109	1451.770	A	1.095962	0.377091
110	1471.740	А	2.175469	0.032764
111	1566.703	A	4.588947	0.080431
112	1581.967	A	5.619702	1.457577
113	1788.184	A	11.727779	23.283914
114	2955.106	A	1.036508	0.911267
115	2962.231	А	1.059454	0.451964
116	2970.011	А	1.033994	0.117641
117	2970.957	А	1.034446	0.027805
118	2971.831	А	1.034063	0.024438
119	2974.917	А	1.059502	1.140702
120	2978.798	A	1.030135	0.841700
121	2993.852	А	1.100017	0.015733
122	3009.743	A	1.102295	0.029589
123	3025.867	А	1.102524	1.455333
124	3027.604	А	1.102048	1.375816
125	3052.740	А	1.102084	0.004725
126	3053.326	А	1.102273	0.025365
127	3054.696	А	1.102351	0.086221
128	3058.052	А	1.107728	0.195112
129	3065.156	А	1.102523	0.001253
130	3066.169	А	1.102656	0.008624
131	3066.566	А	1.102307	0.000781
132	3090.841	А	1.105606	0.182281
133	3097.498	А	1.086706	0.016898
134	3108.731	А	1.088790	0.104577
135	3114.079	А	1.092564	0.245499
136	3123.431	A	1.095300	0.061644
137	3129.064	A	1.095102	0.103949
138	3541.451	А	1.067022	6.407213

Table S12. Optimized Coordinates for [INT2-BOT-C1]

С	6.0	-3.33144331	2.22003031	1.74513412
С	6.0	-2.77523685	1.97182763	2.94004583
С	6.0	-2.57866287	1.92554295	0.47134519
С	6.0	-3.30985594	1.98826778	4.30276680
С	6.0	-2.58014393	2.54848599	5.37154722
С	6.0	-4.58279800	1.43599391	4.55317879
С	6.0	-3.12908649	2.57752538	6.65423727
С	6.0	-5.12435484	1.47098875	5.83840561
С	6.0	-4.40161133	2.04478621	6.89047480
Н	1.0	-1.59303606	2.98052573	5.19453478
Н	1.0	-2.56245089	3.02371430	7.47453690
Н	1.0	-5.13257313	0.95916319	3.73945379
Н	1.0	-6.10914135	1.03467333	6.02042294
Η	1.0	-4.82703161	2.06967545	7.89638424
С	6.0	-3.14218473	2.42788792	-0.83796144
F	9.0	-2.35846400	0.54645813	0.39042515
F	9.0	-1.21227753	2.45248938	0.59198165
Н	1.0	-4.12022829	1.92938578	-0.95101625
С	6.0	-2.26061893	2.17268515	-2.06840730
Η	1.0	-3.35392141	3.50345182	-0.72184628
Н	1.0	-2.01744366	1.10035300	-2.13483882
Н	1.0	-1.30568457	2.70829129	-1.95239544
С	£.0	-2.94879341	2.62364125	-3.35983348
H	1.0	-3.88932276	2.07496810	-3.52708697
H	1.0	-2.30026293	2.44626641	-4.23110247
H	1.0	-3.18715644	3,69915962	-3.33740163
A11	79.0	-5.21077442	3.11084557	1.63430679
P	15.0	-7.23415947	4.20819950	1,42858565
C	6.0	-8.28287315	3.52723575	0.09784053
C	6.0	-7.05072641	5.97884417	1.01918054
H	1.0	-8.52478409	2.47523355	0.30733386
H	1.0	-7.74554253	3.57497597	-0.86021239
H	1.0	-9.21983337	4.09849072	0.01081638
H	1 0	-650825167	6 49465942	1 82455206
H	1 0	-8 03482151	6 45391989	0 88836676
н	1 0	-6 47273970	6 08282423	0 09021471
C	±.0	-8 2765/93/	1 16579962	2 92681/32
с u	1 0	-8 50020/09	3 12/52817	3 10088322
п u	1 0	-0.0020409	1 70320332	2 75969921
п	1 0	7 7/206207	4.70529552	2.75664050
П	1.U 9 0	-1.28167355	4.05509540	2 00300520
C	6.0	-1.20107333	1.00393373	2.90300329
с u		-U.OJOIOZOI _1 20115042	U.ZOJYY/4Z _0 /102/000	3.34//1033 2 50206706
п u	1 0	-1.20113042 _1.26533006	-U.4192490U 0 0705501/	2.JYZU0/Y0 1 33116763
л тт	1 O	-T.20000000	0.07000914	4.33140/03
п 11	1.0	0.23403024	U.JZYZOJ/J 1 Ofce4041	3.30000939
н	Τ.Ο	-0.9236943/	1.93654941	∠.∪४४७∪७34

MODE	FREQ(CM**-1)	SYMMETRY	RED. MASS	IR INTENS.
1	16.811	A	5.062861	0.011597
2	10.868	A	5.566068	0.004013
3	5.964	A	5.413425	0.001284
4	0.601	A	10.894803	0.00003
5	0.271	A	10.871508	0.000010
6	0.143	А	10.823055	0.00007
7	21.090	А	5.947539	0.008967
8	31.746	А	4.636869	0.049458
9	40.747	А	5.185696	0.087340
10	55.961	A	4.996942	0.067360
11	62.406	А	5.137505	0.015804
12	66.497	A	2.925849	0.002623
13	73.516	А	4.259316	0.050900
14	76.739	А	4.721100	0.044603
15	111.360	A	3.112026	0.005750
16	126.533	A	2.996820	0.071122
17	137.504	A	4.200312	0.122848
18	149.532	A	3.568108	0.124242
19	155.653	A	2.491771	0.029475
20	167.929	A	3.348693	0.135414
21	174.580	A	2.972490	0.004441
22	186.613	A	4.193882	0.114927
23	192.120	A	1.684645	0.021440
24	193.243	A	1.908364	0.051028
25	232.362	A	6.432119	0.067781
26	233.009	A	5.733918	0.010708
27	244.690	A	1.312279	0.019464
28	248.648	A	3.708946	0.117854
29	257.354	A	1.515286	0.031668
30	265.197	A	2.189872	0.043002
31	272.369	A	1.275679	0.012373
32	277.984	А	1.247919	0.043621
33	293.728	А	4.418885	0.713522
34	307.632	А	3.832298	0.049727
35	332.543	А	2.689103	0.135575
36	344.376	А	1.177490	0.001635
37	349.164	А	3.856771	0.527263
38	387.180	A	3.194827	0.122068
39	403.479	A	2.874202	0.026703
40	424.917	A	4.146438	0.308355
41	463.108	А	5.933665	0.550628
42	495.773	А	9.052555	0.175657
43	536.891	А	6.068767	0.745285
44	587.196	A	6.441352	0.391382

Table S13. Vibrational Frequency Data for [INT2-BOT-C1]

45	613.106	A	6.479320	0.297248
46	625.566	А	6.231534	3.603820
47	657.068	A	4.447458	0.760257
48	657.503	A	4.553795	1.484583
49	673.773	A	6.239032	3.053436
50	688.306	A	1.734389	2.249949
51	725.625	A	4.081735	0.525409
52	728.254	A	3.937777	0.469676
53	735.450	A	2.343892	1.609329
54	758.954	A	1.852715	1.956713
55	762.249	A	1.944020	1.885504
56	783.591	A	1.177451	0.000432
57	813.724	A	3.824695	4.500712
58	828.558	A	1.274893	0.196846
59	832.267	A	4.967294	1.866837
60	843.315	A	1.257326	0.274481
61	845.785	A	1.263478	0.429169
62	893.591	A	1.816997	0.896509
63	901.941	A	1.723290	0.294129
64	913.562	A	1.445980	0.108922
65	927.145	A	4.338935	3.043877
66	937.279	A	1.384784	1.280941
67	944.166	A	1.408258	1.147101
68	949.248	A	1.475354	5.690020
69	952.864	A	1.382049	0.520672
70	974.109	A	1.303734	0.022958
71	988.013	A	6.046083	0.172127
72	1009.781	A	2.388636	3.804828
73	1028.957	A	2.190364	0.380282
74	1033.364	A	2.168980	0.618937
75	1050.246	A	1.612958	2.971494
76	1090.860	A	1.632691	0.086607
77	1101.601	A	1.824271	0.648072
78	1120.261	A	2.554065	4.557079
79	1135.970	A	2.487607	3.160258
80	1144.541	A	1.365214	0.388349
81	1167.233	A	1.086475	0.028039
82	1184.040	A	1.147174	0.007639
83	1201.700	A	1.527019	0.995165
84	1241.434	A	1.956891	0.573543
85	1243.899	A	1.425305	0.074270
86	1276.322	A	1.204008	0.468574
87	1279.382	A	1.204737	0.434313
88	1295.365	A	1.308027	0.267716
89	1298.249	A	1.188718	0.030214
90	1313.173	A	1.941874	0.072631
91	1315.775	A	1.261969	0.515335
92	1342.750	A	2.768024	0.066884

93	1362.244	А	1.478586	0.791644
94	1370.570	А	1.307050	0.369345
95	1386.066	А	1.049389	0.045461
96	1390.708	А	1.044526	0.047741
97	1399.570	А	1.048417	0.143778
98	1406.356	А	1.044164	0.454663
99	1409.333	A	1.045217	0.424772
100	1410.443	A	1.088998	0.160314
101	1422 163	A	1 041787	0 442063
102	1424 167	A	1 113063	0 479763
103	1431 837	A	1 042975	0 073185
104	1439 754	A	2 063738	0 354374
105	1443 389	Δ	1 039972	0.004074
106	1445 563	Δ	1 207235	0.765989
107	1452 545	71	1 095175	0.3/3288
108	1/60 338	7	1 117/29	0.111686
100	1409.550	A N	2 035830	0.414000
110	1403.790	A N	2.055050	0.729139
111	1492.471	A 7	L.00904J 5 1/2002	0.307379
	1507.409	A	J.142002	0.10/109
	1594.232	A	5.350099	0.352952
114	1620.423	A	6.12/318	10.956062
116	2955.193	A	1.036424	0.933038
115	2964.658	A	1.059695	0.33053/
116	2968.781	A	1.034265	0.163290
117	2970.137	A	1.034355	0.044991
118	2972.113	A	1.034205	0.044082
119	2974.106	A	1.061090	1.094078
120	2997.277	A	1.099070	0.046025
121	3013.071	A	1.102058	0.125729
122	3021.164	A	1.030864	3.075945
123	3026.350	А	1.101946	1.317066
124	3030.294	A	1.102334	1.181728
125	3046.311	A	1.070822	21.128777
126	3052.086	A	1.101747	0.044721
127	3052.713	A	1.102171	0.107288
128	3054.736	A	1.101943	0.069747
129	3062.558	A	1.101995	0.036971
130	3064.173	A	1.102331	0.011055
131	3066.681	A	1.102340	0.019037
132	3101.990	А	1.086197	0.023163
133	3109.703	А	1.087914	0.038202
134	3115.626	А	1.091411	0.244728
135	3122.932	А	1.093539	0.160672
136	3126.983	А	1.097721	0.078848
137	3131.332	А	1.110548	0.025717
138	3138.656	A	1.111666	0.031160

Table S14. Optimized Coordinates for [PROD-BOT-C1]

С	6 0	-2 91912580	2 41172886	1 87134922
C	6 0	-2 41281867	1 92524874	3 02907920
C	6.0	-2 23553824	2 41134953	0 54040867
C	6.0	-3 18/0/675	1 9/109333	1 29925823
C	6.0	-2 56283998	2 36652136	5 / 8958111
C	6.0	_1 53001012	1 56992239	1 33/03553
C	6.0	-3.28613210	2 /32301/1	6 68121052
C	6.0	5 26000220	1 62406206	5 5200000
C	0.0	-J.20000230	1.03400390 2.0CE01070	5.55000090
	0.0	-4.03/40340	2.06561679	6.70300339
H	1.0	-1.51245582	2.00053009	5.4/009563
H	1.0	-2.19311123	2.77370763	7.59501171
H	1.0	-5.02443886	1.2088/32/	3.42395186
H	1.0	-6.31214/14	1.33657742	5.54606009
Н	1.0	-5.20199347	2.11239004	7.64008570
С	6.0	-3.15874982	2.74914837	-0.62314814
F	9.0	-1.62052107	1.17252111	0.29578957
F	9.0	-1.15879142	3.32951283	0.54271340
Η	1.0	-3.98798418	2.02165747	-0.60297358
С	6.0	-2.48601818	2.75888205	-2.00010180
Η	1.0	-3.60387611	3.73553419	-0.40752324
Н	1.0	-2.04154229	1.77083743	-2.19942236
Η	1.0	-1.65565586	3.48295522	-1.99866652
С	6.0	-3.47228956	3.11170030	-3.11760616
Η	1.0	-4.30493593	2.39139152	-3.16006517
Н	1.0	-2.97494578	3.10488248	-4.09975815
Н	1.0	-3.90586019	4.11454487	-2.97181249
Η	1.0	-3.90432239	2.87922573	1.89999330
0	8.0	-1.10847735	1.50654221	3.07379007
С	6.0	-0.84281492	0.24174513	3.72500968
Н	1.0	-1.29806721	-0.58244747	3.15353727
Н	1.0	-1.21408057	0.22058907	4.75986433
Н	1.0	0.24829395	0.13095443	3.72623086

Table S15. Vibrational Frequency Data for [PROD-BOT-C1]

MODE	FREQ(CM**-1)	SYMMETRY	RED. MASS	IR INTENS.
1	11.382	A	4.881925	0.014441
2	5.930	A	4.669656	0.004608
3	4.790	A	5.080237	0.007887
4	0.439	A	7.090984	0.000051
5	0.229	A	7.076987	0.000004
6	0.020	A	7.064954	0.000002
7	38.712	A	5.704458	0.063163
8	50.542	A	4.578588	0.014656
9	63.019	A	4.851984	0.003507
10	74.281	A	3.011884	0.011977
11	104.249	A	2.914246	0.028297
12	123.186	A	1.499234	0.010231
13	124.954	A	1.765908	0.008654
14	135.953	A	2.489443	0.177424
15	148.313	A	3.281491	0.089079
16	186.090	A	5.039221	0.090431
17	210.850	А	6.379160	0.008659
18	242.346	А	4.966660	0.097297
19	264.440	А	3.682997	0.094068
20	277.651	A	1.179847	0.014086
21	300.111	A	4.358710	0.460603
22	328.980	А	3.339246	0.098848
23	359.934	А	3.250951	0.037651
24	401.661	А	2.939294	0.024439
25	433.081	А	3.966600	0.148267
26	469.923	A	5.329295	0.043022
27	504.885	A	4.030814	0.422302
28	511.026	А	7.292066	0.077179
29	601.899	А	5.759828	0.703163
30	606.806	A	6.027286	0.299966
31	677.667	A	3.819319	0.175580
32	691.862	A	1.638227	1.756669
33	699.601	A	4.882121	0.536020
34	739.555	A	1.266393	0.021442
35	751.489	A	1.787314	0.979092
36	766.378	A	4.234106	0.891509
37	774.482	A	2.105637	0.977070
38	795.837	A	4.593431	1.345759
39	828.400	A	1.789352	3.724726
40	833.323	A	1.250655	0.003023
41	895.777	А	1.881752	0.439250
42	910.105	А	1.570698	2.176756
43	911.307	A	1.604881	1.098761
44	949.050	A	1.367222	0.009251
45	951.238	A	5.180575	0.189159

46	969.182	A	1.284325	0.013654
47	986.634	A	5.988636	0.053423
48	1018.555	A	2.611239	0.945646
49	1023.049	A	2.832259	1.006970
50	1035.255	A	3.063769	3.135183
51	1071.927	A	1.699726	1.042382
52	1077.589	A	2.069321	0.782199
53	1101.683	A	3.013708	1.815012
54	1112.840	A	1.779890	1.104199
55	1120.098	A	1.281404	0.119405
56	1149.757	A	1.071205	0.005330
57	1154.699	A	2.705701	4.989571
58	1168.406	A	1.211763	0.057082
59	1173.441	A	1.503895	1.143517
60	1234.896	A	1.321188	0.267416
61	1245.837	A	3.146660	4.221664
62	1285.266	A	1.521329	1.451120
63	1295.859	A	1.521751	0.335036
64	1299.198	A	1.119651	0.156278
65	1312.788	A	1.609224	1.553192
66	1331.883	A	5.458928	0.292971
67	1360.389	A	1.428169	0.385501
68	1367.484	A	1.408000	0.429570
69	1420.057	A	1.212764	0.134685
70	1424.650	A	1.080554	0.168153
71	1424.927	A	1.112999	0.429120
72	1431.646	A	1.146993	0.184120
73	1432.224	A	1.648565	0.713029
74	1437.493	A	1.061705	0.261800
75	1439.073	A	1.039461	0.389882
76	1458.185	A	1.098614	0.329672
77	1476.282	A	2.200244	0.285535
78	1565.566	A	5.649739	0.153805
79	1588.699	A	5.700465	0.033759
80	1620.106	A	8.061399	9.287689
81	2951.036	A	1.036138	1.036180
82	2958.923	A	1.033961	1.475742
83	2960.250	A	1.058909	0.171909
84	2972.523	A	1.059916	1.167591
85	2991.276	A	1.099508	0.051126
86	3006.611	A	1.102204	0.039136
87	3022.159	A	1.102388	1.525485
88	3025.571	A	1.102655	1.754590
89	3030.090	А	1.104821	0.894102
90	3077.562	A	1.103201	0.515586
91	3091.023	A	1.085713	0.093446
92	3096.669	A	1.087128	0.002746
93	3104.843	A	1.090205	0.184830

94	3110.573	A	1.093995	0.443726
95	3118.542	A	1.097568	0.280661
96	3122.270	A	1.089052	0.086084

Table S16. Optimized Coordinates for [TS1-BOT-C2]

С	6.0	0.13453862	1.37552285	0.50250876
С	6.0	-0.99947846	1.42750537	1.08620906
С	6.0	1.12580264	1.89319563	-0.48381680
С	6.0	-1.62500274	0.80987561	2.26797247
С	6.0	-2.62425542	-0.17196268	2.12782502
С	6.0	-1.23752284	1.22845113	3.55568647
С	6.0	-3.19728708	-0.74949503	3.26274467
С	6.0	-1.82604587	0.64955926	4.68328905
С	6.0	-2.80276155	-0.34160700	4.54192591
Н	1.0	-0.48777342	2.01452518	3.67214489
Н	1.0	-1.51561987	0.98001254	5.67730856
Н	1.0	-3.25931454	-0.79119605	5.42631674
С	6.0	0.57730848	2.90124655	-1.48957288
F	9.0	1.68977690	0.82791239	-1.17486906
F	9.0	2.17558599	2.46453786	0.23372839
Н	1.0	-0.22292797	2.39617395	-2.05477571
С	6.0	1.65344679	3.44392776	-2.44293761
Н	1.0	0.11081750	3.72403955	-0.92445809
Н	1.0	2.10892534	2.60917473	-2.99841952
Н	1.0	2.45898938	3.91475677	-1.85765457
С	6.0	1.07144320	4.46373367	-3.42420125
Н	1.0	0.28804192	4.02058363	-4.05954075
Н	1.0	1.85725844	4.85188341	-4.08989668
Н	1.0	0.62913281	5.32442951	-2.89749813
Au	79.0	-2.33504057	2.82669783	0.17317361
Ρ	15.0	-4.03901196	4.20313215	-0.52197534
С	6.0	-3.86339784	4.80260134	-2.23224950
С	6.0	-4.20219564	5.68769932	0.52058333
Н	1.0	-3.82927752	3.95196295	-2.92700934
Н	1.0	-2.93272018	5.37798309	-2.33289766
Η	1.0	-4.71433592	5.44998217	-2.49631119
Н	1.0	-4.37440825	5.39156818	1.56509268
Η	1.0	-5.04935646	6.30368900	0.18029958
Η	1.0	-3.28179717	6.28675413	0.47189417
С	6.0	-5.65413189	3.36446834	-0.44437918
Η	1.0	-5.64844131	2.46981406	-1.08303213
Η	1.0	-6.45184803	4.04262400	-0.78558153
Η	1.0	-5.86674356	3.05690360	0.58952254
0	8.0	1.40387607	0.01027968	1.34318721
С	6.0	1.01723933	-1.36004770	1.02860057
Η	1.0	1.73890793	-2.04371047	1.49858677
Η	1.0	1.06576753	-1.45832813	-0.06048401
Η	1.0	0.00164736	-1.57926416	1.38475931
Η	1.0	1.33075178	0.14644821	2.31010079
Η	1.0	-3.96106172	-1.52147388	3.14428854
Η	1.0	-2.94069314	-0.49027109	1.13203537

Table S17. Vibrational Frequency Data for [TS1-BOT-C2]

MODE	FREQ(CM**-1)	SYMMETRY	RED. MASS	IR INTENS.
1	-167.687	A	6.961760	10.868540
2	17.540	A	5.051300	0.003574
3	6.731	A	5.832188	0.006281
4	5.466	A	5.752289	0.007835
5	0.224	A	10.827998	0.000016
6	0.197	A	10.856529	0.000005
7	0.286	A	10.858694	0.000004
8	31.430	A	4.013884	0.032863
9	35.497	A	4.566534	0.038603
10	42.647	A	3.958166	0.015129
11	47.729	A	4.786280	0.065977
12	50.967	A	5.086014	0.093688
13	61.874	A	4.045512	0.036898
14	71.020	A	4.589411	0.002772
15	89.520	A	1.829178	0.054267
16	92.574	A	2.287113	0.034048
17	102.184	A	4.641554	0.038618
18	106.432	A	3.375897	0.369663
19	117.831	A	2.362934	0.042723
20	126.332	A	2.927467	0.219660
21	152.589	A	1.247701	0.038724
22	162.279	A	2.393679	0.331831
23	173.916	A	3.194001	0.029732
24	176.387	A	2.680154	0.031474
25	182.384	A	3.275370	0.000304
26	196.320	A	2.559381	0.014798
27	198.263	A	2.715555	0.119772
28	203.085	A	1.444269	0.027274
29	222.471	A	5.133560	0.098329
30	230.794	A	3.574168	0.068117
31	232.909	A	1.099257	0.017655
32	248.261	A	6.049597	0.848557
33	267.212	A	2.648718	0.043520
34	270.107	A	4.125876	0.174116
35	281.447	A	1.187747	0.008931
36	302.466	A	2.506857	0.042308
37	321.715	A	3.495724	0.131344
38	352.561	A	3.964233	0.725606
39	391.329	A	3.064315	0.057369
40	391.796	A	3.374342	0.204614
41	406.008	A	5.487343	2.287413
42	463.866	A	3.904210	2.127011
43	511.466	A	6.088268	0.264009
44	529.662	A	6.530424	0.479734
45	553.013	A	2.009937	3.307176

46	585.329	A	5.936410	2.114587
47	595.732	А	2.688765	1.794337
48	614.746	А	6.150465	0.074188
49	630.952	A	4.352879	0.335858
50	661.453	А	4.164205	0.628525
51	689.676	А	1.854571	1.207884
52	732.130	А	3.738732	0.422120
53	736.557	А	3.722898	0.407528
54	737.531	А	2.888412	0.450908
55	750.374	А	1.221492	0.647219
56	751.546	А	2.358329	2.494402
57	780.524	А	1.185638	0.003237
58	811.078	А	6.138392	2.468466
59	829.492	А	1.291124	0.321043
60	831.005	А	1.246512	0.014760
61	843.348	А	1.844979	1.958595
62	848.029	А	1.272107	0.342593
63	892.129	А	2.012214	0.545049
64	905.851	А	1.386972	0.462675
65	930.292	А	1.892710	2.521615
66	935.700	А	1.484684	4.241412
67	940.049	А	1.643795	7.325209
68	944.854	А	3.351757	0.927094
69	949.936	А	1.399026	0.249778
70	951.673	A	1.508283	2.959077
71	967.100	A	1.280264	0.005632
72	986.439	А	6.024385	0.306094
73	1013.431	А	3.137659	3.754869
74	1028.863	A	2.467433	0.177051
75	1036.700	A	2.604809	1.296601
76	1070.190	А	1.148273	0.333614
77	1081.539	А	1.622169	0.326016
78	1103.465	A	2.962994	3.277096
79	1113.909	A	2.284524	2.029865
80	1119.361	А	2.418172	2.513441
81	1127.105	А	1.557391	1.432317
82	1163.341	A	1.082010	0.026532
83	1184.952	A	1.141068	0.030893
84	1200.232	А	4.076761	1.226927
85	1220.130	A	1.302887	0.149993
86	1269.098	A	1.507290	0.750786
87	1270.657	A	1.205578	0.459081
88	1279.435	A	1.204385	0.386034
89	1287.814	A	1.103913	0.027487
90	1297.065	A	1.188982	0.030592
91	1302.796	A	2.511488	0.005952
92	1328.174	A	1.497077	0.566519
93	1332.566	A	1.232045	0.731729

94	1337.602	A	2.092977	0.044299
95	1375.229	A	1.228233	0.117973
96	1375.587	А	1.049791	0.163127
97	1384.353	А	1.048044	0.075675
98	1394.313	А	1.043348	0.049026
99	1403.144	А	1.046464	0.466281
100	1407.609	А	1.045650	0.456927
101	1411.815	А	1.113093	0.212644
102	1414.103	А	1.074750	0.200252
103	1420.798	А	1.042260	0.301673
104	1431.030	A	1.058580	0.434173
105	1432.528	А	1.046543	0.088630
106	1434.636	A	2.131988	0.325784
107	1440.625	А	1.037010	0.437905
108	1446.072	A	1.042437	0.258540
109	1452.255	A	1.087908	0.279551
110	1483.056	A	2.064349	0.651320
111	1566.893	А	5.155370	0.104003
112	1586.159	A	5.352607	0.176770
113	1860.510	А	11.870031	3.693197
114	2957.011	A	1.036675	0.792435
115	2966.089	A	1.058212	0.102375
116	2967.885	A	1.035000	0.020867
117	2970.764	A	1.034805	0.026410
118	2975.362	A	1.034090	0.018940
119	2976.513	A	1.058924	1.279982
120	2978.900	A	1.031568	0.952810
121	2998.193	A	1.100551	0.018720
122	3016.771	A	1.102843	0.103776
123	3026.910	A	1.100369	0.987726
124	3030.047	A	1.104214	1.516899
125	3050.509	A	1.100689	0.004037
126	3051.453	A	1.100638	0.020127
127	3054.843	A	1.107696	0.254900
128	3056.759	A	1.101358	0.012180
129	3067.024	A	1.102706	0.001489
130	3067.983	A	1.102465	0.000771
131	3074.293	A	1.103631	0.003705
132	3096.220	A	1.085730	0.043314
133	3099.791	A	1.104570	0.201902
134	3101.120	A	1.087504	0.046565
135	3108.796	A	1.091115	0.142016
136	3114.178	A	1.094200	0.199966
137	3120.400	A	1.098124	0.217884
138	3606.590	A	1.066478	3.531377

Table S18. Optimized Coordinates for [INT2-BOT-C2]

С	6.0	-2.46706676	2.77266574	0.40554872
С	6.0	-3.22460675	2.68678069	1.50123596
С	6.0	-2.65643024	3.32210827	-0.98242313
С	6.0	-2.62833953	2.11243844	2.73969007
С	6.0	-3.15106368	0.93281668	3.30683899
С	6.0	-1.51559961	2.72899961	3.35997128
С	6.0	-2.56639266	0.37769356	4.44523907
С	6.0	-0.93983799	2.16647363	4.50879860
С	6.0	-1.45935571	0.98945600	5.04928541
Н	1.0	-4.01435232	0.44965038	2.84416461
Н	1.0	-2.98115540	-0.54034680	4.86767292
Н	1.0	-1.15363753	3.69517827	2.99213338
Н	1.0	-0.09125724	2.66373587	4.98361158
Η	1.0	-1.01127565	0.55444497	5.94487429
С	6.0	-4.02103996	3.88535714	-1.32804728
F	9.0	-2.34001231	2.30248880	-1.89715385
F	9.0	-1.67103791	4.29023170	-1.20004261
Н	1.0	-4.76147079	3.09031105	-1.14418447
С	6.0	-4.11926556	4.38442707	-2.77950001
Η	1.0	-4.24648905	4.70190430	-0.62382233
Н	1.0	-3.86663818	3.56412411	-3.46919203
Η	1.0	-3.37577486	5.17953587	-2.94676924
С	6.0	-5.51847506	4.91403913	-3.10287404
Η	1.0	-6.28510666	4.13247204	-2.97920084
Η	1.0	-5.56977844	5.26737118	-4.14384222
Η	1.0	-5.79175472	5.75870371	-2.45076942
Au	79.0	-5.20108032	3.28231239	1.75065780
Ρ	15.0	-7.38148928	3.86509848	2.26103330
С	6.0	-8.48274708	4.06028891	0.81996572
С	6.0	-7.49199915	5.43607283	3.18461132
Н	1.0	-8.51644230	3.12611556	0.24054159
Н	1.0	-8.10787010	4.86053038	0.16656555
Η	1.0	-9.50348854	4.31352758	1.14556336
Η	1.0	-6.93209410	5.35419321	4.12721157
Η	1.0	-8.54081059	5.67987585	3.41282344
Η	1.0	-7.05669689	6.25137186	2.58972120
С	6.0	-8.20914078	2.63114262	3.32334995
Η	1.0	-8.24248791	1.65698421	2.81477952
Η	1.0	-9.23760509	2.94837379	3.55574560
Η	1.0	-7.65130424	2.51398683	4.26328945
0	8.0	-1.01919973	2.29139209	0.52587843
С	6.0	-0.65763110	0.95028734	-0.05490049
Η	1.0	-0.17072469	1.15155089	-1.01133835
H	1.0	0.03635020	0.48900476	0.65526313
H	1.0	-1.56946766	0.35542378	-0.16532330
Η	1.0	-0.88864976	2.24935722	1.52313304

Table S19. Vibrational Frequency Data for [INT2-BOT-C2]

MODE	FREO(CM**-1)	SYMMETRY	RED. MASS	IR INTENS.
1	23.200	A	4.806223	0.008688
2	10.950	A	5.770906	0.002257
3	8.258	A	6.496453	0.005449
4	0.351	A	10.827034	0.00003
5	0.200	A	10.839646	0.000001
6	0.136	А	10.857002	0.000001
7	33.077	А	5.140024	0.018560
8	45.951	A	4.852663	0.047501
9	49.292	А	5.357692	0.147954
10	53.671	A	5.189309	0.081597
11	60.523	A	4.660996	0.043712
12	72.601	A	4.114285	0.018498
13	74.759	A	3.966923	0.066892
14	89.984	A	3.587622	0.103258
15	97.374	A	2.049501	0.016524
16	106.172	A	4.193729	0.127529
17	111.811	A	4.470490	0.042841
18	141.830	A	2.756117	0.042046
19	163.703	A	3.210705	0.106485
20	180.198	A	3.578185	0.052856
21	185.633	A	3.850848	0.057073
22	195.822	A	1.591392	0.001768
23	201.991	A	4.356510	0.089027
24	212.324	A	1.679141	0.018292
25	220.571	A	3.872620	0.033412
26	233.905	А	4.013546	0.050884
27	236.727	А	1.148097	0.006819
28	261.373	А	2.238384	0.014795
29	262.054	А	2.012673	0.038926
30	265.744	А	2.246855	0.023531
31	278.561	А	2.598200	0.029949
32	282.984	А	4.030832	0.261815
33	296.156	A	2.998975	0.309067
34	316.214	A	2.240764	0.427137
35	327.101	A	1.024870	0.011061
36	329.317	A	2.110921	0.025266
37	365.041	A	3.642395	0.779120
38	384.665	A	2.932191	0.091441
39	400.565	A	2.952297	0.112891
40	424.363	A	3.490700	0.006970
41	471.977	A	4.428417	0.037896
42	514.387	A	7.606413	0.533841
43	536.045	A	5.106567	0.222110
44	595.522	A	6.950230	0.286023
45	627.618	A	6.602478	0.147407

46	648.382	А	8.542607	0.907676
47	658.540	А	4.396627	1.515737
48	668.231	А	6.819910	3.605652
49	692.298	А	4.310658	0.960253
50	700.446	А	1.523560	2.500903
51	727.067	А	3.886907	0.454350
52	732.205	А	1.151359	0.004897
53	738.264	А	4.148291	0.591212
54	747.745	А	2.888642	0.598171
55	776.543	А	1.174961	0.001706
56	784.048	А	3.189056	0.124251
57	810.021	А	5.323490	3.425949
58	825.291	А	1.993849	2.907738
59	835.151	А	1.278378	0.382759
60	836.890	A	1.323710	0.085027
61	857.521	А	1.249079	0.341320
62	866.669	А	2.503086	0.447470
63	887.253	А	1.859557	1.986432
64	908.491	A	1.441246	2.230648
65	910.031	А	1.776704	2.688700
66	931.500	А	1.829280	6.810275
67	935.640	А	1.539739	0.425487
68	937.476	А	1.427734	1.739694
69	956.454	А	1.412878	4.545282
70	957.748	A	1.396495	0.854915
71	973.514	А	1.313696	0.158303
72	989.878	А	5.148343	0.008067
73	1022.073	А	2.905928	0.406124
74	1039.870	А	2.231396	0.251818
75	1054.545	А	2.661489	2.412153
76	1089.926	А	1.613378	0.270980
77	1106.454	А	1.791158	1.183167
78	1119.494	А	2.682116	6.375634
79	1146.536	A	1.738241	0.364224
80	1159.847	A	2.426096	0.490778
81	1171.319	А	1.091617	0.011001
82	1185.255	A	1.158011	0.132933
83	1196.077	A	2.082970	0.401355
84	1207.531	А	1.719663	0.135804
85	1224.089	А	1.295747	0.124703
86	1274.309	А	1.204401	0.611819
87	1277.800	А	1.492673	0.529222
88	1279.909	A	1.200326	0.396874
89	1289.092	A	1.193464	0.294621
90	1298.136	A	1.183157	0.027040
91	1306.814	A	2.146934	0.088611
92	1336.735	A	1.639646	0.796233
93	1339.333	A	2.122737	0.666900

94	1370.355	A	1.231645	0.232753
95	1374.165	A	1.214238	2.094228
96	1390.983	A	1.050610	0.066491
97	1395.554	A	1.045687	0.024263
98	1400.167	A	1.047313	0.038372
99	1409.698	А	1.048357	0.544987
100	1410.703	A	1.089870	0.140012
101	1411.337	А	1.045740	0.509552
102	1418.853	А	1.066280	0.339386
103	1422.768	A	1.042096	0.352263
104	1433.320	A	1.043825	0.131496
105	1445.026	A	1.040378	0.411436
106	1447.548	A	1.872123	0.055376
107	1453.771	A	1.141825	0.465088
108	1455.869	A	1.091470	0.351044
109	1488.151	A	2.093428	0.867172
110	1558.417	A	1.087080	0.726179
111	1571.840	A	4.935257	0.177988
112	1595.527	A	5.286597	0.320059
113	1613.643	A	9.227275	1.001182
114	2957.540	A	1.036533	0.794939
115	2968.240	A	1.058701	0.170166
116	2968.733	A	1.034142	0.108633
117	2970.903	A	1.033410	0.094278
118	2974.513	A	1.033529	0.030282
119	2978.864	A	1.059783	1.243865
120	2998.858	A	1.099945	0.011589
121	3015.988	A	1.102495	0.137047
122	3027.716	A	1.029356	0.852803
123	3027.859	A	1.098505	1.328955
124	3030.309	A	1.103702	1.456976
125	3051.574	A	1.101983	0.062104
126	3053.965	A	1.102833	0.136237
127	3056.253	A	1.102694	0.076589
128	3058.063	A	1.073711	26.135737
129	3063.702	A	1.103273	0.055576
130	3064.729	A	1.102470	0.014029
131	3068.236	A	1.102563	0.017069
132	3071.652	A	1.087049	1.386017
133	3102.437	A	1.086881	0.054159
134	3109.402	A	1.089996	0.125403
135	311/.942	A	1.094290	0.203591
136 127	3124.1/9	A	L.U9/865	0.098/98
13/	313/.513	A	1.1123/8	0.010544
138 1	3154.981	A	1.1106/1	0.101234

Table S20. Optimized Coordinates for [PROD-BOT-C2]

С	6.0	-1.81616426	2.94442892	0.38422224
С	6.0	-2.64194489	2.29623365	1.23808086
С	6.0	-2.32926250	3.78470778	-0.77523321
С	6.0	-2.33002067	1.59743381	2.49222708
С	6.0	-3.12126970	0.49689457	2.88623762
С	6.0	-1.31465983	2.03546143	3.36886168
С	6.0	-2.87801600	-0.16748095	4.08949184
С	6.0	-1.08146369	1.37703347	4.57829285
С	6.0	-1.85305583	0.26643702	4.93903112
Н	1.0	-3.92803144	0.15628010	2.23168325
Η	1.0	-3.49415398	-1.02573133	4.36832762
Η	1.0	-0.72835004	2.92109680	3.11511207
Н	1.0	-0.29498497	1.73729265	5.24585819
Η	1.0	-1.66439700	-0.25025567	5.88271475
С	6.0	-3.82798171	3.92607403	-0.97266710
F	9.0	-1.75803721	3.27985406	-1.95410633
F	9.0	-1.75749230	5.06176662	-0.63686514
Н	1.0	-4.23995972	2.91714001	-1.13876712
С	6.0	-4.21497011	4.84419727	-2.14201903
Н	1.0	-4.26527739	4.30819607	-0.03695818
Н	1.0	-3.73429942	4.48879433	-3.06696272
Η	1.0	-3.82990718	5.85910463	-1.95546949
С	6.0	-5.73213625	4.89830494	-2.34050083
Н	1.0	-6.14354706	3.90333247	-2.57562423
Η	1.0	-5.99632692	5.57068348	-3.17109847
Н	1.0	-6.24555588	5.26723766	-1.43792367
Н	1.0	-3.70095444	2.30448580	0.96960342
0	8.0	-0.44782844	2.97883940	0.40219417
С	6.0	0.27149761	1.74581623	0.62412167
Н	1.0	1.22279513	1.85410011	0.08656237
Η	1.0	0.47366777	1.57873714	1.69200718
Н	1.0	-0.28959212	0.89145374	0.21788602

Table S21. Vibrational Frequency Data for [PROD-BOT-C2]

MODE	FREQ(CM**-1)	SYMMETRY	RED. MASS	IR INTENS.
1	20.420	A	3.421959	0.001910
2	11.996	A	5.192740	0.032266
3	4.916	A	4.488589	0.000672
4	0.530	А	7.129299	0.000049
5	0.162	А	7.080500	0.000010
6	0.260	А	7.046284	0.000002
7	21.155	А	2.751698	0.028620
8	33.723	А	2.700805	0.050406
9	53.248	А	3.808266	0.007722
10	66.368	А	3.760574	0.005394
11	85.674	А	3.346185	0.028959
12	99.100	A	2.968888	0.015452
13	106.040	А	3.100958	0.086378
14	135.613	A	3.880796	0.018435
15	159.454	A	1.515851	0.052746
16	211.570	A	3.558604	0.065106
17	218.396	A	3.033670	0.025549
18	221.641	A	1.290573	0.003493
19	261.417	A	6.455568	0.101577
20	284.268	A	5.889851	0.167959
21	305.998	A	3.848007	0.021890
22	330.039	A	4.442508	0.120437
23	344.871	A	4.004470	0.053306
24	363.539	A	3.911617	0.052544
25	398.356	A	3.020802	0.015087
26	422.411	A	4.221240	0.066721
27	510.228	A	3.597348	0.621096
28	518.094	A	5.708516	0.242102
29	589.537	A	6.583379	0.412739
30	623.912	A	6.427908	0.015810
31	677.254	A	5.359644	0.118234
32	692.492	A	1.745612	1.839405
33	720.607	A	4.433313	0.220514
34	725.672	A	1.196999	0.057835
35	738.244	A	2.073069	1.205501
36	808.763	A	4.309195	0.790565
37	815.658	A	2.297432	3.444096
38	817.172	A	3.136576	3.155272
39	826.635	A	1.560205	0.374627
40	838.042	A	1.323754	0.107683
41	873.497	A	2.725527	0.198563
42	904.983	A	1.509453	0.517740
43	907.840	A	1.893385	2.225669
44	926.045	A	2.279618	0.121843
45	951.950	A	1.351559	0.012691
46	967.683	A	1.267760	0.047499
----	----------	---	----------	----------
47	991.391	А	6.213335	0.056512
48	1010.463	А	4.115883	2.752020
49	1032.065	A	2.783630	0.248971
50	1036.349	A	2.505729	1.042629
51	1086.603	A	2.282450	1.919664
52	1092.548	А	1.751902	0.848452
53	1108.738	А	1.855059	0.942081
54	1125.131	А	1.289454	0.963412
55	1142.024	А	4.423115	7.710218
56	1163.331	A	1.454947	0.842553
57	1167.231	А	1.089499	0.006156
58	1182.458	А	1.192483	0.226501
59	1186.068	А	2.194371	3.130879
60	1222.735	А	2.634592	0.104844
61	1230.865	А	1.276946	0.181817
62	1285.784	А	1.598934	0.843401
63	1289.742	А	1.093889	0.028866
64	1308.923	А	2.245307	1.637527
65	1335.266	А	1.358999	0.853458
66	1345.927	А	2.725207	0.404191
67	1352.246	А	1.832734	0.567629
68	1359.269	А	1.289178	0.404065
69	1411.169	А	1.092054	0.579327
70	1422.080	А	1.052861	0.022598
71	1426.104	А	1.063789	0.070931
72	1430.266	А	1.106540	0.110486
73	1431.578	А	1.038616	0.405479
74	1441.865	А	1.211471	0.258726
75	1444.467	А	1.099030	0.219751
76	1452.498	А	1.834967	0.709283
77	1492.214	А	2.166671	0.442549
78	1575.181	А	5.106928	0.049318
79	1598.835	А	5.454035	0.191966
80	1635.799	А	7.591239	1.646741
81	2952.299	А	1.036446	0.823139
82	2961.173	A	1.028665	1.142018
83	2964.772	A	1.058490	0.186877
84	2974.714	А	1.060073	1.118446
85	2994.132	A	1.100500	0.013491
86	3013.999	A	1.102419	0.154156
87	3024.009	A	1.100194	1.145285
88	3027.250	A	1.104318	1.520176
89	3035.782	A	1.106151	0.687675
90	3056.892	A	1.106022	0.543285
91	3089.668	A	1.086761	0.037032
92	3094.905	A	1.087625	0.003320
93	3096.718	А	1.086900	0.187045

94	3103.126	A	1.090314	0.241990
95	3110.863	А	1.094581	0.479748
96	3117.099	А	1.097767	0.205958

Table S22. Optimized Coordinates for [INT1-TOP]

С	6.0	-2.75651002	2.32484818	1.23036313
С	6.0	-2.65874243	2.02120423	2.43895411
С	6.0	-2.16021442	2.41191030	-0.13614905
С	6.0	-2.50748038	1.64344776	3.79446793
С	6.0	-2.06998444	2.59176326	4.74994135
С	6.0	-2.75799251	0.30501455	4.18190289
С	6.0	-1.88175392	2.19661140	6.07061243
С	6.0	-2.55847740	-0.07173651	5.50690460
С	6.0	-2.12387419	0.86916661	6.44971371
Η	1.0	-1.87729239	3.62140656	4.44335747
Η	1.0	-1.54516661	2.92666340	6.80915642
Η	1.0	-3.09430933	-0.42019588	3.43934488
Η	1.0	-2.74462104	-1.10468256	5.80779314
Η	1.0	-1.97106159	0.56830657	7.48851490
С	6.0	-0.64927304	2.24913669	-0.17116669
F	9.0	-2.53134513	3.63334632	-0.68858719
F	9.0	-2.77608252	1.44624484	-0.92837816
Н	1.0	-0.22417094	3.02762318	0.48339146
С	6.0	-0.05337398	2.33616304	-1.58288252
Н	1.0	-0.41328570	1.27761114	0.29339170
Н	1.0	-0.32303509	3.30159354	-2.03968334
Н	1.0	-0.49265501	1.55012548	-2.21710467
С	6.0	1.47007012	2.18591833	-1.55758178
Н	1.0	1.94464219	2.98256397	-0.96258110
Н	1.0	1.88407350	2.23967957	-2.57580733
Η	1.0	1.77394426	1.21838737	-1.12649691
Au	79.0	-4.74274635	3.05692077	1.67857051
Ρ	15.0	-6.85482883	3.97046041	1.68535638
С	6.0	-7.43384218	4.25030279	-0.01721030
С	6.0	-6.91614389	5.58182430	2.52689981
Н	1.0	-7.49072886	3.29677987	-0.56082553
Η	1.0	-6.73467922	4.91437864	-0.54424906
Η	1.0	-8.43173218	4.71548557	-0.00448842
Н	1.0	-6.61716557	5.47082615	3.57874537
Н	1.0	-7.93767405	5.99033880	2.48496318
Н	1.0	-6.22505951	6.28238010	2.03776050
С	6.0	-8.08959579	2.90676808	2.49462032
Н	1.0	-8.10073376	1.91437995	2.02223277
Н	1.0	-9.08751488	3.36215544	2.40543222
Н	1.0	-7.84291363	2.78459764	3.55887127

Table S23. Vibrational Frequency Data for [INT1-TOP]

MODE	FREQ(CM**-1)	SYMMETRY	RED. MASS	IR INTENS.
1	16.625	A	4.442826	0.015005
2	12.139	A	5.671689	0.000259
3	9.021	A	5.051961	0.032122
4	0.488	A	11.758467	0.000015
5	0.178	A	11.689789	0.00002
6	0.082	A	11.677387	0.00004
7	29.621	A	5.715109	0.031659
8	33.988	А	5.761746	0.089831
9	44.967	А	5.246984	0.087392
10	57.886	A	3.854572	0.005159
11	61.126	A	3.536297	0.004824
12	64.670	A	4.540091	0.017596
13	77.325	A	3.092507	0.049126
14	87.290	A	6.858203	0.167241
15	112.044	A	3.775845	0.037451
16	124.418	A	4.983632	0.141181
17	135.739	A	3.299426	0.061542
18	138.201	A	4.043384	0.125131
19	167.086	A	2.752029	0.075724
20	173.670	A	1.056846	0.001455
21	197.809	A	4.947578	0.013347
22	203.870	A	3.246667	0.001833
23	208.171	A	2.669061	0.023862
24	222.269	A	4.978201	0.112576
25	226.173	A	1.345339	0.001726
26	249.719	A	1.500828	0.052487
27	264.460	A	1.444854	0.054069
28	275.031	A	2.547602	0.053645
29	279.124	A	1.092801	0.001139
30	293.568	A	8.942900	0.0/9429
31	321.113	A	3.2/9463	0.011935
32	346./41	A	5.023660	1.1/89/1
33	369.844	A	3.257743	0.025598
34 25	382.875	A	3.596439	0.867663
35	393.896	A	2.94/422	0.005068
36	4/0.939	A	7.522360	0.066998
37	503.510	A	6.985327	0.084388
38	521.446	A	5.459/18	0.059811
39	348.U66 571 530	A	1.993233	3.3UXXUL 2.12E476
4 U 1 1	3/1.53U	A	8./8U484 7.407000	2.1334/6 0.122225
4 L 1 O	396.892 600 574	A	1.40/923	0.132235
4Z 10	020.374	A	0./UYJ/J 1 000707	0.00900/
43	001.200	A	4.44/3/ 2 102600	U./40303 1 011604
44 15	003.U44 722 /7/	A	2.1UZ009 1 120240	1.211024 0.026051
40	133.414	A	エ・エンツン40	0.03003T

46	736.443	A	3.305687	0.338009
47	738.947	A	4.006757	0.516275
48	745.871	A	5.033600	1.234565
49	762.704	A	1.625015	1.521637
50	780.005	A	1.175206	0.007181
51	817.416	A	6.025249	1.220726
52	840.288	A	1.682231	1.815059
53	843.297	A	1.294741	0.246293
54	843.457	A	1.284820	0.139662
55	850.801	A	1.272616	0.467939
56	896.974	A	1.976878	0.306364
57	927.874	A	2.259326	4.287588
58	936.959	A	1.454128	4.653973
59	943.297	A	1.408266	1.913943
60	945.404	A	1.351044	0.040799
61	950.364	A	1.435497	5.136852
62	982.332	A	1.344418	0.049847
63	987.813	A	6.053036	0.755539
64	996.764	A	1.298499	0.003635
65	1017.816	A	3.266522	2.595787
66	1030.192	A	2.330594	0.101980
67	1045.090	A	2.849755	1.850386
68	1094.177	A	1.634388	0.331897
69	1107.534	A	2.987403	7.861768
70	1117.423	A	1.971380	1.380720
71	1135.627	A	3.995335	3.887162
72	1174.597	A	1.088181	0.005552
73	1185.086	A	1.146214	0.332006
74	1234.752	A	1.275229	0.238960
75	1245.107	A	3.512256	0.844208
76	1280.296	A	1.198297	0.493069
77	1283.641	A	1.206129	0.554077
78	1294.359	A	1.448205	0.640495
79	1300.078	A	1.146221	0.197013
80	1302.266	A	1.188548	0.036220
81	1311.788	A	2.155178	0.060931
82	1351.597	A	2.095453	0.492584
83	1352.439	A	1.740120	0.641612
84	1369.819	A	1.237917	0.181002
85	1383.999	A	1.047661	0.039960
86	1386.143	A	1.047053	0.055549
87	1397.074	A	1.045547	0.224523
88	1400.419	A	1.044378	0.484724
89	1411.360	A	1.044668	0.521862
90	1421.723	A	1.043228	0.262519
91	1425.069	A	1.049391	0.035778
92	1431.665	A	1.066331	0.091377
93	1436.722	A	1.040103	0.395517

94	1439.655	А	2.296788	0.694291
95	1451.723	А	1.095448	0.465513
96	1487.303	А	2.111891	0.096828
97	1563.986	А	4.507624	0.027398
98	1591.446	А	5.266825	2.630248
99	2059.752	А	11.993856	19.180663
100	2955.115	А	1.036889	0.817948
101	2966.716	А	1.059084	0.242223
102	2974.724	A	1.033142	0.034185
103	2976.292	A	1.057338	0.765722
104	2976.357	А	1.036099	0.077127
105	2977.575	А	1.033445	0.009431
106	2995.899	A	1.100856	0.007457
107	3014.763	А	1.102764	0.133203
108	3027.800	А	1.104344	1.393863
109	3030.152	А	1.100656	1.016489
110	3059.133	А	1.103483	0.017060
111	3059.749	А	1.102980	0.007224
112	3060.421	А	1.103071	0.002098
113	3064.112	А	1.102177	0.001405
114	3070.267	А	1.102897	0.000004
115	3071.973	А	1.102623	0.00008
116	3107.494	А	1.087085	0.031582
117	3115.943	А	1.088881	0.053874
118	3123.269	А	1.092318	0.054131
119	3128.167	A	1.095388	0.082027
120	3133.645	А	1.097141	0.128340

Table S24. Optimized Coordinates for [TS1-TOP-C1]

С	6.0	-0.76115108	1.27584743	0.75356871
С	6.0	-0.67424184	0.64261752	1.88518119
С	6.0	0.14082177	1.48972774	-0.43171224
С	6.0	-1.46018827	0.28891560	3.05355525
С	6.0	-1.11401808	0.76001793	4.33617830
С	6.0	-2.58611989	-0.54486597	2.89340925
С	6.0	-1.90051401	0.41379333	5.43518877
С	6.0	-3.36355233	-0.88620055	4.00054121
С	6.0	-3.02264118	-0.40789056	5.27061129
Н	1.0	-2.83943582	-0.92059785	1.90021837
Н	1.0	-4.23547220	-1.53054845	3.86964178
Н	1.0	-3.63266873	-0.67642748	6.13612318
С	6.0	1.56176162	0.93227047	-0.44933268
F	9.0	0.21514994	2.87202454	-0.63808388
F	9.0	-0.53391892	0.99043471	-1.55286086
Н	1.0	2.10920858	1.36709249	0.40781423
С	6.0	2.34006643	1.24927640	-1.73848033
Н	1.0	1.49818635	-0.16437526	-0.33482546
Н	1.0	2.39940047	2.34119987	-1.86337209
Н	1.0	1.78272235	0.85706151	-2.60270476
С	6.0	3.74945664	0.65312946	-1.72001266
Н	1.0	4.34946251	1.04990613	-0.88548934
H	1.0	4.28015757	0.89308774	-2.65344954
Н	1.0	3.72547817	-0.44447443	-1.62547433
Au	79.0	-2.67674589	2.18456793	0.61454767
Ρ	15.0	-4.72298908	3.17933154	0.29060838
С	6.0	-5.15088987	3.31429672	-1.47760785
С	6.0	-4.84685040	4.87229347	0.95698786
Н	1.0	-5.18929911	2.31278086	-1.92970312
Н	1.0	-4.38758278	3.90463305	-2.00368977
Н	1.0	-6.13054419	3.80072284	-1.60220218
Н	1.0	-4.68135071	4.86407232	2.04378605
Н	1.0	-5.84309673	5.29222822	0.74890757
Н	1.0	-4.08414459	5.51186228	0.49091497
С	6.0	-6.09862280	2.25298738	1.05227852
Н	1.0	-6.12371778	1.22761691	0.65694690
Н	1.0	-7.06052923	2.74387789	0.83941221
Н	1.0	-5.95834541	2.20012164	2.14163947
0	8.0	0.93484837	-0.14288026	2.31527042
С	6.0	0.89176553	-1.60107219	2.47891998
Η	1.0	0.40993345	-2.07783079	1.61535597
Η	1.0	0.32602948	-1.79877424	3.39448357
Η	1.0	1.92192781	-1.95806599	2.59882402
Η	1.0	1.56346345	0.07427809	1.59270883
Н	1.0	-1.63680410	0.79040831	6.42580843
Η	1.0	-0.23948325	1.40060723	4.46359158

Table S25. Vibrational Frequency Data for [TS1-TOP-C1]

MODE	FREQ(CM**-1)	SYMMETRY	RED. MASS	IR INTENS.
1	-201.832	А	7.653998	13.361406
2	12.809	А	5.328195	0.006650
3	11.209	А	4.870474	0.010490
4	6.809	А	5.054121	0.006200
5	0.604	А	10.846556	0.000001
6	0.257	А	10.821198	0.000015
7	0.196	А	10.784171	0.000032
8	27.783	А	3.991550	0.124192
9	33.639	A	4.039637	0.035580
10	36.016	A	4.933577	0.042593
11	42.043	А	7.888580	0.082578
12	51.643	А	4.872832	0.089393
13	57.668	A	3.533335	0.028383
14	61.946	A	4.121177	0.112311
15	74.768	A	2.829752	0.004283
16	84.407	A	4.281002	0.039537
17	91.627	А	2.359414	0.009718
18	115.873	А	4.061120	0.053191
19	131.093	А	1.671924	0.033341
20	136.178	A	2.084999	0.015989
21	138.587	А	4.391328	0.093535
22	162.470	А	2.490002	0.031800
23	168.627	А	2.455997	0.005940
24	177.679	А	3.345193	0.035345
25	188.149	A	1.789670	0.004297
26	195.980	A	1.678207	0.014418
27	217.643	A	6.907257	0.019472
28	227.157	A	4.310577	0.026772
29	235.508	А	3.778284	0.008802
30	250.207	A	1.245695	0.544425
31	258.010	A	2.284888	0.037808
32	260.835	A	1.331566	0.001804
33	272.808	A	2.632205	0.073892
34	278.487	A	3.833247	1.007268
35	295.870	A	1.079321	0.001571
36	319.836	A	4.429110	2.824775
37	331.520	А	3.207584	0.089756
38	347.598	А	3.937915	0.455148
39	376.317	A	3.796344	0.048391
40	380.281	A	3.308519	0.068980
41	394.631	А	2.899465	0.032116
42	504.688	А	7.436639	0.260498
43	514.555	A	6.310587	1.388058
44	532.473	A	5.014532	0.401155
45	592.799	A	7.084446	0.393116

46	598.479	A	6.643723	0.512074
47	622.842	A	7.515310	0.097718
48	651.676	А	7.299310	0.579911
49	658.575	A	4.413733	0.976603
50	687.282	A	1.673967	2.159913
51	727.241	A	3.884884	0.504416
52	732.756	А	3.850944	0.444723
53	750.986	А	1.533338	2.544969
54	754.333	А	1.731934	2.102677
55	766.274	А	2.841375	0.972047
56	778.517	А	1.181995	0.014099
57	790.451	А	1.546338	0.996719
58	821.095	А	3.001686	1.235366
59	831.911	А	1.897567	5.187326
60	833.153	А	1.298323	0.048998
61	835.010	А	1.299129	0.402141
62	837.958	А	1.346012	1.117136
63	897.368	А	2.035831	0.785372
64	921.049	А	1.416716	0.095099
65	927.029	А	3.185933	1.960099
66	934.857	А	1.422687	2.075196
67	936.339	А	1.496554	6.093848
68	941.396	A	1.872918	1.751723
69	945.642	A	1.447204	2.191661
70	957.521	A	1.370694	0.006815
71	977.721	A	1.311630	0.012566
72	985.827	A	5.834571	0.612753
73	1007.661	A	3.542281	3,439393
74	1020.376	A	2.129214	0.495198
7.5	1033.085	A	3,037539	0.494741
76	1074.193	A	1.518169	0.442947
77	1078.183	A	1.164822	1.946515
78	1105.449	A	2.603435	4.783602
79	1108.788	A	1,922243	1.491255
80	1137.415	A	4.035607	4.476012
81	1161,244	A	1.126935	0.008410
82	1162.601	A	1,220766	0.119772
83	1169.793	A	1,149507	0.073408
84	1209 704	A	3 341269	0 145332
85	1227 211	Δ	1 286859	0 088524
86	1270 094	Δ	1 200523	0 413230
87	1274 706	Δ	1 524868	0 845353
88	1280 757	Δ	1 199563	0 542472
89	1283 998	A	1 27 <u>4</u> 970	0. <u>1</u> 28986
90	1295 060	Z	1 514268	0 064651
91	1299 077	A	1 19035/	0 075805
92	1310 902	Γ Σ	1 122755	0.217040
92	1328 600	7	1 Q60011	0.217040 0.263012
	1020.099	n	H. 900041	0.203012

94	1333.365	А	1.549588	0.746040
95	1367.150	А	1.227851	0.073615
96	1385.044	А	1.049978	0.049459
97	1391.241	А	1.046365	0.064956
98	1396.659	А	1.044469	0.024086
99	1401.768	A	1.046972	0.477940
100	1407.749	A	1.042955	0.563945
101	1420.978	A	1.040959	0.293663
102	1424.672	A	1.036236	0.124888
103	1431.305	А	2.183910	0.584882
104	1438.616	А	1.050772	0.679354
105	1439.401	А	1.041864	0.404441
106	1445.426	А	1.078637	0.128333
107	1451.827	A	1.086665	0.323790
108	1463.270	A	1.087028	0.156891
109	1471.394	A	2.181028	0.023353
110	1496.097	А	1.070838	0.224889
111	1563.940	А	5.279944	0.041059
112	1580.575	A	5.618283	0.637099
113	1775.289	A	11.643064	16.352117
114	2927.626	A	1.057433	1.056483
115	2956.192	A	1.036872	0.861874
116	2969.608	A	1.034230	0.101008
117	2970.870	A	1.033866	0.035404
118	2971.419	A	1.033671	0.009327
119	2979.191	A	1.063118	0.638652
120	2982.320	A	1.096862	0.262278
121	2995.679	A	1.029466	0.456779
122	3007.828	A	1.102330	0.114115
123	3030.033	A	1.101379	1.125014
124	3031.071	A	1.103897	1.273067
125	3049.963	A	1.101473	0.027517
126	3053.127	A	1.101833	0.015529
127	3054.547	A	1.102514	0.095114
128	3064.294	A	1.102360	0.003279
129	3065.501	A	1.102362	0.008600
130	3066.869	A	1.102792	0.004816
131	3084.611	A	1.108590	0.136145
132	3102.219	A	1.086529	0.009589
133	3107.484	A	1.106038	0.180270
134	3112.198	A	1.08/898	0.055804
135	3115.833	A	1.091832	0.20/46/
136 197	3126.412	A	L.U94593	U.116584
13/ 120	3129.41/ 2517 007	A	1.0968/L	U.LU6UU5
TJQ	JJ1/.ZZ/	А	1.06/049	11.ZZ9541

Table S26. Optimized Coordinates for [INT2-TOP-C1]

С	6.0	-3.17304158	2.29898119	1.74216211
С	6.0	-2.70623064	1.95555246	2.94064164
С	6.0	-2.49434948	2.16954660	0.39590520
С	6.0	-3.29006982	1.99271905	4.28857756
С	6.0	-2.59124756	2.58528590	5.35987759
С	6.0	-4.56102180	1.43286443	4.52022696
С	6.0	-3.16608095	2.63011742	6.63078499
С	6.0	-5.12896347	1.48213804	5.79424524
С	6.0	-4.43452263	2.08090115	6.85105276
Η	1.0	-1.60579956	3.02647972	5.19466496
Η	1.0	-2.62193871	3.09981251	7.45321941
Η	1.0	-5.08980417	0.94739968	3.69809556
Η	1.0	-6.11309385	1.03920209	5.96294355
Η	1.0	-4.87959814	2.11602449	7.84800816
С	6.0	-1.05129898	1.67928910	0.23244530
F	9.0	-2.56826496	3.42505527	-0.22106847
F	9.0	-3.30769372	1.33390999	-0.38436681
Η	1.0	-0.38609493	2.36364722	0.79979837
С	6.0	-0.54375440	1.65959609	-1.22378516
Н	1.0	-0.97941053	0.65090013	0.63100255
Η	1.0	-0.61363870	2.67420506	-1.64198732
Η	1.0	-1.20856249	1.01842368	-1.82206583
С	6.0	0.89656854	1.15276814	-1.32405519
Н	1.0	1.59435880	1.79414415	-0.76237243
Н	1.0	1.22839665	1.14487302	-2.37307453
Н	1.0	0.99519360	0.12630227	-0.93691105
Au	79.0	-5.07154131	3.19019365	1.63493276
Ρ	15.0	-7.13688993	4.19783258	1.44142878
С	6.0	-8.16806030	3.46086788	0.12668285
С	6.0	-7.04866171	5.97393084	1.02792740
Η	1.0	-8.36033249	2.40083885	0.34722909
Η	1.0	-7.64349699	3.52447200	-0.83770287
Η	1.0	-9.13069057	3.98901153	0.04546492
Н	1.0	-6.51167965	6.51460552	1.82041705
Н	1.0	-8.05699444	6.40272188	0.92133671
Η	1.0	-6.49866676	6.10537910	0.08556394
С	6.0	-8.15740299	4.10696411	2.95253682
Н	1.0	-8.31507683	3.05708790	3.23798299
Η	1.0	-9.13622379	4.58418465	2.79044557
Н	1.0	-7.64360332	4.61677933	3.78006411
0	8.0	-1.23272383	1.47505283	3.09909511
С	6.0	-0.99804103	0.09857937	3.63323808
Η	1.0	-1.49451339	-0.63639128	2.98904896
Η	1.0	-1.41004598	0.08913085	4.64470434
Η	1.0	0.09014833	-0.02536702	3.65107799
Η	1.0	-0.79232275	1.56768763	2.21501303

Table S27. Vibrational Frequency Data for [INT2-TOP-C1]

MODE	FREQ(CM**-1)	SYMMETRY	RED. MASS	IR INTENS.
1	12.957	A	5.295988	0.013928
2	9.600	A	4.662494	0.000361
3	8.445	A	4.989991	0.005004
4	0.445	А	10.920208	0.000027
5	0.261	A	10.855017	0.000005
6	0.231	A	10.847451	0.000005
7	31.617	А	4.427432	0.091524
8	44.803	А	4.136957	0.197888
9	52.537	A	4.909341	0.054785
10	59.486	A	4.011752	0.048205
11	62.567	А	5.086182	0.012795
12	74.759	A	8.399358	0.069135
13	78.488	А	2.939179	0.000959
14	89.427	А	4.517431	0.049462
15	102.478	A	3.160923	0.165395
16	112.118	A	2.107012	0.021264
17	122.540	A	3.740138	0.122828
18	142.235	A	4.897628	0.048106
19	154.129	А	3.669881	0.040584
20	171.675	А	3.406828	0.011931
21	174.041	A	2.625729	0.035631
22	177.369	А	1.458725	0.010836
23	186.083	А	2.117234	0.002557
24	195.066	А	3.238046	0.052560
25	219.676	A	1.294597	0.030773
26	225.720	A	1.084993	0.001327
27	230.865	A	1.137166	0.001956
28	235.740	A	3.848158	0.100821
29	243.323	A	3.372329	0.005132
30	246.840	A	4.021345	0.172435
31	263.630	A	1.469111	0.051437
32	264.468	A	2.156772	0.033358
33	272.004	A	3.738268	0.456162
34	274.281	A	2.818889	0.128757
35	302.197	A	6.745968	0.478861
36	341.309	A	2.984658	0.152351
37	351.396	A	3.785933	0.495607
38	382.794	A	2.964888	0.042771
39	396.727	A	2.902778	0.121049
40	409.593	A	4.002858	0.443949
41	454.100	A	5.335232	2.167065
42	512.354	A	7.864762	0.160459
43	544.720	A	5.043893	1.347086
44	573.099	A	7.236492	5.257907
45	614.122	А	5.906310	0.542160

46	622.148	А	6.341366	1.109433
47	653.632	А	7.125661	0.405384
48	659.450	A	4.186325	0.364671
49	683.362	A	6.054744	0.096972
50	685.440	A	1.780102	2.246008
51	726.124	A	3.978109	0.521117
52	728.519	А	3.851611	0.482259
53	755.741	А	2.072152	1.765638
54	764.120	А	1.346490	0.285040
55	778.874	А	1.597369	0.791244
56	781.469	А	1.186617	0.016366
57	793.601	A	2.294629	1.976213
58	813.281	А	7.080896	2.720549
59	823.223	А	1.259242	0.020812
60	837.039	A	2.087532	4.541720
61	837.483	A	1.303475	0.528633
62	840.075	А	1.279486	0.018119
63	892.423	А	2.539781	0.393047
64	904.492	А	1.408100	0.114537
65	928.550	A	2.589372	0.728814
66	936.301	A	1.398861	1.224031
67	942.067	А	1.459421	3.703343
68	946.388	А	1.427898	3.236477
69	948.167	A	1.386199	0.733979
70	958.070	А	1.561699	1.720438
71	973.072	A	1.303618	0.010977
72	989.657	А	6.095864	0.237865
73	1019.043	А	3.382325	4.200986
74	1035.144	A	2.860106	0.013931
75	1036.333	А	2.364507	0.612962
76	1091.715	А	1.629371	0.170135
77	1109.864	A	2.382053	3.790285
78	1114.049	A	2.116791	3.574068
79	1119.419	А	1.285678	0.175642
80	1144.569	A	1.478356	2.171210
81	1159.802	A	3.109074	2.507987
82	1173.211	A	1.090696	0.014340
83	1189.607	A	1.142342	0.030563
84	1216.196	A	3.631417	0.644699
85	1236.300	А	1.306429	0.166075
86	1272.731	A	1.205164	0.464889
87	1277.219	А	1.206103	0.412080
88	1279.805	A	1.531035	1.181333
89	1296.150	A	1.189907	0.027474
90	1304.776	A	1.236947	0.155284
91	1315.512	A	2.115521	0.076603
92	1343.782	A	1.508616	0.350083
93	1344.706	A	1.864333	0.398725

94	1366.261	А	1.255302	1.079404
95	1372.518	А	1.224708	0.035373
96	1387.709	А	1.049628	0.032888
97	1392.098	А	1.045073	0.003108
98	1395.343	А	1.046827	0.069507
99	1402.117	А	1.117953	0.276100
100	1403.607	А	1.044769	0.597362
101	1409.048	А	1.046669	0.481463
102	1418.513	А	1.040571	0.365449
103	1435.534	А	1.038136	0.186210
104	1438.880	А	1.039502	0.384533
105	1440.318	А	1.085013	0.332779
106	1445.481	A	1.550431	0.711296
107	1446.273	A	1.248709	0.113946
108	1451.257	A	1.068240	0.065573
109	1467.133	A	1.098233	0.259933
110	1489.691	A	2.095917	0.286485
111	1570.750	A	5.085722	0.052929
112	1596.783	A	5.326638	0.178298
11.3	1655.922	A	9.825963	7.693807
114	2891.877	A	1.061516	2.215804
115	2956.880	A	1.036859	0.835782
116	2967.972	A	1.034301	0.151495
117	2969.800	А	1.034333	0.056881
118	2972.459	A	1.097224	0.109663
119	2973.264	A	1.033478	0.053913
120	2983.982	А	1.060185	0.563777
121	3010.734	А	1.101702	0.233992
122	3019.415	A	1.028808	0.193366
123	3031.954	A	1.102059	0.936094
124	3035.339	А	1.103464	1.176201
125	3049.885	А	1.102046	0.078905
126	3051.491	А	1.101411	0.083788
127	3055.225	А	1.102543	0.074606
128	3060.351	А	1.101849	0.020416
129	3063.379	А	1.102430	0.024991
130	3064.667	А	1.102219	0.007694
131	3102.546	А	1.086237	0.008208
132	3112.147	А	1.088041	0.046782
133	3116.921	А	1.091211	0.205147
134	3124.154	A	1.094503	0.216850
135	3124.921	A	1.108722	0.029462
136	3128.233	А	1.097213	0.047729
137	3147.597	A	1.110462	0.043914
138	3341.416	А	1.068553	22.896028

Table S28. Optimized Coordinates for [PROD-TOP-C1]

С	6.0	-3.01657391	2.20094299	1.85496271
С	6.0	-2.44850588	1.82544076	3.02445769
С	6.0	-2.44406676	2.21731472	0.47646946
С	6.0	-3.19711041	1.89084446	4.30878592
С	6.0	-2.58100128	2.45385861	5.44323301
С	6.0	-4.52283192	1.43277383	4.41151762
С	6.0	-3.27989697	2.57020450	6.64516830
С	6.0	-5.21909761	1.54796231	5.61777830
С	6.0	-4.60159254	2.11650157	6.73697948
Η	1.0	-1.55464876	2.82147598	5.37095690
Η	1.0	-2.79226255	3.02004957	7.51345539
Η	1.0	-5.00310421	0.96870512	3.54654193
Η	1.0	-6.24675322	1.18314707	5.68631554
Η	1.0	-5.14614582	2.20345831	7.68001413
С	6.0	-1.07915485	1.61997032	0.18996085
F	9.0	-2.44999647	3.56446171	0.03222892
F	9.0	-3.40203619	1.60176694	-0.36476412
Η	1.0	-0.34397721	2.18351674	0.78378421
С	6.0	-0.68636805	1.62421596	-1.29440892
Η	1.0	-1.07051361	0.59155387	0.58360881
Η	1.0	-0.74248236	2.65049696	-1.69075286
Η	1.0	-1.40827370	1.02389193	-1.86995268
С	6.0	0.72423452	1.06773782	-1.50644648
Η	1.0	1.48155272	1.67757821	-0.98798704
Η	1.0	0.98633820	1.05188823	-2.57557940
Η	1.0	0.80990589	0.03623347	-1.12813950
Η	1.0	-4.03523016	2.59368324	1.89879346
0	8.0	-1.11769068	1.49655306	3.08676291
С	6.0	-0.76633501	0.30038369	3.82179832
Η	1.0	-1.24723482	-0.58309567	3.37286878
Η	1.0	-1.04452908	0.36867669	4.88387060
Н	1.0	0.32329327	0.21059729	3.73418689

Table S29. Vibrational Frequency Data for [PROD-TOP-C1]

MODE	FREQ(CM**-1)	SYMMETRY	RED. MASS	IR INTENS.
1	19.410	А	4.149181	0.033407
2	4.637	А	5.379179	0.008042
3	3.104	А	5.462856	0.013190
4	0.340	A	7.089421	0.000030
5	0.274	А	7.072600	0.00007
6	0.160	А	7.058656	0.00007
7	43.803	А	4.727690	0.022825
8	57.994	А	4.551598	0.011669
9	68.953	А	4.181757	0.019712
10	80.962	A	3.555105	0.035442
11	92.171	А	1.526337	0.058939
12	110.146	А	2.137778	0.004849
13	112.876	А	2.833067	0.021497
14	125.844	А	2.015348	0.238120
15	134.032	А	3.058511	0.011421
16	189.129	A	5.320118	0.164081
17	224.500	А	5.413932	0.153430
18	239.016	А	4.877208	0.082348
19	273.451	А	4.247712	0.283800
20	276.547	A	1.121400	0.012966
21	305.249	A	6.221282	0.150837
22	329.482	A	3.253522	0.107283
23	356.429	A	3.210261	0.008198
24	404.438	A	2.982179	0.008374
25	428.315	A	4.041185	0.129434
26	478.282	A	4.915984	0.014830
27	504.377	A	3.751614	0.494623
28	511.637	A	8.117843	0.174869
29	606.355	A	5.535352	0.695254
30	608.625	А	5.872924	0.256791
31	660.873	A	7.077608	0.348498
32	672.287	А	3.968532	0.056912
33	697.181	A	1.641611	1.707321
34	724.884	А	1.260401	0.297953
35	755.581	А	3.005093	2.242057
36	770.299	A	3.900539	1.190691
37	784.155	А	3.310525	1.153376
38	801.031	А	2.192701	2.955981
39	819.498	A	1.470698	1.712077
40	839.223	A	1.252127	0.004357
41	895.363	A	1.756215	1.105611
42	906.966	А	1.843900	1.052326
43	915.264	А	1.451160	0.096160
44	952.302	A	4.095066	1.511077
45	955.903	А	1.358180	0.011055

46	972.760	A	1.279426	0.010655
47	987.256	A	6.021449	0.175925
48	999.323	A	4.525605	8.876227
49	1026.881	A	2.382370	0.312516
50	1035.700	A	2.739342	1.895334
51	1057.347	A	3.176823	1.333939
52	1075.613	A	1.563157	0.295687
53	1104.524	A	2.285750	1.314898
54	1110.883	A	1.858973	1.280693
55	1131.983	A	1.278743	0.045628
56	1155.748	A	1.077426	0.001131
57	1163.317	A	1.452203	0.470887
58	1178.185	A	1.164384	0.045040
59	1195.565	А	2.604250	1.791256
60	1234.465	A	1.277347	0.172753
61	1245.512	A	3.094732	5.079341
62	1294.063	А	1.743320	1.190641
63	1297.083	А	1.092190	0.018144
64	1307.713	А	1.650920	1.051057
65	1317.857	A	1.522674	0.826377
66	1334.442	А	4.379360	0.148727
67	1360.673	A	1.500583	0.863751
68	1367.149	А	1.350544	0.388219
69	1407.057	A	1.104145	0.191920
70	1425.325	A	1.083820	0.195303
71	1426.966	A	1.173019	0.461252
72	1429.840	А	1.045836	0.161086
73	1435.737	A	1.950695	0.736164
74	1440.018	A	1.038597	0.361993
75	1445.794	A	1.084866	0.189351
76	1453.378	А	1.096462	0.348613
77	1485.941	A	2.137509	0.244591
78	1565.539	A	5.612815	0.100818
79	1595.500	А	5.465609	0.021512
80	1633.215	A	8.069326	6.128830
81	2952.304	A	1.036257	0.940229
82	2955.390	А	1.032436	1.536428
83	2967.904	А	1.059391	0.568482
84	2986.449	А	1.061104	0.673539
85	2995.155	A	1.100520	0.007525
86	3017.482	А	1.102668	0.802016
87	3024.091	А	1.100765	1.332311
88	3025.763	A	1.105387	0.848883
89	3031.536	A	1.103029	1.277709
90	3068.953	A	1.102891	0.453362
91	3089.672	A	1.085484	0.078365
92	3095.749	A	1.086660	0.004730
93	3101.988	A	1.090074	0.180594

94	3103.929	A	1.088323	0.022756
95	3107.868	A	1.094095	0.504475
96	3116.080	A	1.097766	0.298907

Table S30. Optimized Coordinates for [TS1-TOP-C2]

С	6.0	-0.01969801	1.33146334	0.14182138
С	6.0	-0.98551273	1.38702774	0.97085512
С	6.0	0.69597054	1.82726502	-1.07627726
С	6.0	-1.37315810	0.72650790	2.22466540
С	6.0	-2.53676105	-0.06562992	2.28174901
С	6.0	-0.58444130	0.88398039	3.38073444
С	6.0	-2.87943792	-0.71825337	3.46711659
С	6.0	-0.94361210	0.23325326	4.56463718
С	6.0	-2.08634758	-0.57225055	4.61066389
Н	1.0	0.29304630	1.53513718	3.35858130
Н	1.0	-0.32627651	0.36079153	5.45672321
Н	1.0	-2.36133885	-1.08035064	5.53747272
С	6.0	2.04429436	2.48704815	-0.83997774
F	9.0	-0.16871972	2.73095965	-1.69187045
F	9.0	0.81382960	0.77066451	-1.97608483
Н	1.0	1.87398767	3.31627536	-0.13336089
С	6.0	2.71382856	2.99677730	-2.12474346
Н	1.0	2.68835044	1.75488138	-0.33075935
Н	1.0	2.03810811	3.69446349	-2.64406800
Н	1.0	2.88642335	2.15145063	-2.80911279
С	6.0	4.04124069	3.69829440	-1.82508278
Н	1.0	3.89687896	4.56842947	-1.16472816
Н	1.0	4.50958252	4.06020069	-2.75280499
Н	1.0	4.75682974	3.01978040	-1.33411741
Au	79.0	-2.44153380	2.83224249	0.33439669
Ρ	15.0	-4.21547556	4.21303415	-0.11661427
С	6.0	-4.16531706	4.92559433	-1.79220498
С	6.0	-4.34231853	5.62204647	1.03009403
Н	1.0	-4.17078447	4.12194300	-2.54218292
Н	1.0	-3.24980402	5.52040339	-1.91957033
Н	1.0	-5.03976631	5.57465506	-1.95686579
Н	1.0	-4.44229698	5.25435400	2.06131411
Н	1.0	-5.22222471	6.23687410	0.78415316
Н	1.0	-3.43927479	6.24554682	0.96540082
С	6.0	-5.80525303	3.33176422	0.00433524
Н	1.0	-5.83220243	2.50558472	-0.72027135
Н	1.0	-6.64139462	4.01722383	-0.20488587
Н	1.0	-5.92603302	2.91686225	1.01491094
0	8.0	1.34616959	-0.13417348	0.59213716
С	6.0	0.85724699	-1.46869695	0.26846257
Н	1.0	1.60018790	-2.20516109	0.60560226
Н	1.0	0.76056176	-1.51041543	-0.82090658
Н	1.0	-0.11334556	-1.66666996	0.74355173
Н	1.0	1.45727682	-0.06590483	1.56373787
Н	1.0	-3.77567673	-1.34221041	3.49575925
Н	1.0	-3.15640211	-0.18863942	1.39079773

Table S31. Vibrational Frequency Data for [TS1-TOP-C2]

MODE	FREQ(CM**-1)	SYMMETRY	RED. MASS	IR INTENS.
1	-168.251	A	7.542925	10.455012
2	14.894	А	5.392147	0.001671
3	9.350	А	5.198650	0.008306
4	7.630	А	4.899315	0.002887
5	0.328	А	10.863466	0.000007
6	0.247	A	10.841770	0.000002
7	0.249	A	10.846293	0.000015
8	27.822	A	4.196404	0.071301
9	34.720	A	4.852575	0.040685
10	38.305	А	4.768815	0.036656
11	40.741	A	4.613178	0.056697
12	50.010	А	4.175076	0.025412
13	62.980	A	5.160887	0.076994
14	69.072	A	4.313689	0.063940
15	72.061	A	4.186021	0.018728
16	88.238	A	3.953451	0.031265
17	94.673	А	3.495426	0.316248
18	111.069	А	3.215987	0.082120
19	121.658	А	2.642252	0.005123
20	131.383	A	3.187116	0.060042
21	152.628	А	1.550306	0.496430
22	170.230	А	3.283875	0.051882
23	174.553	А	3.983642	0.016603
24	178.662	А	3.384161	0.032539
25	187.516	А	3.289124	0.010587
26	203.046	A	4.725704	0.032557
27	218.543	A	3.995408	0.200948
28	226.494	А	1.032148	0.001023
29	237.640	А	6.809189	0.174732
30	246.740	A	4.348066	0.419361
31	249.467	А	2.004446	0.004520
32	259.997	A	1.184199	0.010560
33	271.918	A	1.085240	0.011003
34	278.133	A	2.394539	0.033779
35	288.089	A	2.254508	1.196278
36	290.098	А	1.108174	0.032712
37	314.286	А	3.352392	0.020194
38	354.017	A	3.515426	0.186096
39	357.348	А	3.742592	0.598820
40	397.094	A	2.983545	0.009570
41	426.800	A	9.013359	1.122595
42	441.274	A	4.431094	0.026879
43	509.526	A	5.515385	2.314937
44	524.066	A	5.181739	0.520974
45	549.363	A	6.273093	0.703951

47589.087A2.8509913.50499748610.957A6.3159310.09140949644.881A5.6554600.75244250658.874A4.2275160.87075851693.348A1.8841851.17015352730.347A3.8481730.42616653733.371A3.8594360.47974754738.228A1.1635960.02495555741.523A2.9765205.25223557782.549A1.1768470.01374558803.544A5.826550.76493659833.675A1.6901211.71968560837.910A1.2686170.44799862848.762A1.2654750.24869163890.262A1.9941870.223224649007A1.2654750.24869165928.392A2.2849312.94231766938.523A1.4127731.49450867942.792A1.8535718.21588468948.384A2.386183.38125569951.718A1.5067691.34094270954.616A1.5265260.18253271969.923A1.2890744.09713572985.034A2.9890744.097135791118.755A2.0389340.80657181107.854A<	46	568.491	A	1.891026	2.376667
48 610.957 A 6.315931 0.091409 49 644.881 A 5.655460 0.752442 50 658.874 A 4.227516 0.870758 51 693.348 A 1.84185 1.170153 52 730.347 A 3.848173 0.426166 53 733.371 A 3.859436 0.479747 54 738.228 A 1.163596 0.024955 55 741.523 A 2.786991 0.584389 56 753.149 A 2.976520 5.252235 57 782.549 A 1.176847 0.013745 58 803.544 A 5.582655 0.764936 59 833.675 A 1.690121 1.719685 60 837.910 A 1.265475 0.248691 63 890.262 A 1.994187 0.223224 64 909.110 A 1.379830 0.473420 65 928.392 A 2.284931 2.942317 66 <t< td=""><td>47</td><td>589.087</td><td>А</td><td>2.850991</td><td>3.504997</td></t<>	47	589.087	А	2.850991	3.504997
49 644.881 A 5.655460 0.752442 50 658.874 A 4.227516 0.870758 51 693.348 A 1.884185 1.170153 52 730.347 A 3.848173 0.426166 53 733.371 A 3.859436 0.479747 54 738.228 A 1.163596 0.024955 55 741.523 A 2.976520 5.25235 57 782.549 A 1.176847 0.013745 58 803.544 A 5.582655 0.764936 59 833.675 A 1.690121 1.719685 60 837.910 A 1.268617 0.447998 62 848.762 A 1.265475 0.248691 63 890.262 A 1.994187 0.223224 64 909.110 A 1.379830 0.473420 65 928.392 A 2.284931 2.942317 66 938.523 A 1.412773 1.494508 67 <t< td=""><td>48</td><td>610.957</td><td>A</td><td>6.315931</td><td>0.091409</td></t<>	48	610.957	A	6.315931	0.091409
50 658.874 A 4.227516 0.870758 51 693.348 A 1.884185 1.170153 52 730.347 A 3.848173 0.426166 53 733.371 A 3.859436 0.479747 54 738.228 A 1.163596 0.024955 55 741.523 A 2.786991 0.584389 56 753.149 A 2.976520 5.252235 57 782.549 A 1.1690121 1.719685 60 837.910 A 1.268617 0.447998 62 848.762 A 1.265475 0.248691 63 890.262 A 1.994187 0.223224 64 909.110 A 1.379830 0.473420 65 928.392 A 2.284931 2.942317 66 948.784 A 2.388618 3.381255 69 951.718 A 1.526526 0.182532 7 969.923 A 1.282404 0.004837 72 <	49	644.881	А	5.655460	0.752442
51 693.348 A 1.884185 1.170153 52 730.347 A 3.848173 0.426166 53 733.371 A 3.859436 0.479747 54 738.228 A 1.163596 0.024955 55 741.523 A 2.976520 5.252235 57 782.549 A 1.176847 0.013745 58 803.544 A 5.582655 0.764936 59 833.675 A 1.690121 1.719685 60 837.910 A 1.265617 0.447998 61 840.907 A 1.265475 0.223224 64 909.110 A 1.379830 0.473420 65 928.392 A 2.284931 2.942317 66 938.523 A 1.412773 1.494508 67 942.792 A 1.853571 8.21584 68 948.384 A 2.388618 3.381255 69 951.718 A 1.506769 1.340942 70 <t< td=""><td>50</td><td>658.874</td><td>A</td><td>4.227516</td><td>0.870758</td></t<>	50	658.874	A	4.227516	0.870758
52 730.347 A 3.848173 0.426166 53 733.371 A 3.859436 0.479747 54 738.228 A 1.163596 0.024955 55 741.523 A 2.786991 0.584389 56 753.149 A 2.976520 5.252235 57 782.549 A 1.176847 0.013745 58 803.544 A 5.82655 0.764936 59 833.675 A 1.690121 1.719685 60 837.910 A 1.239989 0.034732 61 840.907 A 1.265475 0.248691 63 890.262 A 1.994187 0.223224 64 909.110 A 1.379830 0.473420 65 928.392 A 2.284931 2.942317 66 938.523 A 1.412773 1.494508 67 942.792 A 1.853571 8.215884 68 948.384 A 2.38618 3.381255 69 <td< td=""><td>51</td><td>693.348</td><td>A</td><td>1.884185</td><td>1.170153</td></td<>	51	693.348	A	1.884185	1.170153
53 733.371 A 3.859436 0.479747 54 738.228 A 1.163596 0.024955 55 741.523 A 2.786991 0.584389 56 753.149 A 2.976520 5.22235 57 782.549 A 1.176847 0.013745 58 803.544 A 5.582655 0.764936 59 833.675 A 1.690121 1.719685 60 837.910 A 1.266617 0.447998 62 848.762 A 1.265475 0.248691 63 890.262 A 1.994187 0.223224 64 909.110 A 1.379830 0.473420 65 928.392 A 2.284931 2.942317 66 938.523 A 1.412773 1.494508 67 942.792 A 1.853571 8.215884 68 948.384 A 2.388618 3.381255 69 951.718 A 1.506769 1.340942 70 <t< td=""><td>52</td><td>730.347</td><td>А</td><td>3.848173</td><td>0.426166</td></t<>	52	730.347	А	3.848173	0.426166
54 738.228 A 1.163596 0.024955 55 741.523 A 2.786991 0.584389 56 753.149 A 2.976520 5.252235 57 782.549 A 1.176847 0.013745 58 803.544 A 5.582655 0.764936 59 833.675 A 1.239989 0.034732 61 840.907 A 1.265475 0.248691 63 890.262 A 1.994187 0.223224 64 909.110 A 1.379830 0.473420 65 928.392 A 2.284931 2.942317 66 938.523 A 1.412773 1.494508 67 942.792 A 1.853571 8.215884 68 948.384 A 2.38618 3.381255 69 951.718 A 1.506769 1.340942 7 969.923 A 1.282404 0.004837 72 985.034 A 2.490475 0.217107 75 <td< td=""><td>53</td><td>733.371</td><td>А</td><td>3.859436</td><td>0.479747</td></td<>	53	733.371	А	3.859436	0.479747
55741.523A2.7869910.58438956753.149A2.9765205.25223557782.549A1.1768470.01374558803.544A5.5826550.76493659833.675A1.6901211.71968560837.910A1.2399890.03473261840.907A1.2686170.44799862848.762A1.9941870.22322464909.110A1.3798300.47342065928.392A2.2849312.94231766938.523A1.4127731.49450867942.792A1.8535718.21588468948.384A2.3886183.38125569951.718A1.5067691.34094270954.616A1.5265260.18253271969.923A1.2824040.00483772985.034A5.9040880.279597731010.102A3.2967952.246610741025.544A2.4904750.217107751036.076A2.6888621.277287761083.157A1.5761140.273272771088.270A1.812840.500159781107.854A2.5890744.097135791118.755A2.0389340.806571801123.920A4.7637843.409259811167.855 <td>54</td> <td>738.228</td> <td>А</td> <td>1.163596</td> <td>0.024955</td>	54	738.228	А	1.163596	0.024955
56753.149A2.9765205.25223557782.549A1.1768470.01374558803.544A5.5826550.76493659833.675A1.6901211.71968560837.910A1.2399890.03473261840.907A1.26546170.44799862848.762A1.2654750.24869163890.262A1.9941870.22322464909.110A1.3798300.47342065928.392A2.2849312.94231766938.523A1.4127731.49450867942.792A1.8535718.2158468948.384A2.3886183.38125569951.718A1.5067691.34094270954.616A1.5265260.18253271969.923A1.2824040.00483772985.034A2.9807952.246610741025.544A2.4904750.217107751036.076A2.6888621.277287761083.157A1.5761140.273272771088.270A1.1812840.500159781167.885A1.0915270.013771821172.094A1.2276980.361248831182.292A1.1610610.112224841207.505A3.6380111.208742851235.456 <td>55</td> <td>741.523</td> <td>А</td> <td>2.786991</td> <td>0.584389</td>	55	741.523	А	2.786991	0.584389
57782.549A1.1768470.01374558803.544A5.5826550.76493659833.675A1.6901211.71968560837.910A1.2399890.03473261840.907A1.2686170.44799862845.762A1.2654750.24869163890.262A1.9941870.22322464909.110A1.3798300.47342065928.392A2.2849312.94231766938.523A1.4127731.49450867942.792A1.8535718.21588468948.384A2.3866183.38125569951.718A1.5067691.34094270954.616A1.5265260.18253271969.923A1.2824040.00483772985.034A2.9807952.246610741025.544A2.4904750.217107751036.076A2.6888621.277287761083.157A1.5761140.273272771088.270A1.812840.500159781167.885A1.0915270.013771801123.920A4.7637843.409259811167.885A1.2024830.246248831182.292A1.1610610.112224841207.505A3.6380111.208742851235.456 <td>56</td> <td>753.149</td> <td>А</td> <td>2.976520</td> <td>5.252235</td>	56	753.149	А	2.976520	5.252235
58 803.544 A 5.582655 0.764936 59 833.675 A 1.690121 1.719685 60 837.910 A 1.239989 0.034732 61 840.907 A 1.268617 0.447998 62 848.762 A 1.265475 0.248691 63 890.262 A 1.994187 0.223224 64 909.110 A 1.379830 0.473420 65 928.392 A 2.284931 2.942317 66 938.523 A 1.412773 1.494508 67 942.792 A 1.853571 8.215884 68 948.384 A 2.386618 3.381255 69 951.718 A 1.526526 0.182532 71 969.923 A 1.282404 0.004837 72 985.034 A 5.904088 0.279597 73 1010.102 A 3.296795 2.246610 74 1025.544 A 2.4890475 0.217107 75	57	782.549	A	1.176847	0.013745
59833.675A1.6901211.71968560837.910A1.2399890.03473261840.907A1.2686170.44799862848.762A1.2654750.24869163890.262A1.9941870.22322464909.110A1.3798300.47342065928.392A2.2849312.94231766938.523A1.4127731.49450867942.792A1.8535718.21588468948.384A2.3886183.38125569951.718A1.5067691.34094270954.616A1.5265260.18253271969.923A1.2824040.00483772985.034A2.4904750.217107751036.076A2.6888621.277287761083.157A1.5761140.273272771088.270A1.812840.500159781107.854A2.5890744.09713579118.755A2.0389340.806571801123.920A4.7637843.409259811167.885A1.0915270.013771821172.094A1.2276980.361248831182.292A1.1610610.11224841207.505A3.6380111.208742851235.456A1.2033620.539824861272.745 <td>58</td> <td>803.544</td> <td>А</td> <td>5.582655</td> <td>0.764936</td>	58	803.544	А	5.582655	0.764936
60837.910A1.2399890.03473261840.907A1.2686170.44799862848.762A1.2654750.24869163890.262A1.9941870.22322464909.110A1.3798300.47342065928.392A2.2849312.94231766938.523A1.4127731.49450867942.792A1.8535718.21588468948.384A2.3886183.38125569951.718A1.5067691.34094270954.616A1.5265260.18253271969.923A1.2824040.00483772985.034A5.9040880.279597731010.102A3.2967952.246610741025.544A2.6888621.277287761083.157A1.5761140.273272771088.270A1.1812840.500159781107.854A2.5890744.09713579118.755A2.0389340.806571801123.920A4.7637843.409259811167.885A1.0915270.013771821172.094A1.2276980.361248831182.292A1.610610.11224841207.505A3.6380111.208742851235.456A1.2033620.539824861272.745 </td <td>59</td> <td>833.675</td> <td>А</td> <td>1.690121</td> <td>1.719685</td>	59	833.675	А	1.690121	1.719685
61840.907A1.2686170.44799862848.762A1.2654750.24869163890.262A1.9941870.22322464909.110A1.3798300.47342065928.392A2.2849312.94231766938.523A1.4127731.49450867942.792A1.8535718.21588468948.384A2.3886183.38125569951.718A1.5067691.34094270954.616A1.5265260.18253271969.923A1.2824040.00483772985.034A5.9040880.279597731010.102A3.2967952.246610741025.544A2.6888621.277287761083.157A1.5761140.273272771088.270A1.812840.500159781107.854A2.5890744.097135791118.755A2.0389340.806571801123.920A4.7637843.409259811167.885A1.2074980.361248831182.292A1.1610610.112224841207.505A3.6380111.208742851235.456A1.2698330.246248861272.745A1.2024830.515421871275.748A1.2033620.539824881294.00	60	837.910	A	1.239989	0.034732
62848.762A1.2654750.24869163890.262A1.9941870.22322464909.110A1.3798300.47342065928.392A2.2849312.94231766938.523A1.4127731.49450867942.792A1.8535718.21588468948.384A2.3886183.38125569951.718A1.5067691.34094270954.616A1.5265260.18253271969.923A1.2824040.00483772985.034A5.9040880.279597731010.102A3.2967952.246610741025.544A2.4904750.217107751036.076A2.6888621.277287761083.157A1.5761140.273272771088.270A1.1812840.500159781107.854A2.5890744.097135791118.755A2.0389340.806571801123.920A4.7637843.409259811167.885A1.0915270.013771821172.094A1.2276980.361248831182.292A1.1610610.112224841207.505A3.6380111.208742851235.456A1.2698330.246248861272.745A1.20133620.539824881294	61	840.907	A	1.268617	0.447998
63890.262A1.9941870.22322464909.110A1.3798300.47342065928.392A2.2849312.94231766938.523A1.4127731.49450867942.792A1.8535718.21588468948.384A2.3886183.38125569951.718A1.5067691.34094270954.616A1.5265260.18253271969.923A1.2824040.00483772985.034A5.9040880.279597731010.102A3.2967952.246610741025.544A2.6888621.277287751036.076A2.6888621.277287761083.157A1.5761140.273272771088.270A1.1812840.500159781107.854A2.5890744.097135791118.755A2.0389340.806571801123.920A4.7637843.409259811167.885A1.0915270.013771821172.094A1.2276980.361248831182.292A1.1610610.112224841207.505A3.6380111.208742851235.456A1.2094330.246248861272.745A1.203620.539824881294.006A1.2021930.048546891294.	62	848.762	A	1.265475	0.248691
64909.110A1.3798300.47342065928.392A2.2849312.94231766938.523A1.4127731.49450867942.792A1.8535718.21588468948.384A2.3886183.38125569951.718A1.5067691.34094270954.616A1.5265260.18253271969.923A1.2824040.00483772985.034A5.9040880.279597731010.102A3.2967952.246610741025.544A2.4904750.217107751036.076A2.6888621.277287761083.157A1.5761140.273272771088.270A1.1812840.500159781107.854A2.5890744.097135791118.755A2.0389340.806571801123.920A4.7637843.409259811167.885A1.0915270.013771821172.094A1.2276980.361248831182.292A1.1610610.112224841207.505A3.6380111.208742851235.456A1.2698330.246248861272.745A1.203620.539824881294.006A1.2021930.048546891294.557A1.3459420.627410901301	63	890.262	A	1.994187	0.223224
65928.392A2.2849312.94231766938.523A1.4127731.49450867942.792A1.8535718.21588468948.384A2.3886183.38125569951.718A1.5067691.34094270954.616A1.5265260.18253271969.923A1.2824040.00483772985.034A5.9040880.279597731010.102A3.2967952.246610741025.544A2.6888621.277287761083.157A1.5761140.273272771088.270A1.812840.500159781107.854A2.5890744.097135791118.755A2.0389340.806571801123.920A4.7637843.409259811167.885A1.0915270.013771821172.094A1.2276980.361248831182.292A1.1610610.112224841207.505A3.6380111.208742851235.456A1.2698330.246248861272.745A1.2024830.515421871275.748A1.2021930.048546891294.006A1.2021930.048546891294.557A1.3459420.627410901301.241A2.1307040.02876691130	64	909.110	A	1.379830	0.473420
66938.523A1.4127731.49450867942.792A1.8535718.21588468948.384A2.3886183.38125569951.718A1.5067691.34094270954.616A1.5265260.18253271969.923A1.2824040.00483772985.034A5.9040880.279597731010.102A3.2967952.246610741025.544A2.6888621.277287761083.157A1.5761140.273272771088.270A1.1812840.500159781107.854A2.5890744.097135791118.755A2.0389340.806571801123.920A4.7637843.409259811167.885A1.0915270.013771821172.094A1.2276980.361248831182.292A1.1610610.112224841207.505A3.6380111.208742851235.456A1.2698330.246248861272.745A1.2024830.515421871275.748A1.2021930.048546891294.006A1.2021930.048546891294.557A1.3459420.627410901301.241A2.1307040.028766911303.759A1.1867260.422963921	65	928.392	A	2.284931	2.942317
67942.792A1.8535718.21588468948.384A2.3886183.38125569951.718A1.5067691.34094270954.616A1.5265260.18253271969.923A1.2824040.00483772985.034A5.9040880.279597731010.102A3.2967952.246610741025.544A2.4904750.217107751036.076A2.6888621.277287761083.157A1.5761140.273272771088.270A1.1812840.500159781107.854A2.5890744.097135791118.755A2.0389340.806571801123.920A4.7637843.409259811167.885A1.0915270.013771821172.094A1.2276980.361248831182.292A1.1610610.112224841207.505A3.6380111.208742851235.456A1.2698330.246248861272.745A1.2023620.539824881294.006A1.2021930.048546891294.557A1.3459420.627410901301.241A2.1307040.028766911303.759A1.1867260.422963921320.121A1.2200420.31514693	66	938.523	A	1.412773	1.494508
68948.384A2.3886183.38125569951.718A1.5067691.34094270954.616A1.5265260.18253271969.923A1.2824040.00483772985.034A5.9040880.279597731010.102A3.2967952.246610741025.544A2.4904750.217107751036.076A2.6888621.277287761083.157A1.5761140.273272771088.270A1.1812840.500159781107.854A2.5890744.097135791118.755A2.0389340.806571801123.920A4.7637843.409259811167.885A1.0915270.013771821172.094A1.2276980.361248831182.292A1.1610610.112224841207.505A3.6380111.208742851235.456A1.2698330.246248861272.745A1.2024830.515421871275.748A1.2033620.539824881294.006A1.2021930.048546891294.557A1.3459420.627410901301.241A2.1307040.028766911303.759A1.1867260.422963921320.121A1.2200420.31514693 <td< td=""><td>67</td><td>942.792</td><td>A</td><td>1.853571</td><td>8.215884</td></td<>	67	942.792	A	1.853571	8.215884
69951.718A1.5067691.34094270954.616A1.5265260.18253271969.923A1.2824040.00483772985.034A5.9040880.279597731010.102A3.2967952.246610741025.544A2.4904750.217107751036.076A2.6888621.277287761083.157A1.5761140.273272771088.270A1.1812840.500159781107.854A2.5890744.097135791118.755A2.0389340.806571801123.920A4.7637843.409259811167.885A1.0915270.013771821172.094A1.2276980.361248831182.292A1.1610610.112224841207.505A3.6380111.208742851235.456A1.2024830.515421871275.748A1.2021930.048546891294.006A1.2021930.048546891294.557A1.3459420.627410901301.241A2.1307040.028766911303.759A1.1867260.422963921320.121A1.2200420.315146931333.927A2.4442580.046771	68	948.384	A	2.388618	3.381255
70954.616A1.5265260.18253271969.923A1.2824040.00483772985.034A5.9040880.279597731010.102A3.2967952.246610741025.544A2.4904750.217107751036.076A2.6888621.277287761083.157A1.5761140.273272771088.270A1.1812840.500159781107.854A2.5890744.097135791118.755A2.0389340.806571801123.920A4.7637843.409259811167.885A1.0915270.013771821172.094A1.2276980.361248831182.292A1.1610610.112224841207.505A3.6380111.208742851235.456A1.2024830.515421871275.748A1.2021930.048546891294.006A1.2021930.048546891294.557A1.3459420.627410901301.241A2.1307040.028766911303.759A1.1867260.422963921320.121A1.2200420.315146931333.927A2.4442580.046771	69	951.718	A	1.506769	1.340942
71969.923A1.2824040.00483772985.034A5.9040880.279597731010.102A3.2967952.246610741025.544A2.4904750.217107751036.076A2.6888621.277287761083.157A1.5761140.273272771088.270A1.1812840.500159781107.854A2.5890744.097135791118.755A2.0389340.806571801123.920A4.7637843.409259811167.885A1.0915270.013771821172.094A1.2276980.361248831182.292A1.1610610.112224841207.505A3.6380111.208742851235.456A1.2698330.246248861272.745A1.2033620.539824881294.006A1.2021930.048546891294.557A1.3459420.627410901301.241A2.1307040.028766911303.759A1.1867260.422963921320.121A1.2200420.315146931333.927A2.4442580.046771	70	954.616	A	1.526526	0.182532
72985.034A5.9040880.279597731010.102A3.2967952.246610741025.544A2.4904750.217107751036.076A2.6888621.277287761083.157A1.5761140.273272771088.270A1.1812840.500159781107.854A2.5890744.097135791118.755A2.0389340.806571801123.920A4.7637843.409259811167.885A1.0915270.013771821172.094A1.2276980.361248831182.292A1.1610610.112224841207.505A3.6380111.208742851235.456A1.2698330.246248861272.745A1.2033620.539824881294.006A1.2021930.048546891294.557A1.3459420.627410901301.241A2.1307040.028766911303.759A1.1867260.422963921320.121A1.2200420.315146931333.927A2.4442580.046771	71	969.923	A	1.282404	0.004837
731010.102A3.2967952.246610741025.544A2.4904750.217107751036.076A2.6888621.277287761083.157A1.5761140.273272771088.270A1.1812840.500159781107.854A2.5890744.097135791118.755A2.0389340.806571801123.920A4.7637843.409259811167.885A1.0915270.013771821172.094A1.2276980.361248831182.292A1.1610610.112224841207.505A3.6380111.208742851235.456A1.2698330.246248861272.745A1.2033620.539824881294.006A1.2021930.048546891294.557A1.3459420.627410901301.241A2.1307040.028766911303.759A1.1867260.422963921320.121A1.2200420.315146931333.927A2.4442580.046771	72	985.034	A	5.904088	0.279597
741025.544A2.4904750.217107751036.076A2.6888621.277287761083.157A1.5761140.273272771088.270A1.1812840.500159781107.854A2.5890744.097135791118.755A2.0389340.806571801123.920A4.7637843.409259811167.885A1.0915270.013771821172.094A1.2276980.361248831182.292A1.1610610.112224841207.505A3.6380111.208742851235.456A1.2024830.515421871275.748A1.2021930.048546891294.006A1.2021930.048546891294.557A1.3459420.627410901301.241A2.1307040.028766911303.759A1.1867260.422963921320.121A1.2200420.315146931333.927A2.4442580.046771	73	1010.102	A	3.296795	2.246610
751036.076A2.6888621.277287761083.157A1.5761140.273272771088.270A1.1812840.500159781107.854A2.5890744.097135791118.755A2.0389340.806571801123.920A4.7637843.409259811167.885A1.0915270.013771821172.094A1.2276980.361248831182.292A1.1610610.112224841207.505A3.6380111.208742851235.456A1.2698330.246248861272.745A1.2033620.539824881294.006A1.2021930.048546891294.557A1.3459420.627410901301.241A2.1307040.028766911303.759A1.1867260.422963921320.121A1.2200420.315146931333.927A2.4442580.046771	74	1025.544	A	2.490475	0.217107
761083.157A1.5761140.273272771088.270A1.1812840.500159781107.854A2.5890744.097135791118.755A2.0389340.806571801123.920A4.7637843.409259811167.885A1.0915270.013771821172.094A1.2276980.361248831182.292A1.1610610.112224841207.505A3.6380111.208742851235.456A1.2024830.515421871275.748A1.2033620.539824881294.006A1.2021930.048546891294.557A1.3459420.627410901301.241A2.1307040.028766911303.759A1.1867260.422963921320.121A1.2200420.315146931333.927A2.4442580.046771	75	1036.076	A	2.688862	1.277287
771088.270A1.1812840.500159781107.854A2.5890744.097135791118.755A2.0389340.806571801123.920A4.7637843.409259811167.885A1.0915270.013771821172.094A1.2276980.361248831182.292A1.1610610.112224841207.505A3.6380111.208742851235.456A1.2698330.246248861272.745A1.2033620.539824881294.006A1.2021930.048546891294.557A1.3459420.627410901301.241A2.1307040.028766911303.759A1.1867260.422963921320.121A1.2200420.315146931333.927A2.4442580.046771	76	1083.157	A	1.576114	0.273272
781107.854A2.5890744.097135791118.755A2.0389340.806571801123.920A4.7637843.409259811167.885A1.0915270.013771821172.094A1.2276980.361248831182.292A1.1610610.112224841207.505A3.6380111.208742851235.456A1.2098330.246248861272.745A1.2033620.539824871275.748A1.2021930.048546891294.557A1.3459420.627410901301.241A2.1307040.028766911303.759A1.1867260.422963921320.121A2.200420.315146931333.927A2.4442580.046771	77	1088.270	A	1.181284	0.500159
791118.755A2.0389340.806571801123.920A4.7637843.409259811167.885A1.0915270.013771821172.094A1.2276980.361248831182.292A1.1610610.112224841207.505A3.6380111.208742851235.456A1.2698330.246248861272.745A1.2024830.515421871275.748A1.2021930.048546891294.006A1.2021930.048546891294.557A1.3459420.627410901301.241A2.1307040.028766911303.759A1.1867260.422963921320.121A1.2200420.315146931333.927A2.4442580.046771	78	1107.854	A	2.589074	4.097135
801123.920A4.7637843.409259811167.885A1.0915270.013771821172.094A1.2276980.361248831182.292A1.1610610.112224841207.505A3.6380111.208742851235.456A1.2698330.246248861272.745A1.2024830.515421871275.748A1.2033620.539824881294.006A1.2021930.048546891294.557A1.3459420.627410901301.241A2.1307040.028766911303.759A1.1867260.422963921320.121A2.24442580.046771	79	1118.755	A	2.038934	0.806571
811167.885A1.0915270.013771821172.094A1.2276980.361248831182.292A1.1610610.112224841207.505A3.6380111.208742851235.456A1.2698330.246248861272.745A1.2024830.515421871275.748A1.2033620.539824881294.006A1.2021930.048546891294.557A1.3459420.627410901301.241A2.1307040.028766911303.759A1.1867260.422963921320.121A2.24442580.046771	80	1123.920	A	4.763784	3.409259
821172.094A1.2276980.361248831182.292A1.1610610.112224841207.505A3.6380111.208742851235.456A1.2698330.246248861272.745A1.2024830.515421871275.748A1.2033620.539824881294.006A1.2021930.048546891294.557A1.3459420.627410901301.241A2.1307040.028766911303.759A1.1867260.422963921320.121A2.24442580.046771	81	1167.885	A	1.091527	0.013771
831182.292A1.1610610.112224841207.505A3.6380111.208742851235.456A1.2698330.246248861272.745A1.2024830.515421871275.748A1.2033620.539824881294.006A1.2021930.048546891294.557A1.3459420.627410901301.241A2.1307040.028766911303.759A1.1867260.422963921320.121A2.24442580.046771	82	1172.094	A	1.227698	0.361248
841207.505A3.6380111.208742851235.456A1.2698330.246248861272.745A1.2024830.515421871275.748A1.2033620.539824881294.006A1.2021930.048546891294.557A1.3459420.627410901301.241A2.1307040.028766911303.759A1.1867260.422963921320.121A2.24442580.046771	83	1182.292	A	1.161061	0.112224
851235.456A1.2698330.246248861272.745A1.2024830.515421871275.748A1.2033620.539824881294.006A1.2021930.048546891294.557A1.3459420.627410901301.241A2.1307040.028766911303.759A1.1867260.422963921320.121A1.2200420.315146931333.927A2.4442580.046771	84	1207.505	A	3.638011	1.208742
861272.745A1.2024830.515421871275.748A1.2033620.539824881294.006A1.2021930.048546891294.557A1.3459420.627410901301.241A2.1307040.028766911303.759A1.1867260.422963921320.121A1.2200420.315146931333.927A2.4442580.046771	85	1235.456	A	1.269833	0.246248
871275.748A1.2033620.539824881294.006A1.2021930.048546891294.557A1.3459420.627410901301.241A2.1307040.028766911303.759A1.1867260.422963921320.121A1.2200420.315146931333.927A2.4442580.046771	86	1272.745	A	1.202483	0.515421
881294.006A1.2021930.048546891294.557A1.3459420.627410901301.241A2.1307040.028766911303.759A1.1867260.422963921320.121A1.2200420.315146931333.927A2.4442580.046771	87	1275.748	A	1.203362	0.539824
891294.557A1.3459420.627410901301.241A2.1307040.028766911303.759A1.1867260.422963921320.121A1.2200420.315146931333.927A2.4442580.046771	88	1294.006	A	1.202193	0.048546
901301.241A2.1307040.028766911303.759A1.1867260.422963921320.121A1.2200420.315146931333.927A2.4442580.046771	89	1294.557	A	1.345942	0.627410
911303.759A1.1867260.422963921320.121A1.2200420.315146931333.927A2.4442580.046771	90	1301.241	A	2.130704	0.028766
921320.121A1.2200420.315146931333.927A2.4442580.046771	91	1303.759	A	1.186726	0.422963
93 1333.927 A 2.444258 0.046771	92	1320.121	A	1.220042	0.315146
	93	1333.927	A	2.444258	0.046771

94	1348.489	A	1.402978	0.533573
95	1358.763	A	1.337721	0.463021
96	1381.697	A	1.048199	0.121249
97	1386.358	A	1.047708	0.072604
98	1392.110	A	1.044850	0.007014
99	1406.793	A	1.047420	0.488658
100	1407.932	А	1.046147	0.473749
101	1411.444	A	1.076010	0.124588
102	1415.098	A	1.042029	0.408517
103	1429.673	A	1.040469	0.411938
104	1432.149	A	1.041975	0.100721
105	1435.953	А	1.453718	0.254999
106	1437.383	А	1.395300	0.542676
107	1448.449	A	1.049570	0.309406
108	1453.048	A	1.094256	0.355526
109	1481.545	A	2.081543	0.820219
110	1509.137	A	1.095044	0.151182
111	1566.607	A	5.187308	0.134621
112	1584.815	A	5.309649	0.087696
113	1874.938	A	11.835041	4.502965
114	2954.845	A	1.036164	0.837784
115	2968.245	A	1.059515	0.320741
116	2973.306	A	1.034129	0.038297
117	2973.985	A	1.034707	0.011436
118	2974.886	A	1.034216	0.010304
119	2979.255	A	1.063356	0.585998
120	2981.231	A	1.031389	0.892372
121	3000.301	А	1.100370	0.005201
122	3023.125	A	1.102328	0.869574
123	3028.242	A	1.100637	0.988703
124	3037.397	A	1.101289	0.633293
125	3056.798	А	1.101787	0.007016
126	3057.834	A	1.107071	0.254991
127	3058.029	A	1.101773	0.005346
128	3058.476	A	1.101719	0.009631
129	3069.156	A	1.102721	0.000982
130	3073.415	A	1.102644	0.001696
131	3074.489	A	1.103241	0.001464
132	3097.339	A	1.085665	0.003538
133	3103.222	A	1.105608	0.173776
134	3103.898	A	1.087991	0.020766
135	3108.004	A	1.090808	0.215971
136	3116.554	A	1.094523	0.255599
137	3122.143	A	1.097893	0.190125
138	3584.061	A	1.066673	3.914224

Table S32. Optimized Coordinates for [INT2-TOP-C2]

С	6.0	-2.43141961	2.72709656	0.43247044
С	6.0	-3.15439367	2.52782416	1.53801727
С	6.0	-2.79850078	3.42279792	-0.86373746
С	6.0	-2.53139877	1.88339520	2.72052503
С	6.0	-3.05309677	0.69064772	3.25916696
С	6.0	-1.38129091	2.45186472	3.31971622
С	6.0	-2.43052793	0.07532977	4.34588051
С	6.0	-0.76706475	1.82966018	4.41543245
С	6.0	-1.28548563	0.63831234	4.92590332
Н	1.0	-3.94716358	0.24796003	2.81473207
Н	1.0	-2.84550738	-0.85198987	4.74756050
H	1.0	-1.02644026	3.43577290	2.99136257
H	1.0	0.10878386	2.29200912	4.87550926
H	1.0	-0.80837870	0.15393963	5.78027582
С	6.0	-1.74632728	3.50570154	-1.95835471
F	9.0	-3.22269154	4.71892166	-0.54816461
- F	9.0	-3.94252491	2.79439902	-1.36586094
- H	1.0	-0.83630204	3.95696378	-1.53172004
С	6.0	-2.20996761	4.30123615	-3.18943906
Н	1.0	-1.49410665	2.47859645	-2.26540995
Н	1.0	-2.45316195	5.33192635	-2.88941240
Н	1.0	-3.13635159	3.85546851	-3.58350849
С	6.0	-1.14053571	4.32465267	-4.28489542
Н	1.0	-0.20899510	4.79586840	-3.93259525
Н	1.0	-1.49143255	4.89632511	-5.15766001
Η	1.0	-0.89251053	3.30884480	-4.63253069
Au	79.0	-5.12009239	3.17736554	1.69537807
Ρ	15.0	-7.28017759	3.96197987	1.97603571
С	6.0	-8.15080070	4.30962849	0.40958396
С	6.0	-7.34490347	5.53303957	2.90426540
Н	1.0	-8.22344494	3.39537477	-0.19693361
Н	1.0	-7.59634399	5.06472063	-0.16628742
Н	1.0	-9.16535282	4.68749285	0.60902590
Н	1.0	-6.92206383	5.39258432	3.90952110
Н	1.0	-8.38421726	5.88281107	2.99868941
Н	1.0	-6.75413275	6.29940939	2.38258719
С	6.0	-8.37631416	2.82219577	2.88793325
Н	1.0	-8.45297146	1.86644721	2.34989810
Η	1.0	-9.38251019	3.25500846	2.99733901
Н	1.0	-7.96116924	2.62213516	3.88636756
0	8.0	-0.98107380	2.26778984	0.44186223
С	6.0	-0.66437346	0.92405093	-0.17184065
Н	1.0	-0.11343706	1.12697184	-1.09321415
Н	1.0	-0.03045694	0.39917281	0.55053335
Н	1.0	-1.60358369	0.38820308	-0.34510452
Η	1.0	-0.78858805	2.20001435	1.42634666

Table S33. Vibrational Frequency Data for [INT2-TOP-C2]

MODE	FREQ(CM**-1)	SYMMETRY	RED. MASS	IR INTENS.
1	15.032	A	5.074519	0.013523
2	11.372	A	5.160072	0.007223
3	7.712	A	5.304625	0.011919
4	2.855	A	9.856849	0.001032
5	0.586	A	10.783559	0.000012
6	0.231	A	10.841918	0.00002
7	36.956	A	3.830568	0.004391
8	42.341	А	4.415904	0.134343
9	43.188	А	4.063860	0.159891
10	49.355	А	4.608524	0.035784
11	58.324	А	3.313950	0.015833
12	69.402	А	2.781237	0.028173
13	73.000	А	4.290821	0.021970
14	81.648	А	3.845133	0.024150
15	85.080	А	5.524296	0.081533
16	104.214	А	3.230677	0.017378
17	118.593	А	4.329502	0.130017
18	133.148	А	3.582390	0.024534
19	158.233	А	3.708898	0.277630
20	173.090	А	3.665652	0.058290
21	184.394	A	3.594212	0.016316
22	189.162	А	1.098484	0.016397
23	191.230	А	3.423846	0.056740
24	207.882	А	3.788506	0.011287
25	220.178	А	4.396238	0.010330
26	222.282	А	1.112820	0.000235
27	226.303	А	3.787416	0.170907
28	237.896	А	1.261373	0.011484
29	259.490	А	2.767230	0.048102
30	263.119	А	1.183755	0.009717
31	266.883	А	3.507515	0.163989
32	278.075	А	2.681639	0.066546
33	292.358	А	4.953465	0.008758
34	301.983	А	5.055908	0.298267
35	332.255	А	3.215006	0.092159
36	334.743	А	1.014138	0.000658
37	367.266	А	3.502565	0.435942
38	369.475	А	3.302197	0.101078
39	402.663	A	3.020454	0.088307
40	408.767	A	5.720011	0.714914
41	467.542	A	4.527640	0.031913
42	522.427	A	5.115435	0.222002
43	533.247	A	7.701487	1.527729
44	559.157	A	6.069795	0.176743
45	625.561	А	6.543845	0.004167

46	648.612	А	7.846061	0.701666
47	661.018	А	4.270137	0.896865
48	679.883	А	6.079644	1.369335
49	707.898	А	2.187901	3.318008
50	708.643	А	2.811352	0.725745
51	729.528	А	3.103792	0.524180
52	729.669	А	1.285712	0.097229
53	733.664	А	3.947043	0.513769
54	755.238	А	2.440373	0.671279
55	782.067	А	2.788689	1.261439
56	786.221	А	1.173793	0.018423
57	802.052	А	6.022238	6.631588
58	826.932	А	1.867441	2.077033
59	842.867	А	1.255596	0.232768
60	844.740	А	1.277683	0.314585
61	850.126	А	1.251920	0.315145
62	861.052	А	2.276330	1.598390
63	894.497	А	2.450658	1.556050
64	910.016	А	1.370469	1.138774
65	921.908	А	2.036779	3.090242
66	941.929	А	1.446339	1.881048
67	943.094	А	1.900098	2.967441
68	945.979	А	1.416274	0.624704
69	950.498	А	1.612161	6.090664
70	959.816	А	1.396277	0.473967
71	979.424	А	1.369215	0.068996
72	990.045	А	4.375536	0.016428
73	1027.706	А	2.829666	0.086755
74	1038.173	А	2.234741	0.306560
75	1057.144	А	2.484501	0.136620
76	1090.621	А	1.608672	0.199627
77	1112.216	А	1.839898	1.021141
78	1117.908	А	1.314399	0.535521
79	1131.149	А	2.685072	3.702789
80	1144.508	А	3.576981	2.216524
81	1168.862	А	1.098413	0.009518
82	1176.437	А	1.598425	0.016674
83	1186.610	A	1.149162	0.047848
84	1213.844	А	3.556371	0.488107
85	1234.779	А	1.255450	0.151777
86	1280.689	A	1.203371	0.428695
87	1285.848	A	1.202123	0.397503
88	1293.364	А	1.371488	0.737204
89	1303.790	А	1.188561	0.034324
90	1304.216	A	1.180256	0.125122
91	1307.610	A	1.966701	0.115865
92	1342.371	А	2.444659	0.373370
93	1352.306	А	1.569013	1.286990

94	1368.076	A	1.229408	0.179955
95	1371.017	A	1.217417	1.157749
96	1395.047	A	1.048287	0.021232
97	1398.342	A	1.048174	0.131656
98	1401.849	A	1.047197	0.077879
99	1411.355	A	1.044066	0.356514
100	1413.113	A	1.068093	0.725798
101	1417.067	A	1.088885	0.098107
102	1418.132	A	1.044752	0.500816
103	1424.297	A	1.042940	0.265019
104	1431.669	А	1.043836	0.125724
105	1437.516	A	1.039942	0.348224
106	1442.381	A	1.160208	0.424975
107	1446.402	A	1.843215	0.137231
108	1452.055	A	1.092587	0.248855
109	1480.101	А	1.060577	0.529806
110	1486.945	А	2.105220	0.799277
111	1571.446	A	5.119611	0.168895
112	1593.613	A	5.999060	0.084331
113	1596.271	A	7.713125	1.478706
114	2954.059	A	1.036311	0.939964
115	2968.976	A	1.033894	0.169265
116	2970.599	A	1.034052	0.073165
117	2971.145	A	1.058143	0.133115
118	2971.432	A	1.034051	0.025384
119	2981.633	A	1.059195	0.860746
120	3000.274	A	1.100569	0.063908
121	3012.523	A	1.029798	0.303647
122	3018.403	A	1.101350	0.298255
123	3027.553	A	1.100684	1.044087
124	3032.512	A	1.104582	1.340398
125	3052.060	A	1.101949	0.106087
126	3053.193	A	1.102517	0.087096
127	3054.022	A	1.102879	0.069734
128	3058.654	A	1.090100	1.798560
129	3061.631	A	1.102026	0.019045
130	3063.728	A	1.102523	0.028007
131	3064.487	A	1.102159	0.013892
132	3094.909	A	1.069502	25.090126
133	3104.374	A	1.086828	0.592442
134	3112.452	A	1.089495	0.088672
135	3114.227	A	1.111367	0.391820
136	3117.883	A	1.094298	0.235295
137	3127.209	A	1.097686	0.083272
138	3147.298	А	1.107223	0.276742

Table S34. Optimized Coordinates for [PROD-TOP-C2]

С	6.0	-1.78391743	3.02184176	0.40927899
С	6.0	-2.64071321	2.41108155	1.25904989
С	6.0	-2.26192713	3.93870020	-0.71200943
С	6.0	-2.34384847	1.65461433	2.48479414
С	6.0	-3.14788747	0.55551106	2.85506797
С	6.0	-1.31312907	2.05062747	3.36283350
С	6.0	-2.90022779	-0.14691077	4.03652811
С	6.0	-1.07504654	1.35507333	4.55004787
С	6.0	-1.86018622	0.24702494	4.88771915
Н	1.0	-3.96659613	0.24477211	2.20032239
Н	1.0	-3.52576661	-1.00411403	4.29777861
Н	1.0	-0.71576834	2.93345571	3.12460303
Η	1.0	-0.27554297	1.68486083	5.21784306
Н	1.0	-1.67013252	-0.29960454	5.81413126
С	6.0	-2.00641346	3.43042159	-2.12261081
F	9.0	-1.61742961	5.17575884	-0.53716499
F	9.0	-3.61553884	4.21400213	-0.54698497
Н	1.0	-0.93861562	3.16567612	-2.18372917
С	6.0	-2.37817931	4.42101049	-3.23415613
Н	1.0	-2.57204771	2.49005318	-2.23489904
Η	1.0	-1.81720054	5.35849953	-3.09266281
Н	1.0	-3.44727302	4.67706680	-3.15730476
С	6.0	-2.08195400	3.85457039	-4.62541246
Η	1.0	-1.01328135	3.61139631	-4.73996925
Н	1.0	-2.34269023	4.58115959	-5.41008329
Н	1.0	-2.65605903	2.93418860	-4.81823683
Η	1.0	-3.69964433	2.52826262	1.01545382
0	8.0	-0.41862923	2.94064379	0.36044690
С	6.0	0.21170971	1.66126883	0.59135640
Н	1.0	1.16248548	1.69590724	0.04332515
Н	1.0	0.41259801	1.49351323	1.65909779
Η	1.0	-0.41508687	0.84605610	0.20081681

Table S35. Vibrational Frequency Data for [PROD-TOP-C2]

MODE	FREO(CM**-1)	SYMMETRY	RED. MASS	IR INTENS.
1	17.774	A	4.954547	0.032524
2	8.355	A	4.835616	0.005106
3	4.333	A	5.353912	0.008549
4	0.652	A	7.119431	0.000024
5	0.311	A	7.056346	0.000031
6	0.070	А	7.065124	0.000004
7	48.735	A	6.031893	0.024578
8	51.310	А	4.299162	0.013975
9	70.863	А	3.832164	0.005692
10	106.055	А	3.657406	0.008642
11	114.204	А	4.879397	0.009821
12	118.026	А	3.086944	0.049159
13	136.606	А	1.692905	0.003564
14	143.992	А	2.316840	0.082388
15	189.612	А	2.042038	0.046561
16	192.628	A	5.491879	0.019262
17	228.552	А	2.421424	0.009698
18	253.426	А	3.601484	0.246605
19	272.345	A	1.802205	0.029653
20	276.497	A	1.922852	0.027770
21	314.845	А	3.359520	0.033312
22	329.995	A	3.546847	0.033615
23	351.707	A	4.452557	0.068014
24	379.123	A	4.247564	0.077094
25	400.115	A	3.068042	0.030861
26	466.348	A	5.174400	0.073557
27	494.349	A	4.108716	0.401361
28	529.045	A	4.804324	0.168246
29	560.109	A	6.372430	0.349698
30	622.162	A	6.423799	0.008026
31	651.283	A	5.898885	0.282953
32	693.480	A	1.730903	1.681964
33	719.363	А	4.557402	1.605985
34	735.529	А	1.962944	0.938665
35	747.200	А	1.157212	0.007889
36	803.917	А	2.754320	1.193586
37	807.621	А	2.546201	1.245972
38	817.845	А	2.900789	1.923318
39	836.962	A	1.305934	0.066591
40	844.475	А	1.636288	1.348045
41	887.947	А	2.167264	0.161588
42	902.493	A	1.583926	0.304309
43	924.886	А	2.548712	1.108346
44	937.336	A	2.486240	2.350616
45	949.930	A	1.360042	0.026668

46	965.669	A	1.267840	0.043011
47	990.736	А	6.213469	0.000813
48	1023.425	А	2.945244	1.191618
49	1030.493	А	2.797954	0.742729
50	1036.666	А	2.705489	2.412333
51	1085.622	А	2.057866	0.536313
52	1089.109	A	1.953623	0.942067
53	1113.156	A	2.701833	2.379054
54	1125.360	A	1.259157	0.176394
55	1128.821	A	2.750302	4.133354
56	1164.225	A	1.207073	0.349341
57	1164.764	A	1.295825	0.454319
58	1178.504	A	2.348181	2.803936
59	1180.963	A	1.178687	0.249686
60	1223.451	А	2.776891	0.331268
61	1243.031	А	1.270852	0.277618
62	1298.275	А	1.773701	0.502151
63	1302.910	А	1.826116	2.060343
64	1305.846	A	1.116665	0.126199
65	1329.767	А	1.428719	0.984692
66	1344.356	А	3.448882	0.081310
67	1360.691	А	1.531506	0.775562
68	1370.053	A	1.287154	0.215352
69	1418.441	А	1.075586	0.319953
70	1422.357	А	1.077894	0.247117
71	1432.177	А	1.121153	0.112771
72	1433.654	А	1.047041	0.106611
73	1442.811	А	1.038283	0.377222
74	1444.161	А	1.607814	0.025801
75	1452.684	А	1.321548	0.904939
76	1458.163	А	1.095648	0.369714
77	1491.015	А	2.180186	0.493897
78	1572.817	А	5.171215	0.072760
79	1598.364	А	5.462786	0.311628
80	1633.169	А	7.790978	2.096962
81	2954.510	А	1.036340	0.893432
82	2963.437	А	1.029112	1.177332
83	2965.326	А	1.058889	0.189536
84	2974.761	А	1.061727	0.909305
85	2995.599	А	1.099114	0.024253
86	3015.570	А	1.101925	0.113653
87	3024.998	A	1.100814	1.201221
88	3027.916	А	1.103627	1.648498
89	3038.945	А	1.106583	0.610687
90	3058.444	А	1.105814	0.505989
91	3088.883	А	1.085957	0.023737
92	3094.196	А	1.087707	0.020206
93	3095.766	A	1.086520	0.068615

94	3100.737	A	1.090693	0.267634
95	3108.580	А	1.094542	0.520240
96	3115.141	A	1.097976	0.241387

9. References

- 1. Gudla, V.; Balamurugan, R. J. Org. Chem. 2011, 76, 9919
- 2. Moriyama, K.; Takemura, M.; Togo, H. J. Org. Chem. 2014, 79, 6094.
- 3. Kapeller, D. C.; Kocienski, P. J. Synthesis 2010, 22, 3811.
- Kim, B. R.; Lee, H.-G.; Kang, S.-B.; Jung, K.-J.; Sung, G. H.; Kim, J.-J.; Lee, S.-G.; Yoon, Y.-J. *Tetrahedron* 2013, 69, 10331.
- 5. Rios, M. R.; Salazar, E.; Olivo, H. F. J. Mol. Catal. B: Enzym. 2008, 54, 61.
- Xu, G.; Micklatcher, M.; Silvestri, M. A.; Hartman, T. L.; Burrier, J.; Osterling, M. C.; Wargo, H.; Turpin, J. A.; Buckweit, Jr., R. W.; Cushman, M. J. Med. Chem. 2001, 44, 4092.
- 7. Boyer, N.; Gloanec, P.; De Nanteuil, G.; Jubault, P.; Quirion, J.-C. Eur. J. Org. Chem. 2008, 4277.
- Kunishima, M.; Nakata, D.; Tanaka, S.; Hioki, K.; Tani, S. *Tetrahedron* 2000, 56, 9927.
- Boussonnière, A.; Bénéteau, R.; Zimmermann, N.; Lebreton, J.; Dénès, F. *Chem. Eur. J.* 2011, 17, 5613.
- Partridge, B. M.; Chausset-Boissarie, L.; Burns, M.; Pulis, A. P.; Aggarwal, V. K. Angew. Chem. Int. Ed. 2012, 51, 1179.
- 11. Koyuncu, H.; Dogan, Ö. Org. Lett. 2007, 9, 3477.
- 12. Chen, L.; Li, C.-J. Org. Lett. 2004, 6, 3151.
- 13. Chen, F.; Hashmi, A. S. K. Org. Lett. 2016, 18, 2880.
- 14. Wang, Y.; Liu, J.; Xia, C. Tetrahedron Lett. 2011, 52, 1587.
- 15. Li, H.; Li, X.; Xue, F.; Huang, Y.; Jin, W.; Wan, B. Chin. J. Chem. 2009, 27, 2013.
- 16. Li, X.; Liu, X.; Chen, H.; Wu, W.; Qi, C.; Jiang, H. Angew. Chem. Int. Ed. 2014, 53, 14485.
- Lin, L.; Zhao, Q.; Li, A.-N.; Ren, F.; Yang, F.; Wang, R. Org. Biomol. Chem. 2009, 7, 3663.

- 18. Park, S. B.; Alper, H. Chem. Commun. 2004, 1306.
- Bélot, S.; Vogt, K. A.; Besnard, C.; Krause, N.; Alexakis, A. Angew. Chem. Int. Ed. 2009, 48, 8923.
- 20. Cheng, L.-J.; Cordier, C. J. Angew. Chem. Int. Ed. 2015, 54, 13734.
- 21. Niphakis, M. C.; Turunen, B. J.; Georg, G. L. J. Org. Chem. 2010, 75, 6793.
- 22. Zhao, B.; Lu, X. Org. Lett. 2006, 8, 5987.
- 23. Zhang, G.; Hu, X.; Chiang, C.-W.; Yi, H.; Pei, P.; Singh, A. K.; Lei, A. J. Am. *Chem. Soc.* **2016**, *138*, 12037.
- 24. Li, X.; Liu, X.; Chen, H.; Wu, W.; Qi, C.; Jiang, H. Angew. Chem. Int. Ed. 2014, 53, 14485.
- 25. Newman, M. S.; Ream, B. C. J. Org. Chem. 1966, 31, 3861.
- Ichikawa, N.; Iwakiri, H.; Edamura, K.; Kubota, S. Bull. Chem. Soc. Japan 1981, 54, 832.
- 27. Shi, S.; Zhang, Y. Synlett 2007, 12, 1843.
- 28. Gudla, V.; Balamurugan, J. Tetrahedron Lett. 2012, 53, 5243.
- 29. Kim, H. R.; Yun, J. Chem. Commun. 2011, 47, 2943.
- (a) Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. *J. Comput. Chem.* **1993**, *14*, 1347. (b) Gordon, M. S.; Schmidt, M. W. Advances in electronic structure theory: GAMESS a decade later. In *Theory and Applications of Computational Chemistry*, Frenking, G.; Kim, K. S.; Scuseria, G. E., Eds. Elsevier: Amsterdam, **2005**; pp 1167-1189.
- 31. Bode, B. M.; Gordon, M. S. J. Mol. Graphics Mod. 1998, 16, 133.
- 32. Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297.
- 33. (a) Feller, D. J. Comput. Chem. 1996, 17, 1571. (b) Schuchardt, K. L.; Didier, B. T.; Elsethagen, T.; Sun, L.; Gurumoorthi, V.; Chase, J.; Li, J.; Windus, T. L. J. Chem. Inf. Model. 2007, 47, 1045.
- 34. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378.
- Giesen, D. J.; Hawkins, G. D.; Liotard, D. A.; Cramer, C. J.; Truhlar, D. G. *Theor. Chem. Acc.* **1997**, *98*, 85.