Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Synthesis, photophysical and biological properties of new oxazolone fluorescent probe for bioimaging: experimental and theoretical study

Przemysław Krawczyk1*, Beata Jędrzejewska2, Piotr Cysewski1, Tomasz Janek3

 ¹ Nicolaus Copernicus University, Collegium Medicum, Faculty of Pharmacy, Department of Physical Chemistry, Kurpińskiego 5, 85-950 Bydgoszcz, Poland
 ² UTP University of Science and Technology, Faculty of Chemical Technology and Engineering, Seminaryjna 3, 85-326 Bydgoszcz, Poland
 ³ Wroclaw Medical University, Department of Inorganic Chemistry, Faculty of Pharmacy, Borowska 211a, 50-556 Wroclaw, Poland

*Corresponding author: przemekk@cm.umk.pl; tel: +48 52 5853679

Figures:

Figure S1. Normalized and sales electronic absorption and fluorescence spectra of PB3 in MCH (black) and DMF (red)

Figure S2. Fluorescence emission (left panel) and fluorescence excitation (right panel) spectra of PK3 in DMF, THF and MCH at room temperature

Figure S3. The fluorescence decay curves of compound PB3 recorded in solvents of different polarity;

 $\lambda_{EX} = 466$ nm; $\lambda_{EM} = 560$ or 630 nm, respectively. Cyan line is the instrument response function (IRF) **Figure S4.** The fluorescence lifetime vs. its quantum yield for compound PB3 in solvents of different polarity

Figure S5. Optimized structures of PB3 in gas phase

Figure S6. The scheme of atoms numbering

Figure S7. HOMO / LUMO plots for PB3 dyes

Figure S8. Calculated probability of the biological activity for the PB3 dye

Figure S9. ¹H spectrum of PB3

Figure S10. Enlarged spectrum in the range of 7.0 - 10.5 ppm

Figure S11. ¹³C spectrum of PB3

Figure S12. Enlarged spectrum in the range of 120 - 200 ppm

Figure S13. ¹³C dept spectrum of PB3

Figure S14. Enlarged spectrum in the range of 120 - 200 ppm

Figure S15. ¹H-¹H COSY spectrum of PB3

Figure S17. Enlarged spectrum in the range of 7 - 9 ppm

Figure S18. ¹H-¹³C HMBC spectrum of PB3

Figure S19. Enlarged spectrum in the range of 7 - 9 ppm

Figure S20. ¹H-¹³C HMQC spectrum of PB3

Figure S21. Enlarged spectrum in the range of 7 - 9 ppm

Figure S22. ¹H-¹⁵N HMBC spectrum of PB3

Figure S23. Enlarged spectrum in the range of 7 - 9 ppm

Figure S24. IR spectrum of PB3

Figure S25. Enlarged spectrum in the range of 1900 - 400 cm⁻¹

Tables:

Table S1. Solvent parameters and values of solvent polarity functions

Table S2. Radiative (k_r) and non-radiative (k_{nr}) rate constants for **PB3** in different solvents

Table S3. Selected structural parameters of the PB3 compound in gas phase, IsoOct, MCH, Bu_2O and THF. Values are presented for the ground and CT excited state (Sg/S_{CT})

Table S4. Selected structural parameters of the PB3 compound in MeCN, DMF, DMSO and water.

Values are presented for the ground and CT excited state (Sg/S_{CT})

Table S5. The frontier orbital energies in selected solvents. All values are given in eV

Table S6. The vertical and cLR corrected excitation energies (in nm)

Table S7. Calculated values of dipole moments (in D) for the ground and CT excited state.

Table S8. The vertical and cLR corrected de-excitation energies (in nm)

Table S9. Binding free energies (ΔG_b , kcal/mol) and values of the inhibitor constants (K_i in mM) obtained during AutoDock simulations.

Figures

Figure S1. Normalized and sales electronic absorption and fluorescence spectra of PB3 in MCH (black) and DMF (red)

Figure S2. Fluorescence emission (left panel) and fluorescence excitation (right panel) spectra of PK3 in DMF, THF and MCH at room temperature

Figure S3. The fluorescence decay curves of compound PB3 recorded in solvents of different polarity; $\lambda_{EX} = 466 \text{ nm}; \lambda_{EM} = 560 \text{ or } 630 \text{ nm}, \text{ respectively}.$ Cyan line is the instrument response function (IRF)

Figure S4. The fluorescence lifetime vs. its quantum yield for compound PB3 in solvents of different polarity

Figure S5. Optimized structures of PB3 in gas phase

Figure S6. The scheme of atoms numbering

Figure S8. Calculated probability of the biological activity for the PB3 dye

Figure S9. ¹H spectrum of PB3

Figure S10. Enlarged spectrum in the range of 7.0 - 10.5 ppm

Figure S11. ¹³C spectrum of PB3

Figure S12. Enlarged spectrum in the range of 120 - 200 ppm

Figure S13. ¹³C dept spectrum of PB3

Figure S14. Enlarged spectrum in the range of 120 - 200 ppm

Figure S15. ¹H-¹H COSY spectrum of PB3

Figure S17. Enlarged spectrum in the range of 7 - 9 ppm

Figure S18. ¹H-¹³C HMBC spectrum of PB3

Figure S19. Enlarged spectrum in the range of 7 - 9 ppm

Figure S20. ¹H-¹³C HMQC spectrum of PB3

Figure S21. Enlarged spectrum in the range of 7 - 9 ppm

Figure S22. ¹H-¹⁵N HMBC spectrum of PB3

Figure S23. Enlarged spectrum in the range of 7 - 9 ppm

Figure S24. IR spectrum of PB3

Figure S25. Enlarged spectrum in the range of 1900 - 400 cm⁻¹

Tables

Solvents	ε	п	E_T^N	SP	SdP	SA	SB	$f_{LM}(\varepsilon, n)$	$f_{MR}(\varepsilon, n)$	$f_B(\varepsilon, n)$
IsoOct	1.94	1.39145		0.618	0	0	0.044	0.0005	0.0007	0.0009
MCH	2.02	1.42312	0.006	0.675	0	0	0.069	-0.0006	-0.0010	-0.0012
Bu ₂ O	3.1	1.3992	0.071	0.672	0.175	0	0.637	0.0968	0.1698	0.2109
Et ₂ O	4.335	1.35243	0.117	0.617	0.385	0	0.562	0.1669	0.3099	0.3770
THF	7.58	1.40716	0.207	0.714	0.634	0	0.591	0.2096	0.4406	0.5491
MeAc	20.7	1.35868	0.355	0.651	0.907	0	0.475	0.2843	0.6479	0.7904
MeCN	35.94	1.34411	0.46	0.645	0.974	0.044	0.286	0.3046	0.7090	0.8593
DMF	36.71	1.43047	0.404	0.759	0.977	0.031	0.613	0.2744	0.6639	0.8356
DMSO	46.45	1.4793	0.444	0.83	1.000	0.072	0.647	0.2630	0.6544	0.8400

Table S1. Solvent parameters and values of solvent polarity functions

Table S2. Radiative (k_r) and non-radiative (k_{nr}) rate constants for **PB3** in different solvents

	$k_r(10^8 \text{ s}^{-1})$	$k_{nr}(10^8 \text{ s}^{-1})$	k_r / k_{nr}
IsoOct	2.75	3.69	0.745
МСН	2.63	3.68	0.715
Bu ₂ O	1.82	4.82	0.377
Et ₂ O	1.72	4.08	0.422
THF	1.42	4.94	0.287
MeAc	0.97	39.0	0.025
MeCN	0.83	82.3	0.010
DMF	0.78	86.6	0.009
DMSO	0.84	69.7	0.012

	Gas phase	IsoOct	МСН	Bu ₂ O	THF
bond lengths	1 47110/	1 46904/	1 46994/	1 4(792)	1 466221
1-2	1.4/112/	1.46894/	1.46884/	1.46/82/	1.46633/
	1.4/824	1.4/511	1.4/556	1.4/460	1.4/412
3-6	1.40709/	1.40808/	140815/	1.40827/	1.40846/
	1.42844	1.41394	1.41272	1.41010	1.41295
6-7	1.41020/	1.40993/	1.40998/	1.40969/	1.40935/
0 1	1.44932	1.36006	1.36770	1.39070	1.39158
9-10	1.44161/	1.44106/	1.44101/	1.44069/	1.44015/
9 10	1.42076	1.41430	1.41927	1.42092	1.41973
10-11	1.35418/	1.35496/	1.35502/	1.35544/	1.35611/
10 11	1.38756	1.37525	1.37697	1.37666	1.37909
11-12	1.38732/	1.38780/	1.38781/	1.38806/	1.38844/
11-12	1.37289	1.36458	1.36837	1.37074	1.37162
12-13	1.28949/	1.28910/	1.28908/	1.28886/	1.28857/
12-13	1.30501	1.30506	1.30700	1.30312	1.30271
13-14	1.45249/	1.45207/	1.45205/	1.45188/	1.45170/
15-14	1.44135	1.44025	1.44222	1.44013	1.44027
6 17	1.40717/	1.40668/	1.40662/	1.40629/	1.40572/
0-1/	1.33838	1.43470	1.43075	1.40010	1.39433
10.20	1.44106/	1.44038/	1.44033/	1.43992/	1.43923/
19-20	1.40069	1.42282	1.42553	1.42128	1.41985
20.21	1.36043/	1.36119/	1.36124/	1.36166/	1.36234/
20-21	1.39193	1.39403	1.39576	1.38679	1.38710
21.22	1.39327/	1.39414/	1.39418/	1.39460/	1.39520/
21-22	1.36031	1.38233	1.38312	1.37789	1.37836
22.22	1.28403/	1.28410/	1.28411/	1.28411/	1.28410/
22-23	1.30768	1.29567	1.29953	1.29776	1.29753
02.04	1.45254/	1.45249/	1.45248/	1.45248/	1.45251/
23-24	1.43790	1.44569	1.44657	1.44212	1.44231
bond angles					
3-6-7	119.85962/	119.83760/	119.83009/	119.81632/	119.79236/
5-0-7	116.11975	122.40698	122.15412	120.18268	119.78710
2617	120.08748/	120.08248/	120.07854/	120.07741/	120.07969/
5-0-17	122.39636	117.22777	117.60381	119.38608	119.48543
7617	120.05132/	120.07894/	120.09047/	120.10552/	120.12725/
/-0-1/	121.47791	120.36440	120.24150	120.43124	120.72741
526	120.21712/	120.18438/	120.18136/	120.16290/	120.13330/
3-3-0	119.94983	119.24677	119.32965	119.69754	119.65650
126	120.35048/	120.31348/	120.30830/	120.28937/	120.26356/
4-3-0	119.40771	120.34567	120.31127	119.94839	119.78304
0 10 11	129.51822/	129.58065/	129.58321/	129.61555/	129.65756/
9-10-11	128.18115	128.80887	128.78203	128.81737	128.91551
10 20 21	134.08770/	134.13078/	134.13388/	134.15593/	134.18642/
19-20-21	133.69116	132.98770	132.93313	133.40817	133.51157
16 6 06	84.65062/	84.65317/	84.65864/	84.65805/	84.67332/
16-6-26	103.51726	78.70485	78.87594	80.80130	81.64738
torsion angles					
1367	-39.00702/	-39.27440/	-39.34327/	-39.49179/	-39.67481/
4-3-0-7	-50.89284	-44.43110	-42.92863	-40.84104	-42.17427
5 3 6 17	-39.63987/	-39.83658/	-39.89839/	-40.02483/	-40.21255/
5-5-0-17	-53.82017	-40.98986	-39.76674	-40.33211	-42.09839
8-0-10-11	1.20533/	1.21459/	1.20695/	1.20363/	1.18594/
0-9-10-11	-0.18927	1.17933	1.23187	1.46525	1.11103
0 10 11 12	0.44761/	0.45121/	0.45151/	0.44481/	0.41107/
9-10-11-12	-0.32355	0.66629	0.64175	0.59652	0.51640

Table S3. Selected structural parameters of the PB3 compound in gas phase, IsoOct, MCH, Bu_2O and THF. Values are presented for the ground and CT excited state (Sg/S_{CT})

179.86	-178.49863	-178.59147	-179.62679	-179.78314
19-20-21-22 -179.83 179.70	670/ -179.89770/ 264 -178.89536	-179.90296/	-179.92038/	-179.92557/
12-13-14-15	50/ 1.31714/ 534 0.81438	1.30927/	1.29301/	1.19590/
22-23-24-25 -0.064	91/ 0.52285/ 194 0.11685	0.51998/	0.54611/	0.60094/

	MeCN	DMF	DMSO	Water
bond lengths				
1_2	1.46528/	1.46533/	1.46522/	1.46513/
1 2	1.47365	1.47364	1.45808	1.47358
3-6	1.40864/	1.40868/	1.40865/	1.40866/
50	1.41458	1.41460	1.39566	1.41482
6-7	1.40904/	1.40903/	1.40902/	1.40899/
0 /	1.39057	1.39056	1.40143	1.39037
9-10	1.43974/	1.43973/	1.43971/	1.43967/
9 10	1.41889	1.41888	1.42882	1.41875
10-11	1.35662/	1.35661/	1.35665/	1.35670/
10 11	1.38043	1.38045	1.37365	1.38064
11-12	1.38870/	1.38870/	1.38872/	1.38874/
11 12	1.37220	1.37221	1.37292	1.37230
12-13	1.28839/	1.28837/	1.28838/	1.28837/
12 15	1.30233	1.30232	1.30217	1.30225
13-14	1.45260/	1.45160/	1.45159/	1.45159/
10 11	1.44050	1.44051	1.43999	1.44055
6-17	1.40529/	1.40521/	1.40525/	1.40521/
• • •	1.39211	1.39209	1.40277	1.39180
19-20	1.43870/	1.43867/	1.43866/	1.43861/
17 20	1.41904	1.41903	1.42972	1.41891
20-21	1.36286/	1.36286/	1.36289/	1.36294/
_0 _1	1.38776	1.38777	1.37934	1.38787
21-22	1.39559/	1.39558/	1.39562/	1.39565/
	1.37849	1.37895	1.38084	1.37905
22-23	1.28408/	1.28407/	1.28408/	1.28408/
	1.29729	1.29729	1.29575	1.29724
23-24	1.45255/	1.45256/	1.45256/	1.45257/
	1.44261	1.44261	1.44326	1.44266
bond angles	110 55025/	110 550 50 /	110 550 50 /	110
3-6-7	119.77937/	119.77053/	119.77853/	119.77749/
	119.65969	119.65846	120.23095	119.64355
3-6-17	120.08041/	120.07965/	120.08052/	120.08066/
	119.45580	119.45547	120.01093	119.44941
7-6-17	120.13936/	120.14898/	120.14007/	120.14094/
	120.88443	120.88599	119.75693	120.90697
5-3-6	120.10952/	120.10853/	120.10/6//	120.10522/
	119.59/12	119.59646	120.07969	119.58690
4-3-6	120.24698/	120.24293/	120.24590/	120.24448/
	119./0444	119./0355	120.24115	119.62248
9-10-11	129.68634/	129.68506/	129.68829/	129.69075/
	128.97013	128.97070	128.00287	128.79820
19-20-21	134.20691/	134.20/1//	134.20/61/	134.20846/
	133.56161	133.56188	133.51342	133.5669/
16-6-26	84.69551/	84.69/28/	84.69603/	84.69639/
torgion angles	82.00947	82.01375	84.04379	82.05815
torsion angles	20 70706/	20.920(1/	20.704(7)	20.00420/
4-3-6-7	-39./8/06/	-39.83961/	-39./946//	-39.80439/
	-43.0/903	-43.089/9	-3/.03029	-43.22120
5-3-6-17	-40.30393/	-40.41/10/	-40.3/383/	-40.39101/
	-45.08861	-45.10001	-5/.54060	-43.23993
8-9-10-11	1.13310/	1.14200/	1.13110/	1.12899/
	0.90930	0.90//0	0.31809	0.95/90
9-10-11-12	0.5/255/	0.20093/	0.3093//	0.30313/
	0.47303	0.47337	0.13007	0.4734/

Table S4. Selected structural parameters of the PB3 compound in MeCN, DMF, DMSO and water. Values are presented for the ground and CT excited state (Sg/S_{CT})

18 10 20 21	179.45405/	179.53650/	179.55296/	179.56354/
18-19-20-21	-179.84943	-179.85042	-179.30226	-179.86202
10 20 21 22	-179.91190/	-179.91316/	-179.91013/	-179.90765/
19-20-21-22	-179.58325	-179.58188	-179.41122	-179.56881
12 12 14 15	0.99429/	0.99168/	0.97765/	0.95558/
12-13-14-13	0.84600	0.84393	0.73423	0.81604
22 22 24 25	0.64756/	0.65699/	0.65174/	0.65733/
22-23-24-23	0.16299	0.16238	0.52421	0.15324

Table S5. The frontier orbital energies in selected solvents. All values are given in eV

	Gas phase	IsoOct	MCH	Bu2O	THF	MeCN	DMF	DMSO	water
E _{HOMO}	-5.7707	-5.8869	-5.8858	-5.8782	-5.8692	-5.8635	-5.8632	-5.8630	-5.8627
E _{LUMO}	-3.7340	-2.9418	-2.9424	-2.9497	-2.9655	-2.9788	-2.9772	-2.9796	-2.9810
E_{GAP}	2.0367	2.9451	2.9434	2.9285	2.9037	2.8847	2.8860	2.8833	2.8817
η	1.0183	1.4725	1.4717	1.4642	1.4519	1.4423	1.4430	1.4417	1.4408
μ	-4.7524	-4.4144	-4.4141	-4.4139	-4.4174	-4.4212	-4.4202	-4.4213	-4.4218
χ	4.7524	4.4144	4.4141	4.4139	4.4174	4.4212	4.4202	4.4213	4.4218

	B3I	.YP	CAM-I	B3LYP	HSEH	1PBE	OHSE11	PBE	OHSE2I	PBE	PB	E0	mPW11	PBE	mPW3	PBE
	$\lambda^{vertical}_{ABS}$	λ_{ABS}^{cLR}														
Gas phase	523.63		423.98		526.67		526.66		524.19		489.26		488.59		522.77	
IsoOct	544.43	534.42	439.39	430.20	546.83	537.31	546.83		544.28		508.60	500.01	507.89		543.40	
MCH	545.67	535.16	440.31	430.64	548.04	538.01	548.04		545.48		509.75	500.68	509.04		544.63	
Bu ₂ O	548.41	538.85	442.08	433.04	550.60	541.54	550.59		548.05		512.17	502.99	511.45		547.25	
THF	552.44	545.61	445.89	437.23	556.13	547.98	556.12		553.57		517.37	509.03	516.62		552.90	
MeCN	556.79	549.85	447.36	439.99	558.44	551.95	558.44		555.90		519.54	512.77	518.80		555.27	
DMF	559.50	551.36	449.33	440.73	561.12	553.48	561.11		558.55		522.05	514.12	521.31		557.96	
DMSO	559.37	551.49	449.19	440.80	560.98	553.55	560.97		558.41		521.92	514.23	521.17		557.84	
Water	557.17	550.53	447.57	440.44	558.78	552.57	558.78		556.24		519.86	513.36	519.12		555.62	

Table S6. The vertical and cLR corrected excitation energies (in nm)

Table S7. Calculated values of dipole moments (in D) for the ground and CT excited state.

	B3I	LYP	CA B3I	M- LYP	HSEH	IPBE	OHSE	E1PBE	OHSE	E2PBE	PE	BE0	mPW	1PBE	mPW	3PBE
	$\mu_{ m g}$	$\mu_{\rm CT}$														
Gas phase	5.85	6.61	5.91	6.53	5.87	6.94	5.87	6.94	5.89	6.89	5.88	6.23	5.90	6.23	5.85	6.54
IsoOct	6.38	7.36	6.44	7.12	6.40	7.59	6.40	7.59	6.42	7.56	6.41	7.02	6.43	6.90	6.37	7.28
MCH	6.41	7.42	6.47	7.15	6.43	7.64	6.43	7.64	6.44	7.61	6.43	7.08	6.45	7.08	6.40	7.34
Bu ₂ O	6.64	7.99	6.70	7.43	6.66	8.19	6.66	8.19	6.68	8.16	6.67	7.64	6.69	7.64	6.63	7.34
THF	6.97	8.90	7.03	7.75	6.98	9.33	6.98	9.07	7.00	9.04	6.99	8.52	7.01	8.52	6.95	8.79
MeCN	7.20	9.60	7.26	7.98	7.20	9.74	7.20	9.74	7.22	9.72	7.21	9.20	7.23	9.21	7.17	9.48
DMF	7.20	9.61	7.26	7.99	7.20	9.74	7.20	9.74	7.22	9.72	7.21	9.20	7.23	9.21	7.17	9.48
DMSO	7.21	9.64	7.28	8.00	7.22	9.77	7.22	9.77	7.24	9.75	7.22	9.28	7.25	9.24	7.19	9.51
Water	7.23	9.72	7.30	8.02	7.24	9.06	7.24	9.86	7.26	9.83	7.24	9.32	7.27	9.32	7.21	9.59

Tab	ie 50. The	ventical a		meeted u	e-excitatio	in energie	s (m mn)									
	B3L	YP	CAM-I	B3LYP	HSEH	1PBE	OHSE1	PBE	OHSE2PBE		PBE0		mPW1PBE		mPW3PBE	
	$\lambda^{vertical}_{Fl}$	λ_{Fl}^{cLR}	$\lambda^{vertical}_{Fl}$	λ^{cLR}_{Fl}	$\lambda^{vertical}_{Fl}$	$\lambda^{cLR}_{\ Fl}$	$\lambda^{vertical}_{Fl}$	λ^{cLR}_{Fl}	$\lambda^{vertical}_{Fl}$	λ_{Fl}^{cLR}	$\lambda^{vertical}_{Fl}$	$\lambda^{cLR}_{\ Fl}$	$\lambda^{vertical}_{Fl}$	λ_{Fl}^{cLR}	$\lambda^{vertical}_{Fl}$	λ_{Fl}^{cLR}
Gas phase	759.56		443.89		806.78		806.77		798.31		644.37		642.72		760.57	
IsoOct	651.85	720.72	475.26	464.90	668.37	748.25	668.36		663.83		516.41	619.21	565.38		651.17	
MCH	638.43	688.12	480.37	468.65	651.79	712.35	651.78		647.70		507.56	592.9	556.61		637.55	
Bu ₂ O	594.64	580.26	486.24	473.82	597.47	583.73	597.47		594.86		537.97	534.27	547.24		593.24	
THF	600.44	586.86	492.67	481.89	602.65	588.92	602.64		600.09		573.81	561.42	573.06		598.81	
MeCN	602.76	594.45	495.38	488.42	604.63	596.08	604.62		602.10		626.12	608.76	615.37		600.98	
DMF	606.62	594.54	498.13	488.49	608.46	596.17	608.45		605.90		629.69	608.87	618.93		604.82	
DMSO	590.74	590.69	476.71	471.55	593.29	593.23	593.28		590.61		612.49	602.21	601.72		589.07	
Water	603.07	595.79	495.76	489.52	604.88	597.34	604.88		602.36		626.43	610.05	615.69		601.26	

Table S8. The vertical and cLR corrected de-excitation energies (in nm)

Lysine residues	ΔG_b	\mathbf{K}_i
LYS30	-3.0	73.82
LYS35	-5.2	7.58
LYS36	-4.8	4.52
LYS39	-3.8	19.95
LYS46	-5.7	0.31
LYS59	-4.3	16.63
LYS101	-5.4	0.73
LYS114	-5.0	3.74
LYS116	-6.2	1.09
LYS135	-3.8	65.55
LYS138	-4.1	15.60
LYS200	-4.1	15.04
LYSTer	-2.8	310.47

Table S9. Binding free energies (ΔG_b , kcal/mol) and values of the inhibitor constants (K_i in mM) obtained during AutoDock simulations.