Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Complete tetraglycosylation of a calix[4]arene by a chemo-enzymatic approach

Silvia Bernardi,^a Dong Yi,^b Ning He,^b Alessandro Casnati,^a Wolf-Dieter Fessner,^{b,}* Francesco Sansone,^{a,}*

^a Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/a, I-43124 Parma, Italy,

^b Technische Universität Darmstadt, Institute of Organic Chemistry & Biochemistry, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany.

Supplementary Information Table of Contents:

Scheme S1	S2
¹ H NMR spectrum of compound 4	S3
¹³ C NMR spectrum of compound 4	S4
¹ H NMR spectrum of compound 5	S5
¹³ C NMR spectrum of compound 5	S6
¹ H NMR spectrum of compound 6	S7
¹³ C NMR spectrum of compound 6	S8
¹ H NMR spectrum of compound 7	S9
¹³ C NMR spectrum of compound 7	S10
¹ H NMR spectrum of compound 9	S11
¹³ C NMR spectrum of compound 9	S12
¹ H NMR spectrum of compound 10	S13
¹³ C NMR spectrum of compound 10	S14
¹ H NMR spectrum of compound 13	S15
¹³ C NMR spectrum of compound 13	S16
¹ H NMR spectrum of compound 15	S17
¹³ C NMR spectrum of compound 15	S18
¹ H NMR spectrum of compound 17	S19
¹³ C NMR spectrum of compound 17	S20
¹ H NMR spectrum of compound 1	S21
¹³ C NMR spectrum of compound 1	S22
Figure S1. HPLC profiles of enzymatic reaction	S23
Figures S2. ¹ H NMR spectra in CD ₃ OD of compound 1 at different temperatures	S24

Scheme S1. Glycosylation reaction between 2-acetamido-2-deoxy-6-*O*-*tert*-butyldiphenylsilyl- β -D-glucopyranosyl azide and 2,3,4,6-tetraacetyl- α -galactosyl trichloroacetimidate. Reagents and conditions: BF₃•Et₂O, dry CH₂Cl₂, Ar atmosphere, -45 °C, 2h.

¹H NMR (300 MHz, CD_3OD) of compound **4**

¹H NMR (300 MHz, CDCl₃) of compound **5**

 ^{13}C NMR (75 MHz, CD_3OD) of compound **6**

¹H NMR (300 MHz, CDCl₃) of compound **7**

^{13}C NMR (75 MHz, CDCl_3) of compound **7**

^{13}C NMR (75 MHz, CDCl_3) of compound 9

РРМ

^{13}C NMR (75 MHz, CDCl_3) of compound 13

¹³C NMR (75 MHz, CD₃OD) of compound **15**

¹H NMR (400 MHz, CD3OD/D₂O 5/1 v/v) of compound **1**

Figure S1. HPLC profile (PRONTOSIL 120-5-Phenyl 5.0 μ m column and isopropanol/water with 0.1% formic acid as eluent (gradient from 30% to 60% of isopropanol in 20 minutes)) of the enzymatic galactosylation reaction (a) after 1 hour and (b) after 48 h and after removal of proteins and addition of the starting calixarene **17** (rt 15.842 min) as internal standard. c) Overlap of the two profiles.

Figure S2. ¹H-NMR in CD₃OD/D₂O 5:1 (400 MHz) of glycocalixarene **1** at room temperature (black) and at 70 °C (red).

