Palladium-catalyzed aziridination of 3,3,5,5-tetrasubstituted

piperazin-2-ones.

Thomas A. Alanine,*^a Stephen Stokes,^a Craig A. Roberts,^b James S. Scott.^a

^aAstraZeneca R&D, Darwin Building, Milton Road, Milton, Cambridge CB4 0FZ, UK

^bAstraZeneca R&D, Oncology IMED, Mereside, Alderley Park, Macclesfield, Cheshire, UK, SK10 4TG

*Email: steve.stokes@astrazeneca.com

Supporting information

General method details	1
Additional Pd/oxidant sources screen	2
Synthesis of starting materials	2
General procedure for the aza-Henry reaction	3
General procedure for nitro reduction	6
General synthesis procedure of piperazinones	10
Aziridination procedure	16
Transformation of aziridine products	22
References	28
NMR spectra	29

General method details

All reactions dealing with air- and moisture-sensitive compounds were carried out in heat-dried reaction vessels under nitrogen atmosphere. Analytical thin-layer chromatography (TLC) was performed on Merck 60 F254 silica gel plates. Flash column chromatography was performed preppacked Graceresolv[™] silica gel cartridges on a Teledyne Isco Combiflash Rf automated chromatography system with detection at 254 nm. ¹H, ¹³C and ¹⁹F nuclear magnetic resonance (NMR) spectra were recorded on a Bruker AV-400 (400 MHz) or AV-700 (700 MHz) NMR spectrometer. ¹H and ¹³C NMR spectra are reported in parts per million (ppm) downfield from an internal standard, tetramethylsilane (0 ppm). Data for ¹H NMR were reported as: chemical shift,

integration, multiplicity (s = singlet, d = doublet, t= triplet, q = quartet, m = multiplet, br = broad) and coupling constants. All ¹³C NMR spectra were reported in ppm relative to CDCl₃ (77.16 ppm) or d⁶-DMSO (39.50 ppm) unless otherwise stated, and were obtained with complete ¹H decoupling. All LC-MS analyses were performed on a Waters 2795 Separations Module, using a GeminiNX 5 μ C18 column, with a Waters Micromass detector. IR spectra were reported on an Avatar 370 FT-IR Thermo Nicolet Spectrometer. High resolution mass spectra were obtained on a Thermo LTQ-FT/Accela/CTC/PDA instrument. Unless otherwise noted, all chemicals were commercially available and were used as received without further purification. Dry solvents were used directly from Sigma-Aldrich Sure-Seal bottles.

	Pod source AcOH (20 eq.) Dxidant Piv ₂ O (2 eq.) Toluene (0.1 M), 70 °C 1 hour 2a R	N O N OR H 3 = Piv, Ac
Palladium source (loading)	Oxidant (eq.)	Ratio (2a : 3)
none	PIDA (1.5)	No conversion
Pd(OAc)₂ (5 mol%)	Air (N/A)	No conversion
Pd(OAc) ₂ (5 mol%)	PIFA (1.5)	No conversion
Pd(OAc) ₂ (5 mol%)	Oxone (1.5)	No conversion
Pd(OAc) ₂ (5 mol%)	Benzoquinone (1.5)	No conversion
Pd(OAc) ₂ (5 mol%)	Hydroxy(Tosyloxy)Iodobenzene (1.5)	No conversion
Pd(OAc) ₂ (5 mol%)	2-iodosylbenzoic acid (1.5)	No conversion
Pd(OAc) ₂ (5 mol%)	PIDPiv (1.5)	1:4
Pd(OPiv) ₂ (5 mol%)	PIDPiv (1.5)	No conversion
(allyIPdCl) ₂ (3 mol%)	PIDA (1.5)	3.4:1
Pd ₂ (dba) ₃ (3 mol%)	PIDA (1.5)	Trace conversion
PdCl ₂ (5 mol%)	PIDA (1.5)	Trace conversion

Additional Pd/oxidant sources screen

PIDA = phenyliodonium diacetate; PIFA = phenyliodonium bis(trifluoroacetate); PIDPiv =

phenyliodonium dipivalate; dba = dibenzylideneacetone

Synthesis of starting materials

All piperazinones were prepared using the following sequence (Scheme 1):

Scheme 1. Synthetic sequence to prepare the piperazinone substrates.

General procedure for the aza-Henry reaction

The Aza-Henry reaction was performed according to Johnson (method A).¹ The formaldehyde was added as a suspension in MeOH dropwise over 10-30 minutes, and the reaction was left to stir at 65 °C overnight. The reaction mixture was then evaporated to dryness, redissolved in EtOAc (20 mL) and washed with saturated NH₄Cl (20 mL). The organic layer was dried over Na₂SO₄, filtered and evaporated to afford crude product, which was purified by column chromatography (0-50% EtOAc in heptane) to yield the desired nitroamine.

N-(2-methyl-2-nitropropyl)aniline (7a)

Yellow solid, 59%. Spectral data in agreement with literature data.¹

R_f = 0.57 (7:3 heptane: EtOAc).

¹H NMR (400 MHz, CDCl₃): 7.25 - 7.10 (2H, m), 6.87 - 6.72 (1H, m), 6.70 - 6.55 (2H, m), 3.90 (1H, br s), 3.75 - 3.55 (2H, m), 1.77 - 1.59 (6H, m).

¹³C NMR (101 MHz, CDCl₃): 147.7, 129.5 (2 x C), 118.4, 113.2 (2 x C), 89.1, 52.5, 24.3 (2 x C).

IR (neat, cm⁻¹): 3410, 1602, 1538, 1520, 1498, 1466, 1449, 1372, 1350, 1327, 1291, 1197, 1155. S3

<u>3-Bromo-N-(2-methyl-2-nitropropyl)aniline</u> (7b)

This material was used crude and was not isolated.

4-Methoxy-N-(2-methyl-2-nitropropyl)aniline (7c)

Dark yellow oil, 66%.

 $\mathbf{R}_{f} = 0.31$ (3:1 heptane: EtOAc).

¹**H NMR** (400 MHz, CDCl₃): 6.86 - 6.71 (2H, m), 6.69 - 6.51 (2H, m), 3.74 (3H, s), 3.63 (1H, s), 3.55 (2H, d, *J* = 6.7 Hz), 1.65 (6H, s).

¹³C NMR (101 MHz, CDCl₃): 153.0, 141.8, 115.2 (2 x C), 114.8 (2 x C), 89.1, 56.0, 54.0, 24.4 (2 x C).

IR (neat, cm⁻¹): 3399, 2993, 2937, 2834, 1538, 1514, 1468, 1347, 1235, 1180, 1036.

HRMS: calcd for $C_{11}H_{17}N_2O_3$ [M+H]⁺ ESI+ 225.12337, found 225.12346.

<u>2-Methyl-N-(2-methyl-2-nitropropyl)aniline</u> (7d)

Yellow oil, 12%. This material required additional reverse-phase purification (Waters XBridge Prep C18 OBD column, 5μ silica, 30 mm diameter, 100 mm length), using 0-100% MeCN in water (containing 1% NH₃) as eluents. Data in agreement with literature data.¹

R_f = 0.50 (7:3 heptane: EtOAc).

¹**H NMR** (400 MHz, CDCl₃): 7.11 (1H, t, J = 7.7 Hz), 7.07 (1H, d, J = 7.4 Hz), 6.70 (1H, dd, J = 1.0, 7.4 Hz), 6.64 (1H, d, J = 8.1 Hz), 3.82 (1H, s), 3.65 (2H, d), 2.14 (3H, s), 1.68 (6H, s).

¹³C NMR (101 MHz, CDCl₃): 145.5, 130.7, 127.2, 122.7, 118.1, 110.1, 89.1, 52.2, 24.4 (2 x C), 17.5.

IR (neat, cm⁻¹): 3434, 2988, 2937, 1606, 1588, 1539, 1516, 1470, 1455, 1347, 1259.

HRMS: calcd for $C_{11}H_{17}N_2O_2$ [M+H]⁺ ESI+ 209.12845, found 209.12846.

N-Benzyl-2-methyl-2-nitropropan-1-amine (7e)

Colourless oil, 49%. Data in agreement with literature data.²

 $R_{f} = 0.46$ (7:3 heptane: EtOAc).

¹**H NMR** (400 MHz, CDCl₃): 7.40 - 7.15 (5H, m), 3.82 (2H, s), 2.99 (2H, s), 1.58 (6H, s). N-H signal not observed.

¹³C NMR (101 MHz, CDCl₃): 140.1, 128.6 (2 x C), 128.1(2 x C), 127.3, 88.8, 57.2, 54.3, 24.5 (2 x C).

IR (neat, cm⁻¹): 3353, 2988, 2934, 1537, 1494, 1468, 1460, 1348, 1371, 1400, 1121.

2-Methyl-2-nitro-N-(2-(trifluoromethyl)benzyl)propan-1-amine (7f)

Pale yellow oil, 63%.

R_f = 0.54 (7:3 heptane: EtOAc).

¹**H NMR** (400 MHz, CDCl₃): 7.66 - 7.59 (2H, m), 7.53 (1H, t, *J* = 7.4 Hz), 7.35 (1H, t, *J* = 7.5 Hz), 3.98 (2H, s), 3.02 (2H, s), 1.59 (6H, s). N-H not observed.

¹³C NMR (101 MHz, CDCl₃): 138.7 (d, J = 1.4 Hz), 132.1 (d, J = 1.1 Hz), 130.2, 128.5 (q, J = 30 Hz), 127.2, 126.0 (d, J = 5.7), 123.3, 88.7, 57.4, 50.3, 24.4 (2 x C).

¹⁹**F NMR** (376 MHz, CDCl₃): -59.53.

IR (neat, cm⁻¹): 3364, 2991, 2934, 1608, 1542, 1458, 1402, 1372, 1348, 1314, 1160, 1119, 1060, 1037.

 $\label{eq:HRMS: calcd for C_{11}H_{14}F_3N_2O_2 \ [M+H]^+ \ ESI+ \ 247.14166, \ found \ 247.14153.$ S5

N-(4-Methoxyphenethyl)-2-methyl-2-nitropropan-1-amine (7g)

Pale yellow oil, 79%. This material coeluted with some inseparable impurities but was carried through without further purification.

R_f = 0.27 (7:3 heptane: EtOAc).

¹**H NMR** (400 MHz, CDCl₃): 7.12 - 7.04 (2H, m), 6.86 - 6.79 (2H, m), 3.78 (3H, s) 3.00 (2H, s), 2.85 (2H, td, *J* = 0.6, 6.8 Hz), 2.68 (2H, t, *J* = 7.1 Hz), 1.55 (6H, s), 0.78 (1H, br s).

¹³**C NMR** (101 MHz, CDCl₃): 158.2, 131.9, 129.7 (2 x C), 114.0 (2 x C), 88.8, 57.8, 55.3, 52.0, 35.6, 24.3 (2 x C).

IR (neat, cm⁻¹): 2991, 2936, 2836, 1612, 1538, 1513, 1466, 1371, 1317, 1300, 1247, 1178, 1127, 1035. HRMS: calcd for C₁₃H₂₁N₂O₃ [M+H]⁺ ESI+ 253.15467, found 253.15460.

General procedure for nitro reduction

Zinc powder (5 eq.) was added portionwise to nitroamine **7a-g** (1 eq.) in 3:2 AcOH: THF (0.1-0.2 M) cooled to 0°C over a period of 10 minutes under nitrogen. The resulting suspension was stirred at 0 °C and left to warm to room temperature over 24 hours. If incomplete, further zinc powder (1 eq.) was added and the suspension was stirred at room temperature for a further 5 hours. This process was repeated until the reaction was complete. The reaction mixture was filtered through Celite[®] and the filtrate was evaporated to dryness to give crude product. The crude product was purified by flash silica chromatography, elution gradient 0 to 10% 7N methanolic ammonia in CH_2Cl_2 , and pure fractions were evaporated to dryness to afford 1,2-diamine **8a-g**.

2-Methyl-N1-phenylpropane-1,2-diamine (8a)

Yellow/brown oil, 82%. Data in agreement with literature data.³

 $R_f = 0.53$ (9:1 CH₂Cl₂: 7N NH₃/MeOH).

¹**H NMR** (400 MHz, CDCl₃): 7.17 (2H, tt, J = 7.3, 2.1 Hz), 6.79 - 6.51 (3H, m), 4.14 (1H, s), 2.99 (2H, s), 1.59 (2H, s), 1.20 (6H, s).

¹³C NMR (101 MHz, CDCl₃): 149.2, 129.4 (2 x C), 117.3, 113.1 (2 x C), 55.8, 50.4, 29.2 (2 x C).

IR (neat, cm⁻¹): 3346, 2962, 1603, 1506, 1470, 1317, 1256, 1182.

N1-(3-Bromophenyl)-2-methylpropane-1,2-diamine (8b)

Brown oil, 14% (yield over 2 steps).

 $R_f = 0.21$ (9:1 CH₂Cl₂: 7N NH₃ in MeOH).

¹**H NMR** (400 MHz, CDCl₃): 7.07 − 6.90 (1H, m), 6.84 - 6.67 (2H, m), 6.59 - 6.48 (1H, m), 4.23 (1H, s), 2.93 (2H, s), 1.40 (2H, s), 1.19 (6H, s).

¹³C NMR (101 MHz, CDCl₃): 150.5, 130.6, 123.5, 120.0, 115.5, 111.9, 55.3, 50.3, 29.3 (2 x C).

IR (neat, cm⁻¹): 3349, 2962, 1597, 1483, 1386, 1307, 1325, 1280, 1241, 1193, 1167, 1083, 1068.

HRMS: calcd for C₁₀H₁₆BrN₂ [M+H]⁺ ESI+ 243.04914, found 243.04907.

N1-(4-Methoxyphenyl)-2-methylpropane-1,2-diamine (8c)

Beige solid, 96%.

 $R_{f} = 0.51$ (9:1 CH₂Cl₂: 7N NH₃ in MeOH). S7 ¹**H NMR** (400 MHz, CDCl₃): 6.78 (2H, d, *J* = 9.0 Hz), 6.62 (2H, d, J = 9.0 Hz), 3.74 (3H, s), 2.93 (2H, s), 1.19 (6H, s).

N-H signals were not observed.

¹³C NMR (101 MHz, CDCl₃): 152.2, 143.6, 115.1 (2 x C), 114.3 (2 x C), 57.1, 56.0, 50.3, 29.3 (2 x C).

IR (neat, cm⁻¹): 3395, 2961, 1513, 1467, 1233, 1035.

HRMS: calcd for $C_{11}H_{19}N_2O [M+H]^+ ESI+ 195.14919$, found 195.14914.

<u>2-Methyl-N1-o-tolylpropane-1,2-diamine</u> (8d)

Light brown oil, 76%. Data in agreement with literature data.¹

 $\mathbf{R}_{f} = 0.72$ (9:1 CH₂Cl₂: 7N NH₃ in MeOH).

¹**H NMR** (400 MHz, CDCl₃): 7.15 - 7.08 (1H, m), 7.08 - 7.02 (1H, m), 6.64 (2H, td, *J* = 1.6, 8.2 Hz), 3.01 (2H, s), 2.18 (3H, s), 1.23 (6H, s). N-Hs not observed.

¹³C NMR (101 MHz, CDCl₃) 147.0, 130.2, 127.2, 122.3, 116.8, 110.0, 55.6, 50.3, 29.5 (2 x C), 17.7.

IR (neat, cm⁻¹): 3342, 2964, 1608, 1583, 1546, 1459, 1371, 1314, 1160, 1120, 1059, 1037.

HRMS: calcd for C₁₁H₁₉N₂ [M+H]⁺ ESI+ 179.15428, found 179.15439.

<u>N1-Benzyl-2-methylpropane-1,2-diamine</u> (8e)

Colourless oil, 93%. Data in agreement with literature data.²

 $\mathbf{R}_{f} = 0.33 (9:1 \text{ CH}_{2}\text{Cl}_{2}: 7\text{ N NH}_{3} \text{ in MeOH}).$

¹**H NMR** (400 MHz, CDCl₃): 7.39 - 7.28 (5H, m), 3.88 (1H, s), 3.83 (2H, s), 2.46 (2H, s), 1.46 (2H, br s), 1.09 (6H, s).

¹³C NMR (101 MHz, CDCl₃) 141.0, 128.5 (2 x C), 128.1 (2 x C), 127.0, 61.8, 54.8, 50.0, 29.0 (2 x C).
IR (neat, cm⁻¹): 3306, 3062, 2960, 2869, 2808, 1601, 1585, 1495, 1454, 1382, 1119, 1028.

2-Methyl-N1-(2-(trifluoromethyl)benzyl)propane-1,2-diamine (8f)

Pale yellow oil, 60%.

 $R_{f} = 0.56$ (9:1 CH₂Cl₂: 7N NH₃ in MeOH).

¹**H NMR** (400 MHz, CDCl₃): 7.68 (1H, d, *J* = 7.7 Hz), 7.63 (1H, d, *J* = 7.8 Hz), 7.52 (1H, t, *J* = 7.6 Hz), 7.34 (1H, t, *J* = 7.6 Hz), 3.99 (2H, s), 2.50 (2H, s), 2.23 (3H, s), 1.12 (6H, s).

¹³C NMR (101 MHz, CDCl₃): 139.7 - 139.1 (m), 132.2 - 131.6 (m), 130.1, 128.8 - 128.7 (m), 126.8, 125.9 (q, J = 5.8 Hz), 123.3, 61.4, 50.6 (q, J = 2.1 Hz), 50.2, 28.4 (2 x C).

¹⁹**F NMR** (376 MHz, CDCl₃): -59.61.

IR (neat, cm⁻¹): 3360, 2990, 2940, 1608, 1541, 1456, 1314, 1160, 1118, 1037.

HRMS: calcd for $C_{11}H_{16}F_3N_2$ [M+H]⁺ ESI+ 247.14166, found 247.14153.

N1-(4-methoxyphenethyl)-2-methylpropane-1,2-diamine (8g)

Colourless oil, 68%. This material coeluted with some inseparable impurities but was carried through without further purification.

 $R_f = 0.73$ (9:1 CH₂Cl₂: 7N NH₃ in MeOH).

¹**H NMR** (400 MHz, CDCl₃): 7.18 - 7.05 (2H, m), 6.88 - 6.77 (2H, m), 3.79 (3H, s), 2.94 - 2.79 (2H, m), 2.75 (2H, d, *J* = 7.0 Hz), 2.46 (2H, s), 1.07 (6H, s).

N-H signals appeared under the water signal.

¹³**C NMR** (101 MHz, CDCl₃) 158.2, 132.5 (2 x C), 129.8 (2 x C), 114.1, 62.3, 55.4, 52.6, 50.0, 35.8, 29.0 (2 x C).

IR (neat, cm⁻¹): 3346, 2958, 2834, 1612, 1513, 1464, 1308, 1246, 1179, 1121, 1036.

HRMS: calcd for $C_{13}H_{23}N_2O$ [M+H]⁺ ESI+ 223.18049, found 223.18037.

General synthesis procedure of piperazinones

Piperazin-2-ones **1a-j** were prepared according to Lai.⁴ For compounds **1a-g** commercially available chlorobutanol (2 eq.) was used, whilst for **1h** and **1j** the respective ketone (2 eq.), chloroform (1.5 eq.) and acetone cyanohydrin (0.1 eq.) were used.

50% aqueous sodium hydroxide (5 eq.) was added dropwise to 1,1,1-trichloro-2-methylpropan-2-ol (chlorobutanol, 2 eq.), diamine **8a-g** (1 eq.) and N-benzyl-N,N-diethylethanaminium chloride (BTEAC, 0.1 eq.) in CH₂Cl₂ (0.1 M) cooled to 0°C. The resulting mixture was stirred at 0 °C and left to warm to room temperature over 20 hours. The reaction mixture was treated with water until any solid had dissolved. The organic layer was separated, and the aqueous layer was was extracted with CH₂Cl₂ (2 x 20 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated under reduced pressure to give the crude product which was purified by flash silica chromatography (0-100% EtOAc in heptane).

3,3,5,5-Tetramethyl-1-phenylpiperazin-2-one (1a)

Off-white solid, 50%. Spectral data in agreement with literature data.⁴

 $R_{f} = 0.11$ (EtOAc).

¹**H NMR** (400 MHz, CDCl₃): 7.47 - 7.31 (2H, m), 7.28 - 7.13 (3H, m), 3.58 (2H, s), 1.45 (6H, s), 1.28 (6H, s).

N-H signal not observed.

¹³C NMR (101 MHz, CDCl₃): 174.0, 143.6, 129.2 (2 x C), 126.6, 125.8 (2 x C), 62.8, 56.0, 49.6, 30.6 (2 x C), 27.9 (2 x C).

IR (neat, cm⁻¹): 3311, 3075, 2955, 2924, 2866, 1635, 1600, 1489, 1307.

1-(3-Bromophenyl)-3,3,5,5-tetramethylpiperazin-2-one (1b)

R_f = 0.15 (EtOAc).

¹**H NMR** (400 MHz, CDCl₃): 7.49 - 7.42 (1H, m), 7.37 (1H, ddd, J = 1.9, 2.7, 6.6 Hz), 7.28 - 7.21 (2H, m), 3.59 (2H, s), 1.51 (1H, s), 1.46 (6H, s), 1.29 (6H, s).

¹³C NMR (101 MHz, CDCl₃): 174.1, 144.7, 130.4, 129.7, 128.9, 124.5, 122.5, 62.6, 56.1, 49.6, 30.6 (2 x C), 27.9 (2 x C).

IR (neat, cm⁻¹): 3389, 2927, 2858, 1720, 1658, 1587, 1543, 1477, 1379, 1317.

HRMS: calcd for $C_{14}H_{20}BrN_2O [M+H]^+ ESI+ 311.07535$, found 311.07559.

<u>1-(4-Methoxyphenyl)-3,3,5,5-tetramethylpiperazin-2-one (1c)</u>

White solid, 47%.

 $R_{f} = 0.11$ (EtOAc).

¹**H NMR** (400 MHz, CDCl₃): 7.21 - 7.10 (2H, m), 6.96 - 6.84 (2H, m), 3.80 (3H, s), 3.56 (2H, s), 1.46 (7H, s), 1.29 (6H, s).

N-H appears under the CH₃ signal.

¹³C NMR (101 MHz, CDCl₃): 174.1, 158.2, 136.6, 127.0 (2 x C), 114.5 (2 x C), 63.2, 56.0, 55.7, 49.5, 30.7 (2 x C), 27.9 (2 x C).

IR (neat, cm⁻¹): 3426, 3301, 2972, 1658, 1639, 1608, 1512.

HRMS: calcd for $C_{15}H_{23}N_2O_2$ [M+H]⁺ ESI+ 263.17540, found 263.17538.

3,3,5,5-Tetramethyl-1-o-tolylpiperazin-2-one (1d)

White solid, 34%.

R_f = 0.20 (EtOAc).

¹**H NMR** (400 MHz, CDCl₃): 7.25 - 7.17 (3H, m), 7.09 (1H, dd, *J* = 1.9, 7.6 Hz), 3.55 (1H, d, *J* = 12.1 Hz), 3.43 (1H, d, *J* = 12.1 Hz), 2.24 (3H, s), 1.49 (4H, s), 1.47 (3H, s), 1.38 (3H, s), 1.28 (3H, s).

¹³C NMR (101 MHz, CDCl₃): 173.3, 142.2, 135.6, 131.1, 127.7, 127.4, 126.8, 63.2, 56.0, 49.4, 31.1, 30.4, 28.5, 27.5, 18.0.

IR (neat, cm⁻¹): 3312, 3022, 2960, 2923, 1626.

HRMS: calcd for $C_{15}H_{23}N_2O$ [M+H]⁺ ESI+ 247.18049, found 247.18039.

<u>1-Benzyl-3,3,5,5-tetramethylpiperazin-2-one</u> (1e)

Yellow gum, 59%.

 $R_{f} = 0.12$ (EtOAc).

¹**H NMR** (400 MHz, CDCl₃): 7.45 - 7.11 (5H, m), 4.60 (2H, s), 3.09 (2H, s), 1.55 (1H, s), 1.42 (6H, s), 1.09 (6H, s).

¹³C NMR (101 MHz, CDCl₃): 174.1, 137.3, 128.7 (2 x C), 128.5 (2 x C), 127.7, 59.0, 55.6, 51.1, 48.8, 30.7 (2 x C), 27.8 (2 x C).

IR (neat, cm⁻¹): 3502, 3312, 3036, 2971, 2927, 1634, 1495, 1454, 1432, 1371, 1381, 1336, 1305, 1233, 1196, 1164, 1080, 1030, 1013.

HRMS: calcd for $C_{15}H_{23}N_2O$ [M+H]⁺ ESI+ 247.18049, found 247.18060.

3,3,5,5-tetramethyl-1-(2-(trifluoromethyl)benzyl)piperazin-2-one (1f)

White solid, 16%. This material required additional reverse-phase purification (Waters XBridge Prep C18 OBD column, 5μ silica, 30 mm diameter, 100 mm length), using 0-100% MeCN in water (containing 1% NH₃) as eluents.

R_f = 0.25 (EtOAc). S13 ¹**H NMR** (400 MHz, CDCl₃): 7.65 (1H, d, *J* = 7.8 Hz), 7.52 (1H, t, *J* = 7.6 Hz), 7.43 (1H, d, *J* = 7.8 Hz), 7.36 (1H, t, *J* = 7.6 Hz), 4.83 (2H, s), 3.09 (2H, s), 1.45 (6H, s), 1.13 (6H, s).

N-H signal not observed.

¹³C NMR (101 MHz, CDCl₃): 174.7, 136.2, 132.3, 129.3, 128.8 (q, J = 30.2 Hz), 127.4, 126.0 (q, J = 5.8 Hz), 123.1, 59.5, 55.7, 48.8, 47.0, 30.8, 27.9.

¹⁹**F NMR** (376 MHz, CDCl₃): -58.97.

IR (neat, cm⁻¹): 3501, 3316, 2973, 1642, 1494, 1450, 1440, 1370, 1314, 1163, 1117, 1061, 1039.

HRMS: calcd for $C_{15}H_{20}F_3N_2O$ [M+H]⁺ ESI+ 315.16787, found 315.16821.

1-(4-Methoxyphenethyl)-3,3,5,5-tetramethylpiperazin-2-one (1g)

Colourless oil, 58%.

 $R_{f} = 0.15$ (EtOAc).

¹**H NMR** (400 MHz, CDCl₃): 7.21 - 7.07 (2H, m), 6.89 - 6.74 (2H, m), 3.78 (3H, s), 3.63 - 3.53 (2H, m), 3.11 (2H, s), 2.89 - 2.71 (2H, m), 1.33 (6H, s), 1.14 (6H, s).

N-H signal not observed.

¹³C NMR (101 MHz, CDCl₃): 173.9, 158.4, 131.0, 129.9, 114.1, 60.5, 55.5, 55.4, 50.1, 49.0, 32.8, 30.5
(2 x C), 27.8 (2 x C).

IR (neat, cm⁻¹): 3476, 3311, 2969, 2932, 2853, 2836, 1635, 1584, 1513, 1490, 1464, 1442, 1427, 1370, 1302, 1247, 1168, 1036.

HRMS: calcd for $C_{17}H_{27}N_2O_2$ [M+H]⁺ ESI+ 291.20670, found 291.20679.

3-Ethyl-3,5,5-trimethyl-1-phenylpiperazin-2-one (1h)

Colourless gum, isolated as a racemic mixture, 10%. This material required additional reverse-phase purification (Waters XBridge Prep C18 OBD column, 5 μ silica, 30 mm diameter, 100 mm length), using 0-100% MeCN in water (containing 1% NH₃) as eluents, followed by HPLC (Waters SunFire column, 5 μ silica, 30 mm diameter, 100 mm length), using decreasingly polar mixtures of water (containing 0.1% formic acid).

 $\mathbf{R}_{f} = 0.13$ (1:1 heptane: EtOAc).

¹H NMR (400 MHz, CDCl₃): 7.42 - 7.35 (2H, m), 7.29 - 7.23 (3H, m), 3.76 (1H, d, *J* = 12.3 Hz), 3.45 (1H, d, *J* = 12.3 Hz), 2.02 - 1.86 (1H, m), 1.75 - 1.61 (1H, m), 1.51 (3H, s), 1.44 (3H, s), 1.31 (3H, s), 1.03 (3H, t, *J* = 7.4 Hz).

N-H signal not observed. Sample contains 0.91 eq. ammonium formate.

¹³C NMR (101 MHz, CDCl₃): 164.7, 143.2, 129.4 (2 x C), 127.1, 125.9 (2 x C), 62.1, 60.0, 50.9, 50.3, 35.7, 28.2, 28.0, 26.1, 8.5.

IR (neat, cm⁻¹): 3406, 2925, 2854, 1643, 1595, 1547, 1462, 1351, 1314.

HRMS: calcd for $C_{15}H_{23}N_2O$ [M+H]⁺ ESI+ 247.18049, found 247.18060.

2,2-Dimethyl-4-phenyl-9-oxa-1,4-diazaspiro[5.5]undecan-5-one (1j)

Pale yellow solid, 21%

 $R_{f} = 0.31$ (EtOAc).

¹**H NMR** (400 MHz, CDCl₃) 7.47 - 7.31 (2H, m), 7.27 - 7.22 (3H, m), 3.88 (2H, dt, *J* = 4.2, 11.4 Hz), 3.79 (2H, td, *J* = 2.6, 11.2 Hz), 3.58 (2H, s), 2.33 (2H, ddd, *J* = 4.6, 10.8, 14.7 Hz), 1.55 (2H, d, *J* = 12.7 Hz), 1.29 (6H, s).

N-H signal not observed.

¹³C NMR (101 MHz, CDCl₃) 173.0, 143.5, 129.3 (2 x C), 126.8, 125.8 (2 x C), 63.2 (2 x C), 61.9, 55.4, 49.9, 37.1 (2 x C), 28.3 (2 x C).

IR (neat, cm⁻¹): 3399, 3308, 2964, 2864, 1646, 1642, 1594, 1494, 1475, 1381, 1315.

HRMS: calcd for $C_{16}H_{23}N_2O_2$ [M+H]⁺ ESI+ 275.17540, found 275.17551.

Aziridination procedure

Pivalic anhydride (2 eq.) was added to starting piperazin-2-one (1 eq.), $Pd(OAc)_2$ (0.05 eq.) and PIDA (1.5 eq.) in 1,2-DCE (0.1 M) at 70°C under air. The resulting mixture was stirred at 70 °C for 1 hour or until LC-MS showed full conversion of starting material (as judged by disappearance from the $[M+H]^+$ mass ion for the starting material by MS). The reaction mixture was then left to cool to room temperature and filtered through a pad of Celite and the filter cake was washed with CH_2Cl_2 (2 x 5 mL). The solvent was removed under reduced pressure to give a residue which was suspended in CH_2Cl_2 and was purified by flash silica chromatography (0-100% EtOAc in heptane).

All compounds were isolated as racemic mixtures.

2,2,6-Trimethyl-4-phenyl-1,4-diazabicyclo[4.1.0]heptan-5-one (2a)

Brown gum, 73%.

 $R_{f} = 0.09$ (EtOAc).

¹**H NMR** (400 MHz, CDCl₃): 7.42 - 7.32 (2H, m), 7.27 - 7.17 (3H, m), 3.54 (1H, d, *J* = 13.3 Hz), 3.16 (1H, d, *J* = 13.3 Hz), 2.41 (1H, s), 1.91 (1H, s), 1.52 (3H, s), 1.41 (3H, s), 1.24 (3H, s).

¹³C NMR (101 MHz, CDCl₃): 169. 9, 143.0, 129.3 (2 x C), 126.9, 125.9 (2 x C), 55.7, 51.1, 37.9, 32.9, 26.5, 26.1, 20.7.

IR (neat, cm⁻¹): 3057, 2967, 2925, 1738, 1651, 1594, 1494, 1453, 1427, 1377, 1322, 1261, 1188, 1112, 1096, 1071, 1044.

HRMS: calcd for $C_{14}H_{19}N_2O$ [M+H]⁺ ESI+ 231.14919, found 231.14899.

4-(3-Bromophenyl)-2,2,6-trimethyl-1,4-diazabicyclo[4.1.0]heptan-5-one (2b)

Pale orange solid, 52%.

R_f = 0.26 (EtOAc)

¹**H NMR** (400 MHz, CDCl₃): 7.42 (1H, t, *J* = 1.8 Hz), 7.41 - 7.37 (1H, m), 7.30 - 7.23 (1H, m), 7.20 (1H, ddd, *J* = 1.2, 1.9, 8.0 Hz), 3.55 (1H, d, *J* = 13.3 Hz), 3.15 (1H, d, *J* = 13.2 Hz), 2.42 (1H, s), 1.95 (1H, s), 1.53 (3H, s), 1.41 (3H, s), 1.27 (3H, s),

¹³C NMR (101 MHz, CDCl₃): 169.9, 144.0, 130.4, 129.9, 129.0, 124.5, 122.5, 55.3, 51.1, 37.8, 32.9, 26.4, 26.0, 20.6.

IR (neat, cm⁻¹): 2973, 1737, 1657, 1650, 1587, 1477, 1414, 1383, 1323, 1558, 1160.

HRMS: calcd for $C_{14}H_{19}N_2O [M+H]^+ ESI+ 309.0966$, found 309.0959.

4-(4-Methoxyphenyl)-2,2,6-trimethyl-1,4-diazabicyclo[4.1.0]heptan-5-one (2c)

Pale yellow solid, 72%.

 $R_{f} = 0.13$ (EtOAc).

¹**H NMR** (400 MHz, CDCl₃): 7.18 - 7.01 (2H, m), 6.96 - 6.78 (2H, m), 3.80 (3H, s), 3.51 (1H, d, *J* = 13.4 Hz), 3.11 (1H, d, *J* = 13.3 Hz), 2.39 (1H, s), 1.90 (1H, s), 1.51 (3H, s), 1.40 (3H, s), 1.23 (3H, s).

¹³C NMR (101 MHz, CDCl₃): 170.0, 158.3, 136.0, 127.1 (2 x C), 114.8 (2 x C), 56.1, 55.6, 51.1, 37.8, 32.9, 26.5, 26.2, 20.7.

IR (neat, cm⁻¹): 2974, 2939, 1645, 1607, 1513, 1463, 1426, 1337, 1330, 1249, 1186, 1104, 1020. **HRMS**: calcd for C₁₅H₂₁N₂O₂ [M+H]⁺ ESI+ 261.15975, found 261.15942.

2,2,6-Trimethyl-4-o-tolyl-1,4-diazabicyclo[4.1.0]heptan-5-one (2d)

Yellow gum, 53%, 2:1 mixture of conformers. This material required additional reverse-phase purification (Waters XBridge Prep C18 OBD column, 5µ silica, 30 mm diameter, 100 mm length), using 0-100% MeCN in water (containing 1% NH₃) as eluents.

 $R_{f} = 0.34$ (EtOAc).

¹H NMR (700 MHz, CDCl₃): 7.24 – 7.14 (3H, m), 7.03 – 6.96 (1H, m), 3.46 (1H, d, J = 13.6 Hz), 3.05 – 2.91 (1H, m), 2.43 – 2.33 (1H, m), 2.25 (1H, s), 2.16 (2H, s), 1.93 – 1.85 (1H, m), 1.52 – 1.48 (3H, m), 1.47 – 1.44 (3H, m), 1.21 (3H, s).

¹³C NMR (176 MHz, CDCl₃): 169.3, 141.8, 141.2, 135.9, 135.1, 131.2 131.0, 127.8, 127.5, 127.0, 126.7, 126.4, 56.0, 55.2, 50.9, 50.8, 37.7, 37.5, 33.0, 32.8, 27.4, 26.7, 26.3, 25.9, 20.3, 18.1, 17.6.

IR (neat, cm⁻¹): 2971, 2931, 1650, 1495, 1469, 1426, 1378, 1326, 1260, 1187, 1133, 1096, 1045.

HRMS: calcd for C₁₅H₂₁N₂O [M+H]⁺ ESI+ 245.1654, found 245.1659.

4-Benzyl-2,2,6-trimethyl-1,4-diazabicyclo[4.1.0]heptan-5-one (2e)

Colourless gum, 18%. This material required additional reverse-phase purification (Waters XBridge Prep C18 OBD column, 5μ silica, 30 mm diameter, 100 mm length), using 0-100% MeCN in water (containing 1% NH₃) as eluents.

 $R_{f} = 0.13$ (EtOAc).

¹**H NMR** (700 MHz, CDCl₃): 7.34 - 7.28 (2H, m), 7.28 - 7.24 (1H, m), 7.22 (2H, d, *J* = 7.2 Hz), 4.56 (1H, d, *J* = 14.5 Hz), 4.52 (1H, d, *J* = 14.4 Hz), 2.95 (1H, d, *J* = 13.3 Hz), 2.72 (1H, d, *J* = 13.3 Hz), 2.14 (1H, s), 1.80 (1H, s), 1.49 (3H, s), 1.11 (3H, s), 1.10 (3H, s).

¹³C NMR (176 MHz, CDCl₃): 170.1, 136.8, 128.8 (2 x C), 128.5 (2 x C), 127.8, 51.7, 50.8, 50.5, 37.3, 32.9, 26.5, 26.2, 20.6.

IR (neat, cm⁻¹): 2967, 2927, 2855, 1642, 1496, 1454, 1388, 1322, 1244, 1178.

HRMS: calcd for C₁₅H₂₁N₂O [M+H]⁺ ESI+ 245.16484, found 245.16501.

2,2,6-Trimethyl-4-(2-(trifluoromethyl)benzyl)-1,4-diazabicyclo[4.1.0]heptan-5-one (2f)

Colourless oil, 56%. This material required additional reverse-phase purification (Waters XBridge Prep C18 OBD column, 5μ silica, 30 mm diameter, 100 mm length), using 0-100% MeCN in water (containing 1% NH₃) as eluents.

R_f = 0.42 (EtOAc).

¹**H NMR** (700 MHz, CDCl₃): 7.61 (1H, d, *J* = 7.8 Hz), 7.50 (1H, t, *J* = 7.5 Hz), 7.40 - 7.28 (2H, m), 4.80 (1H, d, *J* = 15.7 Hz), 4.69 (1H, d, *J* = 15.7 Hz), 2.99 (1H, d, *J* = 13.4 Hz), 2.65 (1H, d, *J* = 13.3 Hz), 2.20 (1H, s), 1.84 (1H, s), 1.49 (3H, s), 1.15 (3H, s), 1.10 (3H, s).

¹³C NMR (176 MHz, CDCl₃): 170.9, 135.9, 132.5, 129.4, 128.8 (d, *J* = 30.3 Hz), 127.7, 126.1 (d, J = 5.6 Hz), 124.5 (q, *J* = 273.8 Hz), 52.3, 50.7, 46.8, 37.5, 33.2, 26.8, 26.3, 20.7.

¹⁹**F NMR** (471 MHz, CDCl₃): -58.91.

IR (neat, cm⁻¹): 2972, 2933, 1650, 1610, 1500, 1459, 1369, 1314, 1272, 1246, 1168, 1177, 1061, 1039. HRMS: calcd for $C_{16}H_{20}F_{3}N_{2}O$ [M+H]⁺ ESI+ 313.15222, found 313.15250.

4-(4-Methoxyphenethyl)-2,2,6-trimethyl-1,4-diazabicyclo[4.1.0]heptan-5-one (2g)

Yellow gum (62%).

R_f = 0.13 (EtOAc).

¹**H NMR** (400 MHz, CDCl₃): 7.17 - 7.06 (2H, m), 6.87 - 6.74 (2H, m), 3.77 (3H, s), 3.68 (1H, ddd, J = 5.9, 9.1, 13.4 Hz), 3.34 (1H, ddd, *J* = 6.5, 8.9, 13.4 Hz), 2.93 (1H, d, *J* = 13.2 Hz), 2.83 (1H, ddd, *J* = 6.5, 9.0, 13.6 Hz), 2.77 - 2.64 (2H, m), 2.04 (1H, s), 1.74 (1H, s), 1.43 (3H, s), 1.17 (3H, s), 1.12 (3H, s).

¹³C NMR (101 MHz, CDCl₃): 169.7, 158.3, 130.8, 129.7, 114.0, 55.3, 53.4, 50.5, 50.1, 37.2, 32.8, 32.7, 26.5, 26.1, 20.3.

IR (neat, cm⁻¹): 2970, 2932, 2868, 2836, 1640, 1513, 1498, 1466, 1423, 1399, 1370, 1323, 1246, 1176, 1036.

HRMS: calcd for C₁₉H₂₉N₂O₃ [M+H]⁺ ESI+ 289.19105, found 289.19125.

6-Ethyl-2,2-dimethyl-4-phenyl-1,4-diazabicyclo[4.1.0]heptan-5-one (2h)

White solid, 68%.

R_f = 0.28 (EtOAc).

¹**H NMR** (400 MHz, CDCl₃): 7.43 - 7.30 (2H, m), 7.25 - 7.18 (3H, m), 3.52 (1H, d, *J* = 13.3 Hz), 3.16 (1H, d, *J* = 13.2 Hz), 2.52 - 2.39 (1H, m), 2.37 (1H, s), 1.92 (1H, s), 1.41 (3H, s), 1.26 (3H, s), 1.19 - 1.04 (4H, m).

¹³C NMR (101 MHz, CDCl₃): 169.0, 143.1, 129.2, 126.8, 125.9, 55.5, 50.6, 42.6, 32.5, 27.7, 26.7, 26.2, 10.9.

IR (neat, cm⁻¹): 2963, 2920, 1645, 1584, 1491, 1463, 1440, 1260., 1185, 1094.

HRMS: calcd for $C_{15}H_{21}N_2O [M+H]^+ ESI+ 245.16484$, found 245.1647.

(2,2-Dimethyl-5-oxo-4-phenyl-1,4-diazabicyclo[4.1.0]heptan-6-yl)methyl acetate (2i)

Yellow solid, 51%.

R_f = 0.38 (EtOAc).

¹H NMR (400 MHz, CDCl₃): 7.46 - 7.31 (2H, m), 7.31 - 7.16 (3H, m), 4.93 (1H, d, J = 11.3 Hz), 3.81 (1H, d, J = 11.3 Hz), 3.56 (1H, d, J = 13.4 Hz), 3.21 (1H, d, J = 13.4 Hz), 2.48 (1H, s), 2.12 (1H, s), 2.09 (3H, s), 1.44 (3H, s), 1.28 (3H, s).

¹³C NMR (101 MHz, CDCl₃): 170.8, 167.0, 142.4, 129.3 (2 x C), 127.0, 125.7 (2 x C), 66.3, 55.2, 51.0, 39.9, 30.4, 26.0, 21.1.

IR (neat, cm⁻¹): 2970, 2932, 2873, 1738, 1658, 1595, 1498, 1470, 1453, 1428, 1384, 1368, 1330, 1313, 1248, 1181, 1037.

HRMS: calcd for C₁₆H₂₁N₂O₃ [M+H]⁺ ESI+ 289.15467, found 289.15448.

4,4-Dimethyl-2-phenylhexahydropyrano[4',3':2,3]azireno[1,2-a]pyrazin-1(2H)-one (2j)

Yellow solid, 45%.

 $R_{f} = 0.35$ (EtOAc).

¹**H NMR** (400 MHz, CDCl₃): 7.43 - 7.34 (2H, m), 7.27 - 7.18 (3H, m), 4.00 (1H, d, *J* = 12.1 Hz), 3.86 (1H, dd, *J* = 3.0, 12.1 Hz), 3.78 - 3.68 (1H, m), 3.57 (1H, d, *J* = 13.4 Hz), 3.32 (1H, ddd, *J* = 4.8, 9.3, 11.5 Hz), 3.19 (1H, d, *J* = 13.3 Hz), 2.92 (1H, dt, *J* = 4.6, 14.4 Hz), 2.68 (1H, d, *J* = 2.8 Hz), 1.80 (1H, ddd, *J* = 5.6, 9.2, 14.6 Hz), 1.43 (3H, s), 1.26 (3H, s).

¹³C NMR (101 MHz, CDCl₃): 168.2, 143.1, 129.4 (2 x C), 127.0, 125.9 (2 x C), 65.1, 63.2, 55.9, 50.9, 39.2, 35.2, 26.2, 25.8, 24.3.

IR (neat, cm⁻¹): 2967, 2931, 2871, 1736, 1651, 1594, 1494, 1427, 1384, 1321, 1248, 1125.

HRMS: calcd for $C_{16}H_{21}N_2O_2$ [M+H]⁺ ESI+ 273.15975, found 273.15982.

Transformation of aziridine products

Conditions A: The nucleophile (1.1 eq.) was added to **2a** (1 eq.) and tris(perfluorophenyl)borane (0.1 eq.) in MeCN (0.1 M) at room temperature under N_2 . The resulting solution was stirred at 65 °C for 18 hours. The solvent was removed under reduced pressure and the residue was directly purified by flash silica chromatography to give the product.

<u>3-((3-Bromophenylamino)methyl)-3,5,5-trimethyl-1-phenylpiperazin-2-one</u> (5a)

Brown gum, 48%. This material required additional reverse-phase purification (Waters XBridge Prep C18 OBD column, 5μ silica, 30 mm diameter, 100 mm length), using 0-100% MeCN in water (containing 1% NH₃) as eluents.

 $\mathbf{R}_{\mathbf{f}} = 0.14$ (1:1 heptane: EtOAc).

¹**H NMR** (400 MHz, CDCl₃): 7.41 - 7.34 (2H, m), 7.28 - 7.21 (1H, m), 7.18 (2H, dd, *J* = 1.2, 8.5 Hz), 6.99 (1H, t, *J* = 8.0 Hz), 6.84 (1H, t, *J* = 2.0 Hz), 6.79 (1H, ddd, *J* = 0.8, 1.8, 7.8 Hz), 6.59 (1H, ddd, *J* = 0.7, 2.3, 8.2 Hz), 4.67 (1H, t, *J* = 5.9 Hz), 3.61 (1H, d, *J* = 12.1 Hz), 3.51 (1H, d, *J* = 12.1 Hz), 3.43 (1H, dd, *J* = 6.5, 12.2 Hz), 3.14 (1H, dd, *J* = 5.8, 12.2 Hz), 1.51 (3H, s), 1.36 (3H, s), 1.27 (3H, s).

N-H signal not observed.

¹³C NMR (101 MHz, CDCl₃): 172.4, 150.1, 143.1, 130.6, 129.3, 127.0, 125.8, 123.4, 120.3, 116.3, 112.3, 62.3, 59.2, 53.7, 49.7, 28.0, 27.9, 27.3.

IR (neat, cm⁻¹): 2970, 1656, 1643, 1595, 1492, 1453, 1423, 1394, 1381, 1316, 1264, 1172.

HRMS: calcd for $C_{20}H_{25}BrN_{3}O [M+H]^{+} ESI+ 402.11755$, found 402.11783.

<u>3-((3-Methoxyphenylthio)methyl)-3,5,5-trimethyl-1-phenylpiperazin-2-one</u> (5b)

Yellow gum, 99%.

 $R_{f} = 0.31$ (1:1 heptane: EtOAc).

¹**H NMR** (400 MHz, CDCl₃): 7.40 - 7.33 (2H, m), 7.27 - 7.18 (3H, m), 7.16 (1H, d, *J* = 8.1 Hz), 7.02 (1H, dt, *J* = 1.2, 7.7 Hz), 7.01 - 6.98 (1H, m), 6.72 (1H, ddd, *J* = 0.8, 2.5, 8.3 Hz), 3.80 - 3.72 (4H, m), 3.61 (1H, d, *J* = 12.9 Hz), 3.41 (1H, d, *J* = 11.8 Hz), 3.19 (1H, d, *J* = 12.9 Hz), 1.84 (1H, br s), 1.57 (3H, s), 1.37 (3H, s), 1.17 (3H, s).

¹³C NMR (101 MHz, CDCl₃): 171.8, 160.1, 143.4, 138.0, 129.9 (2 x C), 129.2, 126.9, 126.0 (2 x C), 122.1, 115.2, 112.5, 62.8, 60.0, 55.4, 49.2, 47.7, 29.5, 28.4, 26.8.

IR (neat, cm⁻¹): 3316, 3062, 2968, 2933, 2835, 1651, 1590, 1478, 1422, 1380, 1366, 1316, 1283, 1247, 1230, 1178, 1097, 1074, 1041.

HRMS: calcd for $C_{21}H_{27}N_2O_2S$ [M+H]⁺ ESI+ 371.17878, found 371.17911.

<u>3-(Chloromethyl)-3,5,5-trimethyl-1-phenylpiperazin-2-one hydrochloride</u> (5c)

4M HCl in 1,4-dioxane (10 eq.) was added dropwise to **2a** (1 eq.) in CH_2Cl_2 (0.1 M) at room temperature. The resulting solution was stirred at room temperature for 2 days over the weekend. The solvent was removed under a stream of N₂ to give a sticky orange gum which was redissolved in MeOH and re-evaporated to give a yellow solid, which was suspended in Et₂O and collected by filtration to give the title compound as a yellow/ochre solid (60% as an HCl salt).

¹H NMR (400 MHz, d⁶-DMSO): 10.37 (1H, br s), 9.82 (1H, br s), 7.48 - 7.42 (2H, m), 7.33 (3H, td, J = 1.3, 7.6 Hz), 4.45 (1H, d, J = 11.8 Hz), 4.18 (1H, d, J = 13.2 Hz), 3.95 (1H, d, J = 11.7 Hz), 3.68 (1H, d, J = 13.3 Hz), 1.77 (3H, s), 1.59 (3H, s), 1.56 (3H, s).

¹³C NMR (101 MHz, d⁶-DMSO): 164.9, 141.7, 129.0 (2 x C), 127.3, 125.8 (2 x C), 61.6, 56.8, 54.7, 51.0, 23.4, 23.0, 21.8.

IR (neat, cm⁻¹): 3419, 1659, 1642, 1494, 1440, 1384, 1332.

HRMS: calcd for C₁₄H₂₀ClN₂O [M+H]⁺ ESI+ 267.12587, found 267.12576.

Conditions B

3-(Fluoromethyl)-3,5,5-trimethyl-1-phenylpiperazin-2-one (5d)

Triethylamine trihydrofluoride (4 eq.) was added dropwise to **2a** (1 eq.) in MeCN (0.1 M) at room temperature in a small thick-walled teflon vessel with a screw cap with a small stirred bar. The vessel was sealed and was stirred at 75 °C 4 days. Additional triethylamine trihydrofluoride (1 eq.) was added daily. The reaction was directly purified by flash silica chromatography, elution gradient 0 to 40% EtOAc in heptane. Pure fractions were evaporated to dryness to afford the title compound as a white foam (84%).

R_f = 0.49 (EtOAc)

¹**H NMR** (400 MHz, CDCl₃): 7.49 - 7.30 (2H, m), 7.32 - 7.11 (3H, m), 4.69 (1H, dd, *J* = 8.6, 47.0 Hz), 4.20 (1H, dd, *J* = 8.6, 48.0 Hz), 3.66 (1H, d, *J* = 12.0 Hz), 3.50 (1H, d, *J* = 12.0 Hz), 1.73 (1H, br s), 1.40 (3H, d, J = 2.5 Hz), 1.37 (3H, s), 1.26 (3H, s).

¹³C NMR (101 MHz, CDCl₃): 170.6, 143.1, 129.3, 127.0, 125.8, 89.3 (d, *J* = 175.6 Hz), 62.7, 59.6 (d, *J* = 17.8 Hz), 49.5, 28.3, 26.9, 24.7 (d, *J* = 5.9 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃): -100.01.

IR (neat, cm⁻¹): 3326, 2968, 1646, 1595, 1454, 1443, 1382, 1368, 1321, 1195, 1024.

HRMS: calcd for $C_{14}H_{20}FN_2O$ [M+H]⁺ ESI+ 255.15542, found 255.15543.

(2,6,6-Trimethyl-3-oxo-4-phenylpiperazin-2-yl)methyl benzoate (5e)

benzoic acid (1.1 eq.) was added to **2a** (1 eq.) in MeCN (0.1 M) at 75°C and stirred at 75 °C for 3 days. LC-MS shows the reaction stalls at 90% conversion, despite addition of more acid. The solvent was removed under a stream of N_2 gas and the residue was purified by flash silica chromatography, elution gradient 0 to 70% EtOAc in heptane. Pure fractions were evaporated to dryness to afford the title compound as a colourless oil (63%).

 $R_{f} = 0.67$ (EtOAc).

¹**H NMR** (400 MHz, CDCl₃): 8.11 - 8.03 (2H, m), 7.60 - 7.54 (1H, m), 7.49 - 7.42 (2H, m), 7.38 (2H, td, *J* = 1.9, 7.2 Hz), 7.30 - 7.21 (3H, m), 4.50 (1H, d, *J* = 10.7 Hz), 4.42 (1H, d, *J* = 10.7 Hz), 3.68 (1H, d, *J* = 11.9 Hz), 3.49 (1H, d, *J* = 11.9 Hz), 1.73 (1H, s), 1.55 (3H, s), 1.38 (3H, s), 1.22 (3H, s).

¹³C NMR (101 MHz, CDCl₃): 170.8, 166.4, 143.2, 133.1, 130.2, 129.6, 129.2, 128.5, 126.8, 125.6, 71.8, 62.6, 59.2, 49.4, 28.5, 26.8, 26.2.

IR (neat, cm⁻¹): 3325, 2970, 2932, 2807, 1721, 1657, 1595, 1489, 1475, 1452, 1381, 1317, 1272, 1219, 1176, 1113, 1098, 1071, 1027.

HRMS: calcd for $C_{21}H_{25}N_2O_3$ [M+H]⁺ ESI+ 353.18597, found 353.18597.

(2,6,6-Trimethyl-3-oxo-4-phenylpiperazin-2-yl)methyl acetate (3)

2a (1 eq.) in acetic acid (0.1 M) was stirred at 70 °C for 18 hours. The solvent was removed under a stream of N_2 gas and the residue was purified by flash silica chromatography, elution gradient 0 to 70% EtOAc in heptane. Pure fractions were evaporated to dryness to afford the title compound as a colourless oil (71%).

R_f = 0.34 (EtOAc).

¹**H NMR** (400 MHz, CDCl₃): 7.43 - 7.35 (2H, m), 7.30 - 7.20 (3H, m), 4.28 (1H, d, *J* = 10.6 Hz), 4.11 (1H, d, *J* = 10.7 Hz), 3.66 (1H, d, *J* = 12.0 Hz), 3.50 (1H, d, *J* = 12.0 Hz), 2.11 (3H, s), 1.53 (1H, br s), 1.46 (3H, s), 1.36 (3H, s), 1.25 (3H, s).

¹³C NMR (101 MHz, CDCl₃): 170.9, 143.2, 129.3 (2 x C), 126.9, 125.8 (2 x C), 71.5, 62.5, 58.8, 49.5, 28.4, 27.2, 26.2, 21.2.

IR (neat, cm⁻¹): 3326, 2971, 2934, 1740, 1657, 1595, 1494, 1474, 1454, 1422, 1380, 1370, 1319, 1233, 1190, 1044.

HRMS: calcd for $C_{16}H_{23}N_2O_3$ [M+H]⁺ ESI+ 291.1709, found 291.1712.

(6,6-Dimethyl-3-oxo-4-phenylpiperazine-2,2-diyl)bis(methylene) diacetate (4)

Pivalic anhydride (2 eq.) was added to **2a** (1 eq.), $Pd(OAc)_2$ (0.05 eq.) and PIDA (3 eq.) in acetic acid (0.1 M) at 70°C under air. The resulting mixture was stirred at 70 °C for 18 hours. The reaction mixture was filtered through Celite and the filter cake was washed with CH_2Cl_2 (2 x 5 mL). The solvent was removed under reduced pressure and the orange residue obtained was purified by flash silica chromatography, elution gradient 0 to 100% EtOAc in heptane. Pure fractions were evaporated to dryness to afford the title compound as an orange gum (38%). **3** (37%) was also recovered.

 $R_{f} = 0.47$ (EtOAc).

¹**H NMR** (400 MHz, CDCl₃): 7.48 - 7.33 (2H, m), 7.28 - 7.21 (3H, m), 4.39 (1H, d, *J* = 11.1 Hz), 4.30 (1H, d, *J* = 11.1 Hz), 4.30 (1H, d, *J* = 11.1 Hz), 3.57 (2H, s), 2.12 (6H, s), 1.66 (1H, br s), 1.30 (6H, s).

¹³C NMR (101 MHz, CDCl₃): 170.8 (2 x C), 142.9, 129.4 (2 x C), 127.1, 125.7 (2 x C), 67.9, 61.7, 61.3, 49.6, 28.0 (2 x C), 21.1 (2 x C).

IR (neat, cm⁻¹): 3339, 1743, 1661, 1657, 1494, 1378, 1321, 1227, 1043.

HRMS: calcd for $C_{18}H_{25}N_2O_5$ [M+H]⁺ ESI+ 349.17580, found 349.17554.

(6-Methyl-3-oxo-4-phenylpiperazine-2,2,6-triyl)tris(methylene) triacetate (6)

Pivalic anhydride (2 eq.) was added to **1a** (1 eq.), PIDA (3 eq.) and Pd(OAc)₂ (0.05 eq.) in acetic acid (0.1 M) at 70°C under air. The resulting solution was stirred at 70 °C for 18 hours. Further PIDA (3 eq.) was added and the mixture was stirred at 70 °C for a further 24 hours. The solvent was removed under reduced pressure and the residue was directly purified by flash silica chromatography, elution gradient 0 to 75% EtOAc in heptane. Pure fractions were evaporated to dryness to afford a yellow gum. This material contains traces of inseparable tetra- and pentaacetates, but the major component is the triacetate (combined yield 45%).

$R_{f} = 0.51$ (EtOAc).

¹**H NMR** (400 MHz, CDCl₃): 7.43 - 7.37 (2H, m), 7.30 - 7.20 (3H, m), 4.36 (2H, dd, *J* = 6.7, 11.1 Hz), 4.27 (2H, d, *J* = 11.1 Hz), 4.20 (1H, dd, *J* = 2.6, 11.2 Hz), 3.94 (1H, d, *J* = 11.1 Hz), 3.82 - 3.70 (1H, m), 3.67 - 3.55 (1H, m), 2.12 (3H, s), 2.12 (3H, s), 2.05 (3H, s), 1.27 (3H, s).

N-H signal not observed.

¹³C NMR (101 MHz, CDCl₃): 170.7, 170.6, 170.5, 167.6, 142.4, 129.3 (2 x C), 127.2, 125.6 (2 x C), 68.5, 67.6, 67.4, 61.2, 56.7, 51.6, 23.9, 20.9, 20.9, 20.8.

IR (neat, cm⁻¹): 3348, 2972, 1743, 1661, 1595, 1494, 1475, 1427, 1377, 1230, 1042.

HRMS: calcd for $C_{20}H_{27}N_2O_7$ [M+H]⁺ ESI+ 407.18128, found 407.18106.

References

- (1) Johnson, H. G., J. Am. Chem. Soc,. 1946, 68, 14-18.
- (2) Senkus, M., J. Am. Chem. Soc., 1946, 68, 10-12.
- (3) Agrawal, S.; Lenormand, M.; Martin-Matute, B., Org. Lett., 2012, 14, 1456-1459.
- (4) Lai, J. T., J. Org. Chem., **1980**, 45, 754-755. \$28

NMR spectra

7a ¹H NMR 400 MHz

7a ¹³C NMR 101 MHz

7c ¹H NMR 400 MHz

7c ¹³C NMR 101 MHz

7d ¹H NMR 400 MHz

7d ¹³C NMR 101 MHz

7e ¹H NMR 400 MHz

7e ¹³C NMR 101 MHz

7f ¹H NMR 400 MHz

7f ¹³C NMR 101 MHz

7f ¹⁹F NMR 376 MHz

thomas alanine	8		-
kgbw666 pok Ref en07919-58-01			-1
Laz CDCI3 /opt/topspin2.1 chem 18		 	-1
			Ŀ.
			-
			-1
			-1
			-9
			,
			-
			-5
			-3
			L
			ŀ

7g ¹H NMR 400 MHz

7g¹³C NMR 101 MHz

8a ¹H NMR 400 MHz

8a ¹³C NMR 101 MHz

8b ¹H NMR 400 MHz

8b ¹³C NMR 101 MHz

8c ¹H NMR 400 MHz

8c ¹³C NMR 101 MHz

8d ¹H NMR 400 MHz

8d ¹³C NMR 101 MHz

8e ¹H NMR 400 MHz

8e ¹³C NMR 101 MHz

8f¹H NMR 400 MHz

8f ¹³C NMR 101 MHz

8f ¹⁹F NMR 376 MHz

8g ¹H NMR 400 MHz

8g¹³C NMR 101 MHz

1a ¹H NMR 400 MHz

1a ¹³C NMR 101 MHz

1b ¹H NMR 400 MHz

81 1 2 1 2 1 2 585 50 5 Notebook Ref en07825-55-1 proton.az CDCI3 /opt/topspin2.1 chem 87 -3000 -2800 -2600 _Br -2400 ſſ, 0 -N-CH, H₃C H₀C² CH NH -1400 -1200 -1000 -800 -600 JU 111 աս 도망움 ъ ģ 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 f1 (ppm)

-3400

-3200

-2200

-2000

-1800

-1600

-400 -200

-0

--200

1b ¹³C NMR 101 MHz

1c ¹H NMR 400 MHz

1c ¹³C NMR 101 MHz

1d ¹H NMR 400 MHz

1d ¹³C NMR 101 MHz

1e ¹H NMR 400 MHz

1e ¹³C NMR 101 MHz

1f ¹H NMR 400 MHz

1f ¹³C NMR 101 MHz

1f ¹⁹F NMR 376 MHz

1g ¹H NMR 400 MHz

1g¹³C NMR 101 MHz

1h ¹H NMR 400 MHz

1h ¹³C NMR 101 MHz

1j ¹H NMR 400 MHz

1j ¹³C NMR 101 MHz

2a ¹H NMR 400 MHz

2a ¹³C NMR 101 MHz

2b ¹H NMR 400 MHz

2b¹³C NMR 101 MHz

2c¹H NMR 400 MHz

2c¹³C NMR 101 MHz

2d ¹H NMR 700 MHz

2d¹³C NMR 176 MHz

2e ¹H NMR 700 MHz

2e¹³C NMR 176 MHz

2f ¹H NMR 700 MHz

2f¹³C NMR 176 MHz

2f ¹⁹F NMR 476 MHz

2g ¹H NMR 400 MHz

2g ¹³C NMR 101 MHz

2h ¹H NMR 400 MHz

2h¹³C NMR 101 MHz

2i ¹H NMR 400 MHz

2i ¹³C NMR 101 MHz

2j ¹H NMR 400 MHz

2j ¹³C NMR 101 MHz

3 ¹H NMR 400 MHz

3¹³C NMR 101 MHz

4 ¹H NMR 400 MHz

4¹³C NMR 101 MHz

5a ¹H NMR 400 MHz

5a ¹³C NMR 101 MHz

5b ¹H NMR 400 MHz

5b ¹³C NMR 101 MHz

5c ¹H NMR 400 MHz

5c ¹³C NMR 101 MHz

5d ¹H NMR 400 MHz

5d ¹³C NMR 101 MHz

5d ¹⁹F NMR 176 MHz

5e ¹H NMR 400 MHz

5e¹³C NMR 101 MHz

6 ¹H NMR 400 MHz

6¹³C NMR 101 MHz

