Supporting Information

Chemoselective N-arylation of Aminobenzamides via Copper Catalysed

Chan-Evans-Lam Reactions

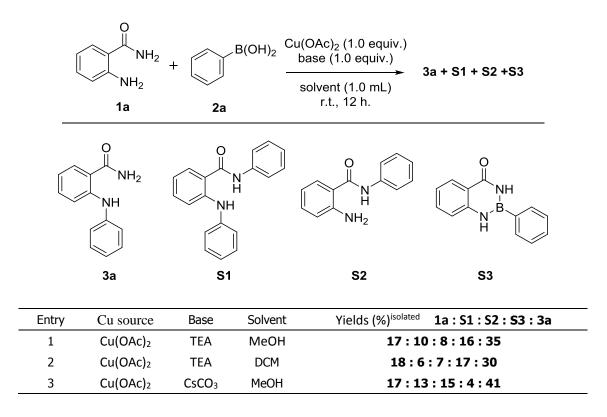
Shuai Liu,^a Weisai Zu,^a Jinli Zhang^{*a,b} and Liang Xu^{*a}

^{a.}School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China. E-mail: xuliang4423@shzu.edu.cn

^{b.} Key Laboratory for Systems Bioengineering MOE, Tianjin University; Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin 300072, PR China

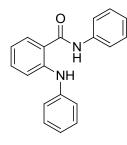
Table of Contents

1	General considerations				
2	Cu-catalysed selective N-arylation reactions				
	2.1 Table S1: Preliminary attempts for <i>N</i> -arylation reactions				
	2.2	Table S2: Detailed table of reaction condition optimization for <i>o</i> -aminobenzamides	5		
	2.3	General procedure A for Cu-catalysed selective arylation of o-aminobenzamides	6		
	2.4	Cu-catalysed selective arylation of ortho-aminobenzamides	7		
	2.5	Proposed mechanism for C-N coupling of <i>o</i> -aminobenzamide	14		
	2.6	Table S3: Detailed table of reaction condition optimization for <i>p</i> -aminobenzamides	14		
	2.7	General procedure B for Cu-catalyzed selective arylation	16		
	2.8	Cu-catalysed selective arylation of <i>p</i> - and <i>m</i> -aminobenzamides	17		
3	The application of mono-arylated aminobenzamides				
4	Copies of NMR				

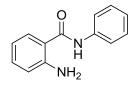

1 General considerations

General. Unless otherwise noted, all reactions were carried out under an air atmosphere. Analytical thin-layer chromatography (TLC) was performed on glass plates coated with 0.25 mm 230–400 mesh silica gel containing a fluorescent indicator. Visualization was accomplished by exposure to a UV lamp. All the products in this article are compatible with standard silica gel chromatography. Column chromatography was performed on silica gel (200–300 mesh) using standard methods.

Structural analysis. NMR spectra were measured on a Bruker Ascend 400 spectrometer and chemical shifts (δ) are reported in parts per million (ppm). ¹H NMR spectra were recorded at 400 MHz in NMR solvents and referenced internally to corresponding solvent resonance, and ¹³C NMR spectra were recorded at 100 MHz and referenced to corresponding solvent resonance. Coupling constants are reported in Hz with multiplicities denoted as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) and br (broad). Infrared spectra were collected on a Thermo Fisher Nicolet 6700 FT-IR spectrometer using ATR (Attenuated Total Reflectance) method. Absorption maxima (v max) are reported in wavenumbers (cm⁻¹). High resolution mass spectra (HRMS) were acquired on Thermo Scientific LTQ Orbitrap XL with an ESI source.

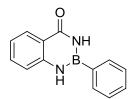

Materials. Commercial reagents and solvent were purchased from Adamas, J&K, Energy, Sigma-Aldrich, Alfa Aesar, Acros Organics, TCI and used as received unless otherwise stated.

2.1 Table S1: Preliminary attempts for *N*-arylation reactions


A flame-dried 25 mL pear shaped flask were placed with a stirring bar. Then, 2-aminobenzamide (68.1 mg, 0.5 mmol, 1.0 eq.), $Cu(OAc)_2$ (90.8 mg, 0.5 mmol, 1.0 eq.), Bases (1.0 eq.), arylboronic acid (0.75 mmol, 1.5 eq.) and Solvents (1.0 mL) were added .The resulting mixture was stirred vigorously at ambient temperature for 12 hours. The reaction mixture was filtered, concentrated and then purified by column chromatography on silica gel to give the target product.

(S1) N-phenyl-2-(phenylamino)benzamide (CAS: 34237-88-2)

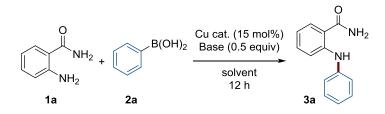
¹H NMR (400 MHz, DMSO) δ 10.34 (s, 1H), 9.11 (s, 1H), 7.77 (dd, J = 8.0, 1.6 Hz, 1H), 7.74 - 7.69 dd, J = 8.8, 1.2Hz), 7.42 - 7.26 (m, 6H), 7.16 (dd, J = 8.8 Hz, 1.2H, 2H), 7.11 (t, J = 7.4 Hz, 1H), 6.94 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.72, 144.33, 133.94, 131.91, 131.10, 129.25, 128.61, 121.94, 119.01, 117.63.


(S2) 2-amino-N-phenylbenzamide (CAS: 4424-17-3)

¹H NMR (400 MHz, CDCl₃) δ 7.75 (s, 1H), 7.56 (dd, *J* = 8.8, 1.2 Hz, 2H), 7.47 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.36 (t, *J* = 8.0 Hz, 2H), 7.25 (dd, *J* = 15.4, 1.5 Hz, 1H), 7.18 – 7.11 (m, 1H), 6.75 – 6.68 (m, 2H), 5.49 (br, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 167.61, 148.98, 137.87, 132.77, 129.08, 127.19, 124.52, 120.57, 117.56, 116.86, 116.27.

(S3) 2-phenyl-2,3-dihydrobenzo[d][1,3,2]diazaborinin-4(1H)-one (CAS: 28249-75-4)

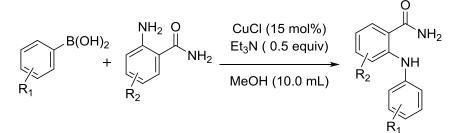


¹H NMR (400 MHz, DMSO) δ 9.68 (s, 1H), 9.31 (s, 1H), 8.03 (m, 3H), 7.60 – 7.54 (td, *J* = 6.8, 1.6, 1H), 7.46 (m, 4H), 7.14 – 7.08 (td, *J* = 7.2, 1.2, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.54, 150.71, 138.59, 138.56, 138.51, 137.53, 135.73, 133.19,

133.13, 133.03, 126.04, 124.00, 123.38.

2.2 Table S2: Detailed table of reaction condition optimization for

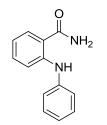
o-aminobenzamides


Entry	Catalyst	Base	Oxidant	Solvent	Isolated
					yields (%)
1	Cu(OAc) ₂	TEA	Air	DCM	N.R.
2	Cu(OTf) ₂	TEA	Air	MeOH	34
3	Cu(OTf) ₂		Air	MeOH	54
4	Cu(OTf) ₂		Air	DMF	N.R.
5	Cu(OTf) ₂		Air	DMSO	N.R.
6	Cu(OTf) ₂		DTBP	MeOH	60
7	Cu(OTf) ₂		TBHP	MeOH	14
8	Cu ₂ O		Air	MeOH	N.R.
9	CuI		Air	MeOH	N.R.
10	CuTC		Air	MeOH	N.R.
11	CuCl		Air	MeOH	63
12	CuCl	2,2'-Dipyridyl	Air	MeOH	70
13	CuCl	4-Phenylpyridine	Air	MeOH	69
14	CuCl	K ₂ CO ₃	Air	MeOH	81
15	CuCl	Na ₂ CO ₃	Air	MeOH	75
16	CuCl	KHCO ₃	Air	MeOH	68
17	CuCl	DBU	Air	MeOH	68
18	CuCl	Ag ₂ CO ₃	Air	MeOH	64
19	CuCl	t-BuOK	Air	MeOH	64
20	CuCl	TEA	Air	MeOH (1.0 mL)	66
21	CuCl	TEA	Air	MeOH (70 °C)	24
22	CuCl	TEA	Air	MeOH	90
23	CuCl	TEA	Air	DCM	N.R.
24	CuCl	TEA	Air	THF	N.R.

25	CuCl	TEA	Air	toluene	N.R.
26	CuCl	TEA	Air	MeOH	79% ^[a, b]
27	CuCl	TEA	Air	MeOH	9% [a, c]
28	CuCl	TEA	O_2	MeOH	83% ^[a]

^[a] NMR yield. ^[b] phenyl boronic acid pinacol ester was used instead of free boronic acid. ^[c] potassium phenyl trifluoroborate was used.

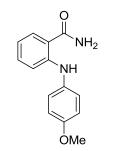
2.3 General procedure A for Cu-catalysed selective arylation of


o-aminobenzamides

A flame-dried 100 mL pear shaped flask were placed with a stirring bar. Then, 2-aminobenzamide (68.1 mg, 0.5 mmol, 1.0 eq.), CuCl (7.4 mg, 0.075 mmol, 15 mol%), Et₃N (35.0 μ L, 0.25 mmol, 0.5 eq.), arylboronic acid (0.75 mmol, 1.5 eq.), and MeOH (10.0 mL) were added .The resulting mixture was stirred vigorously at ambient temperature for 12 hours. The reaction mixture was filtered, concentrated and then purified by column chromatography on silica gel to give the target product.

2.4 Cu-catalysed selective arylation of ortho-aminobenzamides

(3a) 2-(phenylamino)benzamide (CAS : 1211-19-4)

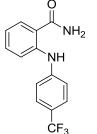


2-(phenylamino)benzamide Chemical Formula: C₁₃H₁₂N₂O Exact Mass: 212.0950 Molecular Weight: 212.2472

The general procedure A was followed using phenylboronic acid **2a** (91.4 mg, 0.75 mmol.) as starting material. **3a** was obtained as yellow solid (95.2 mg, 90%) after purification by silica gel flash chromatography (PE:EA = 3:1). Melting point(°C): 124.6-132.3 ¹H NMR (400 MHz, CDCl₃) δ 9.50 (s, 1H), 7.46 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.34–7.26 (m, 4H), 7.23–7.18 (m, 2H), 7.08–6.99 (m, 1H), 6.74 (td, *J* = 6.8, 1.2 Hz, 1H), 5.92 (br, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 172.07, 146.46, 141.30, 132.93, 129.34, 128.37, 122.89, 121.51, 117.61, 116.07, 115.34. HRMS (ESI) m/z calcd for C₁₃H₁₃N₂O⁺ (M+H)⁺ 213.10224, found 213.10234.

IR (cm⁻¹): 3469, 3330, 1665, 1606, 1585, 1510, 756, 743.

(3b) 2-((4-methoxyphenyl)amino)benzamide (CAS : 16328-60-2)


2-((4-methoxyphenyl)amino)benzamide Chemical Formula: C₁₄H₁₄N₂O₂ Exact Mass: 242.1055 Molecular Weight: 242.2732 **2b** (114.0 mg, 0.75 mmol.) as starting material. **3b** was obtained as yellow solid (86.1 mg, 72%) after purification by silica gel flash chromatography (PE:EA = 3:1). Melting point(°C): 128.4-129.8 ¹H NMR (400 MHz, CDCl₃) δ 9.40 (s, 1H), 7.43 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.25–7.19 (m, 1H), 7.18–7.12 (m, 2H), 7.03 (d, *J* = 8.4 Hz, 1H), 6.92–6.86 (m, 2H), 6.69–6.62 (m, 1H), 5.96 (br, 2H), 3.81 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.14, 156.33, 148.41, 133.93, 133.08, 128.28, 125.26, 116.40, 114.64, 114.32, 114.27, 55.54. HRMS (ESI) m/z calcd for C₁₄H₁₅N₂O₂⁺ (M+H)⁺ 243.11280, found

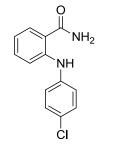
The general procedure A was followed using (4-methoxyphenyl)boronic acid

243.11205.

IR (cm⁻¹): 3479, 3149, 1681, 1596, 1506, 1230, 1022, 838, 732.

(3c) 2-((4-(trifluoromethyl)phenyl)amino)benzamide (CAS : 1382353-86-7)

2-((4-(trifluoromethyl)phenyl)amino)benzamide Chemical Formula: C₁₄H₁₁F₃N₂O Exact Mass: 280.0823 Molecular Weight: 280.2451


The general procedure A was followed using (4-(trifluoromethyl)phenyl)boronic acid 2c (142.5 mg, 0.75 mmol.) as starting material. 3c was obtained as white solid (105.1 mg, 75%) after purification by silica gel flash chromatography (PE:EA = 3:1).

Melting point(°C): 178.2-181.2

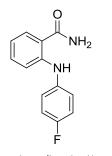
¹H NMR (400 MHz, CDCl₃) δ 9.58 (s, 1H), 7.52–7.45 (dd, *J*=7.6,1.2Hz,1H), 7.39 (dd, *J* = 8.4, 1.2 Hz, 1H), 7.36–7.30 (m, 1H), 7.24 (ddd, *J* = 10.4, 7.6, 4.4 Hz, 1H), 6.99–6.90 (m, 2H), 6.82 (ddd, *J* = 8.1, 7.2, 1.3 Hz, 1H), 6.69 (m, 1H), 5.94 (br, 2H).

¹³C NMR (100 MHz, DMSO-*d*₆) δ 171.29, 146.33, 142.82, 132.44, 129.86, 127.06 (q, *J* = 3 Hz), 125.17 (q, *J* = 269 Hz), 121.18, 120.82 (q, *J* = 32 Hz), 120.55, 117.80, 117.61 ¹⁹F NMR (376 MHz, CDCl₃) δ -61.72. HRMS (ESI) m/z calcd for C₁₄H₁₂F₃N₂O⁺ (M+H)⁺ 281.08962, found 281.08969. IR (cm⁻¹): 3415, 3361, 3198, 1640, 1614, 1527, 1330, 1102, 1068, 834,755.

(3d) 2-((4-chlorophenyl)amino)benzamide (CAS: 13799-33-2)

2-((4-chlorophenyl)amino)benzamide Chemical Formula: C₁₃H₁₁ClN₂O Exact Mass: 246.0560 Molecular Weight: 246.6922 The general procedure A was followed using (4-chlorophenyl)boronic acid 2d (117.3 mg, 0.75 mmol.) as starting material. 3d was obtained as white solid (102.9 mg, 83%) after purification by silica gel flash chromatography (PE:EA = 3:1). Melting point(°C): 160.2-162.3

¹H NMR (400 MHz, CDCl₃) δ 9.54 (s, 1H), 7.48 (dd, J = 8.0, 1.2 Hz, 1H),


7.38–7.21 (m, 4H), 7.14 (d, *J* = 8.8 Hz, 2H), 6.84–6.71 (m, 1H), 5.83 (br, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 171.83, 146.11, 139.93, 133.04, 129.33, 128.36, 127.60, 122.60, 117.99, 116.17, 115.27.

HRMS (ESI) m/z calcd for $C_{13}H_{12}ClN_2O^+$ (M+H)⁺ 247.06327, found 247.06357.

IR (cm⁻¹): 3401, 3364, 3191, 1638, 1587, 1509, 1321, 1092, 827, 755.

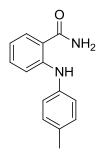
(3e) 2-((4-fluorophenyl)amino)benzamide (CAS: 18201-71-3)

The general procedure A was followed using (4-fluorophenyl)boronic acid **2e** (105.0 mg, 0.75 mmol.) as starting material. **3e** was obtained as yellow solid (93.6 mg, 82%) after purification by silica gel flash chromatography (PE:EA = 3:1).

Melting point(°C): 123.5-125.4

6.79-6.67 (m, 1H), 6.02 (br, 2H).

¹H NMR (400 MHz, CDCl₃) δ 9.48 (s, 1H), 7.45 (dd, J = 8.0, 1.2 Hz, 1H), 7.30–7.22 (td, J = 8.8, 1.2 Hz, 1H), 7.20–7.08 (m, 3H), 7.05–6.95 (m, 2H),


2-((4-fluorophenyl)amino)benzamide Chemical Formula: C₁₃H₁₁FN₂O Exact Mass: 230.0855 Molecular Weight: 230.2376

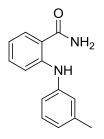
¹³C NMR (100 MHz, CDCl₃) δ 172.03, 159.16 (d, *J* = 241 Hz), 147.39, 137.11 (d, *J* = 3 Hz), 133.11, 128.33, 124.36 (d, *J* = 8 Hz), 117.23, 116.03 (d, *J* = 23 Hz), 115.15, 114.56.

¹⁹F NMR (376 MHz, CDCl₃) δ -119.48.

HRMS (ESI) m/z calcd for $C_{13}H_{12}FN_2O^+$ (M+H)⁺ 231.09282, found 231.09275. IR (cm⁻¹): 3469, 3171, 1866, 1620, 1506, 1218, 818, 737.

(3f) 2-(p-tolylamino)benzamide (CAS: 193265-70-2)

2-(*p*-tolylamino)benzamide Chemical Formula: C₁₄H₁₄N₂O Exact Mass: 226.1106 Molecular Weight: 226.2738

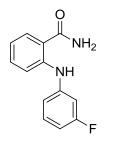

The general procedure A was followed using p-tolylboronic acid **2f** (102.0 mg, 0.75 mmol.) as starting material. **3f** was obtained as yellow solid (86.9 mg, 77%) after purification by silica gel flash chromatography (PE:EA = 3:1). Melting point(°C): 119.7-121.2 ¹H NMR (400 MHz, CDCl₃) δ 9.44 (s, 1H), 7.44 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.30–7.17 (m, 2H), 7.16–7.07 (m, 4H), 6.70 (ddd, *J* = 8.0, 6.7, 1.6 Hz, 1H), 5.90 (br, 2H),

2.33 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.07, 147.28, 138.48, 132.97, 132.85, 129.90, 128.32, 122.41, 116.97, 115.25, 114.87, 20.87.

HRMS (ESI) m/z calcd for $C_{14}H_{15}N_2O^+$ (M+H)⁺ 227.11789, found 227.11789. IR (cm⁻¹): 3466, 3349, 3197, 1635, 1610, 1514, 1287, 747.

(3g) 2-(m-tolylamino)benzamide (CAS: 1188890-42-7)



2-(*m*-tolylamino)benzamide Chemical Formula: C₁₄H₁₄N₂O Exact Mass: 226.1106 Molecular Weight: 226.2738

The general procedure A was followed using m-tolylboronic acid **2g** (102.0 mg, 0.75 mmol.) as starting material. **3g** was obtained as white solid (93.1 mg, 82%) after purification by silica gel flash chromatography (PE:EA = 3:1). Melting point(°C): 118.4-120.1 ¹H NMR (400 MHz, CDCl₃) δ 9.46 (s, 1H), 7.46 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.31 (ddd, *J* = 8.2, 7.6, 1.5 Hz, 2H), 7.24–7.16 (m, 1H), 7.02 (t, *J* = 2.2, 2H), 6.86 (d, *J* = 7.2 Hz, 1H), 6.74 (ddd, *J* = 8.1, 6.7, 1.6 Hz, 1H), 5.75 (br, 2H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.90, 146.59, 141.19, 139.22, 132.92, 129.10, 128.32, 123.75, 122.28, 118.51, 117.42, 115.91, 115.46, 21.48. HRMS (ESI) m/z calcd for C₁₄H₁₅N₂O⁺ (M+H)⁺ 227.11789, found 227.11783.

IR (cm⁻¹): 3373, 3317, 3139, 1660, 1601, 1508, 1487, 1282, 766, 691.

(3h) 2-((3-fluorophenyl)amino)benzamide

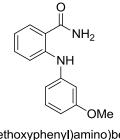
2-((3-fluorophenyl)amino)benzamide Chemical Formula: C₁₃H₁₁FN₂O Exact Mass: 230.0855 Molecular Weight: 230.2376 The general procedure A was followed using (3-fluorophenyl)boronic acid **2h** (105.0 mg, 0.75 mmol.) as starting material. **3h** was obtained as white solid (83.2 mg, 73%) after purification by silica gel flash chromatography (PE:EA = 3:1).

Melting point(°C): 112.5-114.1

¹H NMR (400 MHz, CDCl₃) δ 9.58 (s, 1H), 7.48 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.39 (dd, *J* = 8.4, 1.2 Hz, 1H), 7.36–7.30 (m, 1H), 7.24 (ddd, *J* = 10.4, 7.6,

4.4 Hz, 1H), 7.00–6.89 (m, 2H), 6.82 (ddd, *J* = 8.1, 7.2, 1.3 Hz, 1H), 6.69 (tdd, *J* = 8.4, 2.3, 0.9 Hz, 1H), 5.94 (br, 2H).

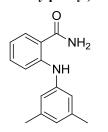
¹³C NMR (100 MHz, CDCl₃) δ 171.90, 163.57 (d, J = 244 Hz), 145.27,


143.33 (d, *J* = 11 Hz), 132.97, 130.43 (d, *J* = 10 Hz), 128.37, 118.60, 117.05,

116.14 (d, J = 3 Hz), 116.08, 109.00 (d, J = 21 Hz), 107.14 (d, J = 24 Hz)

¹⁹F NMR (376 MHz, CDCl₃) δ -112.16.

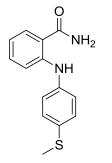
HRMS (ESI) m/z calcd for $C_{13}H_{12}FN_2O^+$ (M+H)⁺ 231.09282, found 231.09291. IR (cm⁻¹): 3445, 3361, 2976, 2360, 1650, 1619, 1529, 1340, 845, 766.


(3i) 2-((3-methoxyphenyl)amino)benzamide (CAS: 1376246-78-4)

2-((3-methoxyphenyl)amino)benzamide Chemical Formula: C₁₄H₁₄N₂O₂ Exact Mass: 242.1055 Molecular Weight: 242.2732 The general procedure A was followed using (3-methoxyphenyl)boronic acid **2i** (114.0 mg, 0.75 mmol.) as starting material. **3i** was obtained as yellow solid (103.6 mg, 86%) after purification by silica gel flash chromatography (PE:EA = 3:1). Melting point(°C): 80.9-82.4 ¹H NMR (400 MHz, CDCl₃) δ 9.50 (s, 1H), 7.47 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.38 (dd, *J* = 8.4, 0.8 Hz, 1H), 7.33–7.27 (m, 1H), 7.21 (t, *J* = 8.0 Hz, 1H), 6.86–6.72 (m, 3H), 6.63–6.56 (m, 1H), 5.78 (br, 2H), 3.79 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.89, 160.60, 146.13, 142.63, 132.92, 130.00, 128.31, 117.81, 116.32, 115.87, 113.60, 108.33, 106.83, 55.30.

HRMS (ESI) m/z calcd for $C_{14}H_{15}N_2O_2^+$ (M+H)⁺ 243.11280, found 243.11259. IR (cm⁻¹): 3328, 3155, 2829, 1661, 1586, 1489, 1268, 1157, 858.

(3j) 2-((3,5-dimethylphenyl)amino)benzamide

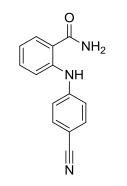


2-((3,5-dimethylphenyl)amino)benzamide Chemical Formula: C₁₅H₁₆N₂O Exact Mass: 240.1263 Molecular Weight: 240.3003 The general procedure A was followed using (3,5-dimethylphenyl)boronic acid **2j** (112.0 mg, 0.75 mmol.) as starting material. **3j** was obtained as white solid (98.9 mg, 82%) after purification by silica gel flash chromatography (PE:EA = 3:1). Melting point(°C): 161.6-165.2 ¹H NMR (400 MHz, CDCl₃) δ 9.40 (s, 1H), 7.45 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.30 (ddd, *J* = 8.2, 7.6, 1.5 Hz, 2H), 6.85 (s, 2H), 6.73 (ddd, *J* = 14.1, 7.8, 4.5 Hz, 2H), 5.80 (br, 2H), 2.29 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 172.00, 146.64, 141.15, 138.99, 132.88,

128.34, 124.71, 119.24, 117.34, 115.95, 115.61, 21.39.

HRMS (ESI) m/z calcd for C₁₅H₁₇N₂O⁺ (M+H)⁺ 241.13354, found 241.13361. IR (cm⁻¹): 3374, 3328, 3143, 2914, 1592, 1511, 1328, 768.

(3k) 2-((4-(methylthio)phenyl)amino)benzamide (CAS: 1382353-90-3)


2-((4-(methylthio)phenyl)amino)benzamide Chemical Formula: C₁₄H₁₄N₂OS Exact Mass: 258.0827 Molecular Weight: 258.3388 The general procedure A was followed using (4-(methylthio)phenyl)boronic acid **2k** (126.0 mg, 0.75 mmol.) as starting material. **3k** was obtained as yellow solid (89.5 mg, 70%) after purification by silica gel flash chromatography (PE:EA = 3:1). Melting point($^{\circ}$ C): 151.4-153.2

¹H NMR (400 MHz, CDCl₃) δ 9.52 (s, 1H), 7.49–7.43 (dd, *J* =8.4, 1.2Hz, 1H), 7.29 (m, 3H), 7.26–7.24 (m, 1H), 7.20–7.12 (m, 2H), 6.75 (ddd, *J* = 8.0, 6.3, 2.0 Hz, 1H), 5.77 (br, 2H), 2.48 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.89, 146.50, 139.10, 132.99, 131.63, 128.96, 128.34, 122.28, 117.59, 115.83, 115.22, 17.20.

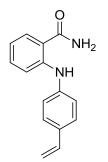
HRMS (ESI) m/z calcd for $C_{14}H_{15}N_2OS^+$ (M+H)⁺ 259.08996, found 259.08994. IR (cm⁻¹): 3407, 3369, 3203, 1630, 1581, 1504, 1314, 804, 755.

(3l) 2-((4-cyanophenyl)amino)benzamide (CAS: 564483-27-8)

The general procedure A was followed using (4-cyanophenyl)boronic acid **21** (110.2 mg, 0.75 mmol.) as starting material. **31** was obtained as white solid (60.8 mg, 51%) after purification by silica gel flash chromatography (PE:EA = 3:1).

Melting point(°C): 158.0-180.0

¹H NMR (400 MHz, CDCl₃) δ 9.92–9.63 (m, 1H), 7.55–7.43 (m, 4H), 7.42– 7.34 (m, 1H), 7.21–7.14 (m, 2H), 6.97–6.87 (m, 1H), 5.84 (d, *J* = 130.0 Hz, 2H).


¹³C NMR (100 MHz, CDCl₃) δ 171.26, 146.03, 143.10, 133.64, 132.90, 128.43, 120.47, 119.61, 119.03, 118.01, 117.60, 103.40.

2-((4-cyanophenyl)amino)benzamide Chemical Formula: C₁₄H₁₁N₃O Exact Mass: 237.0902 Molecular Weight: 237.2566

IR (cm⁻¹): 3442, 3328, 2829, 1661, 1586, 1489, 1268, 1157, 858.

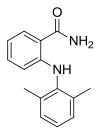
HRMS (ESI) m/z calcd for C₁₄H₁₂N₃O⁺ (M+H)⁺ 238.09749, found

(3m) 2-((4-vinylphenyl)amino)benzamide

2-((4-vinylphenyl)amino)benzamide Chemical Formula: C₁₅H₁₄N₂O Exact Mass: 238.1106 Molecular Weight: 238.2845 The general procedure A was followed using (4-vinylphenyl)boronic acid **2m** (111.0 mg, 0.75 mmol.) as starting material. **3m** was obtained as yellow solid (78.4 mg, 66%) after purification by silica gel flash chromatography (PE:EA = 2:1).

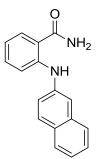
Melting point(°C): 173.2-175.6

238.09811.


¹H NMR (400 MHz, CDCl₃) δ 9.56 (s, 1H), 7.47 (dd, J = 7.6, 1.2 Hz, 1H), 7.35 (ddd, J = 5.9, 4.8, 1.5 Hz, 3H), 7.32–7.27 (m, 1H), 7.21–7.13 (m, 2H), 6.76 (ddd, J = 8.1, 7.1, 1.3 Hz, 1H), 6.68 (dd, J = 17.6, 10.9 Hz, 1H), 6.21–5.53 (m, 3H), 5.16 (dd, J = 10.8, 0.8 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 171.85, 146.07, 140.95, 136.31, 132.95, 132.19, 128.34, 127.20, 121.00, 117.81, 116.23, 115.61, 112.07.

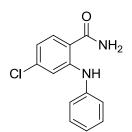
HRMS (ESI) m/z calcd for C₁₅H₁₅N₂O⁺ (M+H)⁺ 239.11789, found 239.11768. 583, 1515, 1325, 898, 834.


IR (cm-1): 3402, 3365, 3202, 1633, 1583, 1515, 1325, 898, 834.

(3n) 2-((2,6-dimethylphenyl)amino)benzamide (CAS:13625-38-2)

The general procedure A was followed using ((2,6-dimethylphenyl) boronic acid **2n** (112.5 mg, 0.75 mmol.) as starting material. **3n** was obtained as yellow solid (44.6 mg, 37%) after purification by silica gel flash chromatography (PE:EA = 3:1). Melting point(°C): 156.7-158.8 ¹H NMR (400 MHz, CDCl₃) δ 9.26 (s, 1H), 7.44 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.20–7.07 (m, 4H), 6.66–6.57 (m, 1H), 6.23 (d, *J* = 8.4 Hz, 1H), 5.81 (br, 2H), 2.21 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 172.16, 149.11, 137.53, 136.69, 133.43, 128.41, 128.18, 126.27, 115.44, 113.30, 112.69, 18.34. HRMS (ESI) m/z calcd for C₁₅H₁₇N₂O⁺ (M+H)⁺ 241.13354, found 241.13353. IR (cm⁻¹): 3480, 3377, 3249, 1651, 1558, 1278, 766, 730.

(30) N-methyl-2-(naphthalen-2-ylamino)benzamide (CAS:1382353-91-4)



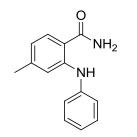
The general procedure A was followed using naphthalen-2-ylboronic acid **20** (129 mg, 0.75 mmol.) as starting material. **30** was obtained as white solid (73.3 mg, 56%) after purification by silica gel flash chromatography (PE:EA = 3:1). Melting point(°C): 141.6-145.5 ¹H NMR (400 MHz, CDCl₃) δ 9.70 (s, 1H), 7.83–7.73 (m, 2H), 7.70 (d, *J* = 8.4 Hz, 1H), 7.62 (s, 1H), 7.53–7.28 (m, 6H), 6.79 (t, *J* = 7.4 Hz, 1H), 5.93 (br, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 171.92, 146.26, 138.95, 134.41, 133.01, 130.12, 129.12, 128.39, 127.67, 126.89, 126.40, 124.29, 122.44, 117.97, 116.40, 116.38, 115.68. HRMS (ESI) m/z calcd for C₁₇H₁₅N₂O⁺ (M+H)⁺ 263.11789, found 263.11789.

Chemical Formula: C₁₇H₁₄N₂O Exact Mass: 262.1106 Molecular Weight: 262.3059

IR (cm⁻¹): 3481, 3152, 2360, 1644, 1528, 1387, 860, 731.

(3p) 4-chloro-2-(phenylamino)benzamide (CAS: 64445-26-7)

Chemical Formula: C₁₃H₁₁ClN₂O Exact Mass: 246.0560 Molecular Weight: 246.6922


The general procedure A was followed using 2-amino-4-chlorobenzamideas **1b** (85.3mg, 0.5mmol.) starting material. **3p** was obtained as white solid (74.9 mg, 60%) after purification by silica gel flash chromatography (PE:EA = 3:1). Melting point(°C): 137.3-139.7

¹H NMR (400 MHz, CDCl₃) δ 9.69 (s, 1H), 7.42–7.31 (t, *J* = 8.4Hz, 3H), 7.25– 7.17 (m, 3H), 7.11 (t, *J* = 7.4 Hz, 1H), 6.68 (dd, *J* = 8.4, 2.0 Hz, 1H), 5.80 (br, 2H).

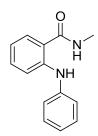
¹³C NMR (100 MHz, CDCl₃) δ 171.32, 148.04, 140.22, 139.28, 129.55, 129.50, 123.97, 122.54, 117.28, 114.29, 113.53.

HRMS (ESI) m/z calcd for $C_{13}H_{12}CIN_2O^+$ (M+H)⁺ 247.06327, found 247.06325. IR (cm⁻¹): 3440, 3165, 2360, 1620, 1589, 1563, 1505, 1273, 1075, 929, 774.

(3q) 4-methyl-2-(phenylamino)benzamide (CAS: 95216-63-0)

Chemical Formula: C₁₄H₁₄N₂O Exact Mass: 226.1106 Molecular Weight: 226.2738

The general procedure A was followed using 2-amino-4-methylbenzamide 1c (75.1mg, 0.5mmol.) starting material. **3q** was obtained as yellow solid (86.5 mg, 77%) after purification by silica gel flash chromatography (PE:EA = 3:1). Melting point(°C): 143.8-145.9 ¹H NMR (400 MHz, CDCl₃) δ 9.57 (s, 1H), 7.37–7.28 (m, 3H), 7.21 (d, *J* = 8.0 Hz, 2H), 7.12 (s, 1H), 7.04 (t, *J*= 7.4 Hz, 1H), 6.55 (d, *J* = 8.0 Hz, 1H), 5.98 (br, 2H),


2.25 (s, 3H).

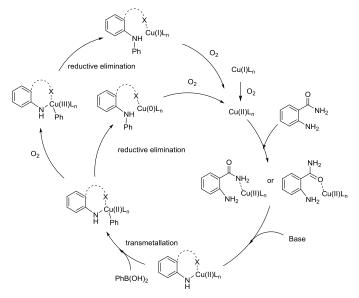
¹³C NMR (100 MHz, CDCl₃) δ 171.97, 146.65, 143.70, 141.37, 129.31, 128.36, 122.82, 121.70, 118.73, 115.39, 113.19, 21.84.

HRMS (ESI) m/z calcd for $C_{14}H_{15}N_2O^+$ (M+H)⁺ 227.11789, found 227.11795.

IR (cm⁻¹): 3409, 3331, 3169, 2975, 1619, 1587, 1511, 1278, 743, 690.

(3r) N-methyl-2-(phenylamino)benzamide (CAS:4-61-7)

Chemical Formula: C₁₄H₁₄N₂O Exact Mass: 226.1106 Molecular Weight: 226.2738 The general procedure A was followed using 2-amino-N-methylbenzamide 1d (75.1mg, 0.5mmol.) starting material. **3r** was obtained as white solid (90.4 mg, 80%) after purification by silica gel flash chromatography (PE:EA = 3:1). Melting point(°C): 87.2-88.8

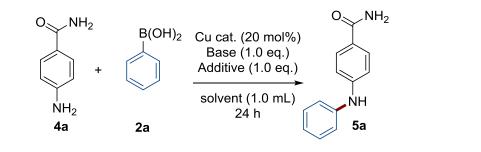

¹H NMR (400 MHz, CDCl₃) δ 9.29 (s, 1H), 7.37 (ddd, *J* = 15.0, 8.1, 1.2 Hz, 2H), 7.33–7.27 (m, 2H), 7.24 (d, *J* = 1.5 Hz, 1H), 7.22–7.14 (m, 2H), 7.00 (t, *J* = 7.4 Hz, 1H), 6.80–6.71 (m, 1H), 6.15 (s, 1H), 2.99 (d, *J* = 4.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 170.23, 145.28, 141.61, 132.07, 129.29, 127.44, 122.33, 120.64, 118.64, 117.97, 115.53, 26.65.

HRMS (ESI) m/z calcd for $C_{14}H_{15}N_2O^+$ (M+H)⁺ 227.11789, found 227.11786.

IR (cm⁻¹): 3379, 3260, 3065, 2882, 2361, 1620, 1551, 1508, 1310, 759, 695.

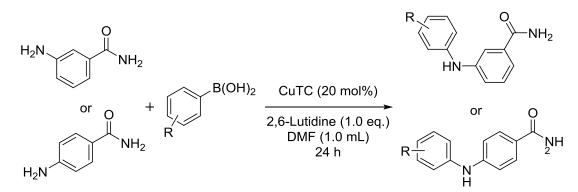
2.5 Proposed mechanism for C-N coupling of o-aminobenzamide



The "n" value in "Cu(X)Ln" might vary in the catalytic cycle.

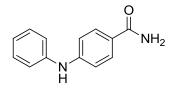
Although it is hard to propose a precise and inerrant catalytic mechanism for this reaction, especially considering the lability of valence state of Cu under air atmosphere, we would like to proposed a possible reaction mechanism based on our experimental observations and literature survey. The plausible reaction mechanism was depicted above. Cu(II) species was thought to be catalytic active complex. After complexation of **1a** with copper catalyst and deprotonation of aniline NH₂, Cu(II) cyclometalated species was formed. Then, the transmetallation process proceeded with PhB(OH)₂, generating Cu(II) species coordinated by nitranion and carbanion. The following reductive elimination would afford the product and Cu(0) complex, which was then oxidized to Cu(II) catalyst. A higher oxidation Cu(III) complex might also participate in this catalytic cycle, due to the oxidation effect of air.

2.6 Table S3: Detailed table of reaction condition optimization for


p-aminobenzamides

Entry	Catalyst	Base	Additive	Solvent	Isolated yields (%)
1	CuCl	TEA	_	MeOH	N.R.
2	Cu(OTf) ₂	TEA	_	MeOH	N.R.

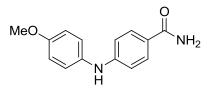
3	Cu(OAc) ₂	2,6-Lutidine	Myristic acid	toluene	23
4	Cu(OAc) ₂	TEA	Myristic acid	toluene	8
5	Cu(OAc) ₂	K ₂ CO ₃ /TEA	_	MeCN	12
6	Cu(OAc) ₂	DMAP	Myristic acid	toluene	N.R.
7	Cu(OAc) ₂	Cs_2CO_3	benzoic acid	MeOH	57
8	CuCl	2,6-Lutidine	Myristic acid	toluene	N.R.
9	CuTC	2,6-Lutidine	_	MeOH	49
10	CuTC	pyridine	_	MeOH	31
11	CuTC	2,6-Lutidine	_	1,4-dioxane	64
12	CuTC	2,6-Lutidine	_	THF	49
13	CuTC	2,6-Lutidine	—	DMF	88


2.7 General procedure B for Cu-catalyzed selective arylation

A flame-dried 100 mL pear shaped flask were placed with a stirring bar. Then, 4-aminobenzamide (68.1 mg, 0.5 mmol, 1.0 eq.), CuTC (19.1 mg, 0.1 mmol, 20 mol%), 2,6-Lutidine (58.0 μ L, 0.5 mmol, 1.0 eq.), arylboronic acid (0.75 mmol, 1.5 eq.), and DMF (1.0 mL) were added. The resulting mixture was stirred vigorously at ambient temperature for 24 hours. The reaction mixture was treated with EtOAc (5.0 mL) and water (5.0 mL). The organic layer was separated, and the aqueous layer was extracted with EtOAc (3 × 5.0 mL). The combined organic phase was washed with brine (2 × 5.0 mL), dried over anhydrous Na₂SO₄, and concentrated to afford residue, which was purified by column chromatography on silica gel to give the target product.

2.8 Cu-catalysed selective arylation of *p*- and *m*-aminobenzamides

(5a) 4-(phenylamino)benzamide (CAS: 183557-73-5)

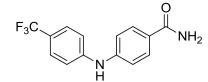


Chemical Formula: C₁₃H₁₂N₂O Exact Mass: 212.0950 Molecular Weight: 212.2472

The general procedure B was followed using phenylboronic acid **2a** (91.4 mg, 0.75 mmol.) as starting material. **6a** was obtained as gray solid (93.7 mg, 88%) after purification by silica gel flash chromatography (PE:EA = 1:2). Melting point(°C): 165.1-169.6 ¹H NMR (400 MHz, CDCl₃) δ 7.89–7.62 (m, 2H), 7.37–7.30 (m, 2H), 7.16 (dt, *J* = 8.7, 1.7 Hz, 2H), 7.09–6.99 (m, 3H), 5.90 (d, *J* = 95.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.92, 147.35, 141.04, 129.54, 129.23, 124.11, 122.99, 120.19, 115.05. O⁺ (M+H)⁺ 213.10224, found 213.10207.

HRMS (ESI) m/z calcd for $C_{13}H_{13}N_2O^+$ (M+H)⁺ 213.10224, found 213.10207. IR (cm⁻¹): 3473, 3325, 2976, 2360, 1652, 1621, 1586, 1525, 1387, 1329, 765, 693.

(5b) 4-((4-methoxyphenyl)amino)benzamide (CAS: 183723-13-9)



Chemical Formula: C₁₄H₁₄N₂O₂ Exact Mass: 242.1055 Molecular Weight: 242.2732

The general procedure B was followed using phenylboronic acid **2b** (114.0 mg, 0.75 mmol.) as starting material. **6b** was obtained as yellow solid (78.4 mg, 65%) after purification by silica gel flash chromatography (PE:EA = 1:2). Melting point(°C): 166.1-170.1 ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 8.8 Hz, 2H), 7.10 (d, J = 8.9 Hz, 2H), 6.87 (d, J = 8.9 Hz, 2H), 6.83–6.77 (m, 2H), 5.78 (br, 3H), 3.79 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 168.17, 155.16, 148.63, 135.12, 129.63, 123.67, 122.46, 115.06, 113.19, 55.69.

HRMS (ESI) m/z calcd for $C_{14}H_{15}N_2O_2^+(M+H)^+$ 243.11280, found 243.11259. IR (cm⁻¹): 3479, 3362, 3327, 2977, 1664, 1591, 1525, 1510, 1374, 1337, 1243, 825, 765.

(5c) 4-((4-(trifluoromethyl)phenyl)amino)benzamide

Chemical Formula: C₁₄H₁₁F₃N₂O Exact Mass: 280.0823 Molecular Weight: 280.2451

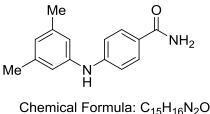
The general procedure B was followed using (4-(trifluoromethyl)phenyl)boronic acid 2c (142.5 mg, 0.75 mmol.) as starting material. **6c** was obtained as white solid (49.6 mg, 41%) after purification by silica gel flash chromatography (PE:EA = 1:2).

Melting point(°C): 135.0-141.2

¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.8 Hz, 2H), 7.54 (d, *J* = 8.8 Hz, 2H), 7.15 (dd, *J* = 18.0, 8.4 Hz, 4H), 6.24 (s, 1H), 5.84 (br, 2H).

¹³C NMR (100 MHz, DMSO-*d*₆) δ 167.88, 146.71, 145.09, 129.58, 127.05 (q, *J* = 3 Hz), 126.90, 125.25 (q, *J* = 269 Hz), 120.20 (q, *J* = 32 Hz), 116.98, 116.64.

¹⁹F NMR (376 MHz, CDCl₃) δ -61.75.


HRMS (ESI) m/z calcd for $C_{14}H_{12}F_3N_2O^+(M+H)^+$ 281.08962, found 281.08963.

IR (cm⁻¹):3388, 3209, 1640, 1602, 1526, 1320, 1110, 1067, 837.

(5d) 4-((3,5-dimethylphenyl)amino)benzamide (CAS: 564483-29-0)

The

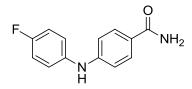
general

Exact Mass: 240.1263 Molecular Weight: 240.3003 4-((3,5-dimethylphenyl)amino)benzamide **2j** (112.5 mg, 0.75 mmol.) as starting material. **6d** was obtained as white solid (106.5 mg, 88%) after purification by silica gel flash chromatography (PE:EA = 1:2). Melting point(°C): 201.1-204.6 ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 8.4 Hz, 2H), 7.00 (d, J = 8.8 Hz, 2H), 6.79 (s, 2H), 6.71 (s, 1H), 5.90 (br, 3H), 2.30 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 169.07, 147.73, 140.83, 139.28, 129.27, 124.91,

В

was

procedure

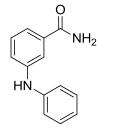

followed

using

123.47, 118.05, 115.06, 21.38.

HRMS (ESI) m/z calcd for $C_{15}H_{17}N_2O^+(M+H)^+$ 241.13354, found 241.13339. IR (cm⁻¹): 3382, 3178, 2976, 1682, 1591, 1335, 855, 773.

(5e) 4-((4-fluorophenyl)amino)benzamide (CAS: 852927-43-6)


Chemical Formula: C₁₃H₁₁FN₂O Exact Mass: 230.0855 Molecular Weight: 230.2376 The general procedure B was followed using (4-fluorophenyl)boronic acid **2e** (105.0 mg, 0.75 mmol.) as starting material. **6d** was obtained as white solid (76.6 mg, 67%) after purification by silica gel flash chromatography (PE:EA = 1:2). Melting point(°C): 167.5-170.6

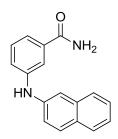
¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, *J* = 8.8 Hz, 2H), 7.14 (dd, *J* = 8.8, 4.6 Hz, 2H), 7.04 (t, *J* = 8.6 Hz, 2H), 6.91 (d, *J* = 8.8 Hz, 2H), 5.87 (s, 1H), 5.67 (br, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 168.96, 159.15 (d, *J* = 241 Hz), 148.09, 136.86 (d, *J* = 2 Hz), 129.30, 123.82, 123.15 (d, *J* = 8 Hz), 116.27 (d, *J* = 23 Hz), 114.32,

¹⁹F NMR (376 MHz, CDCl₃) δ -119.05.

HRMS (ESI) m/z calcd for $C_{13}H_{12}FN_2O^+$ (M+H)⁺ 231.09282, found 231.09279. IR (cm⁻¹): 3417, 3335, 2976, 1698, 1598, 1507, 1338, 1194, 821.

(7a) 3-(phenylamino)benzamide (CAS: 935688-08-7)

Chemical Formula: C₁₃H₁₂N₂O Exact Mass: 212.0950 Molecular Weight: 212.2472


The general procedure B was followed using phenylboronic acid **2a** (91.4 mg, 0.75 mmol.) as starting material. **7a** was obtained as white solid (92.0 mg, 87%) after purification by silica gel flash chromatography (PE:EA = 1:2). Melting point(°C): 154.4-159.6 ¹H NMR (400 MHz, CDCl₃) δ 7.52 (t, *J* = 2.0 Hz, 1H), 7.34–7.24 (m, 5H), 7.21

(ddd, J = 7.8, 2.3, 1.3 Hz, 1H), 7.10 (dd, J = 8.4, 1.0 Hz, 2H), 7.02–6.96 (m, 1H), 5.91 (d, J = 120.0 Hz, 2H).

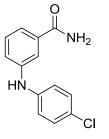
¹³C NMR (100 MHz, CDCl₃) δ 169.44, 143.99, 142.07, 134.55, 129.54, 122.14, 120.37, 119.05, 118.89, 116.19, 100.00.

HRMS (ESI) m/z calcd for $C_{13}H_{13}N_2O^+$ (M+H)⁺ 213.10224, found 213.10213. IR (cm⁻¹): 3338, 3154, 2363, 1657, 1599, 1417, 789, 683.

(7b) 3-(naphthalen-2-ylamino)benzamide (CAS:5-94-4)

Chemical Formula: C₁₇H₁₄N₂O Exact Mass: 262.1106 Molecular Weight: 262.3059

The general procedure B was followed using phenylboronic acid **20** (131.6 mg, 0.75 mmol.) as starting material. **7b** was obtained as gray solid (101.4 mg, 80%) after purification by silica gel flash chromatography (PE:EA = 1:2).

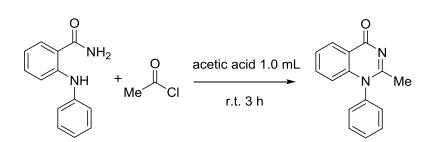

Melting point(°C): 148.6-149.9

¹H NMR (400 MHz, CDCl₃) δ 7.77 (dd, *J* = 8.8, 5.6 Hz, 2H), 7.67 (d, *J* = 8.0 Hz, 1H), 7.58 (t, *J* = 18 Hz, 1H), 7.49–7.39 (m, 2H), 7.38–7.29 (m, 4H), 7.24 (d, *J* = 2.4 Hz, 1H), 5.88 (d, *J* = 143.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.44, 143.78, 139.77, 134.56, 134.46, 129.69, 129.44, 127.70, 126.70, 126.60, 124.07, 120.78, 120.41, 119.52, 116.77, 113.37. HRMS (ESI) m/z calcd for $C_{17}H_{15}N_2O^+$ (M+H)⁺ 263.11789, found 263.11783.

IR (cm⁻¹): 3331, 3153, 2977, 2360, 1660, 1578, 1540, 1421, 1393, 739.

(7c) 3-((4-chlorophenyl)amino)benzamide



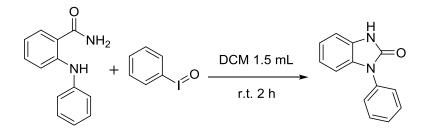
Chemical Formula: C₁₃H₁₁ClN₂O Exact Mass: 246.0560 Molecular Weight: 246.6922 The general procedure B was followed using phenylboronic acid **2d** (131.6 mg, 0.75 mmol.) as starting material. **7c** was obtained as gray solid (58.4 mg, 47%) after purification by silica gel flash chromatography (PE:EA = 1:2). Melting point(°C): 125.9-127.6

¹H NMR (400 MHz, CDCl₃) δ 7.51 (t, *J* = 2 Hz, 1H), 7.35–7.27 (m, 2H), 7.26–7.22 (m, 2H), 7.18 (ddd, *J* = 7.8, 2.4, 1.2 Hz, 1H), 7.06–6.99 (m, 2H), 5.84 (d, *J* = 152.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.53, 143.63, 140.87, 134.61, 129.67, 129.47, 126.61, 120.46, 119.85, 119.33, 116.54.

HRMS (ESI) m/z calcd for $C_{13}H_{12}ClN_2O^+$ (M+H)⁺ 247.06327, found 247.06326. IR (cm⁻¹): 3382, 2976, 2361, 1644, 1531, 1332, 1090, 787.

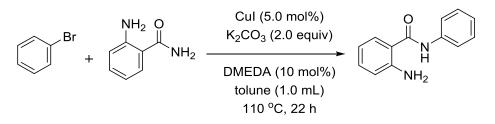
According to literature Chem. Pharm. Bull. 28(3) 702-707 (1980), a flame-dried 25 mL vial were placed with a stirring bar. Then, **3a** (63.6 mg, 0.3 mmol), acetyl chloride 65 μ L (3.0 eq.) and acetic acid (1.0 mL) were added .The resulting mixture was stirred vigorously at ambient temperature for 3 hours and the solvent was evaporated off in vacuo. The residue was dissolved in H₂O and neutralized with aqueous K₂CO₃, to give a crude product. Recrystallization from EtOH gave a pure sample as colorless needles (54.2 mg, 77%).


(12) 2-methyl-1-phenylquinazolin-4(1H)-one (CAS: 1086-20-0)

¹H NMR (400 MHz, CDCl₃) δ 8.35 (dd, J = 7.8, 1.4 Hz, 1H), 7.71–7.61 (m, 3H), 7.50 (ddd, J = 8.6, 7.2, 1.7 Hz, 1H), 7.44–7.38 (m, 1H), 7.36–7.32 (m, 2H), 6.59 (d, J = 8.3 Hz, 1H), 2.27 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.10, 161.07, 142.43, 137.99, 133.39, 130.93, 130.32, 128.34, 128.00, 125.78, 119.11, 116.53, 24.63.

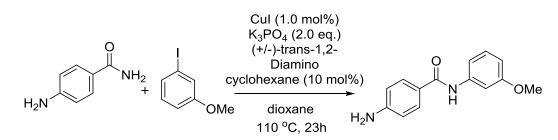
HRMS (ESI) m/z calcd for C₁₅H₁₃N₂O⁺ (M+H)⁺ 237.10224, found 237.10214.


According to literature Eur. J. Org. Chem. 2012, 1994–2000, a flame-dried 25 mL vial were placed with a stirring bar. Then, **3a** (63.6 mg, 0.3 mmol), iodosylbenzene (99.0 mg, 1.5equiv) and DCM (1.5 mL) were added .The resulting mixture was stirred vigorously at ambient temperature for 2 hours. The reaction mixture was filtered, concentrated and then purified by column chromatography on silica gel to give the target product as white solid (58.6mg, 93%).

(13) 1-phenyl-1H-benzo[d]imidazol-2(3H)-one (CAS: 14813-85-5)

¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 8.1 Hz, 1H), 7.62 (t, *J* = 8.9 Hz, 3H), 7.54 (t, *J* = 7.9 Hz, 2H), 7.49–7.43 (m, 1H), 7.33 (t, *J* = 7.4 Hz, 1H), 7.17 (t, *J* = 7.5 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 155.23, 134.44, 130.52, 129.66, 128.19, 127.93, 126.30, 122.32, 121.47, 110.14, 108.87. HRMS (ESI) m/z calcd for $C_{13}H_{11}N_2O^+$ (M+H) + 211.08659, found 211.08650.

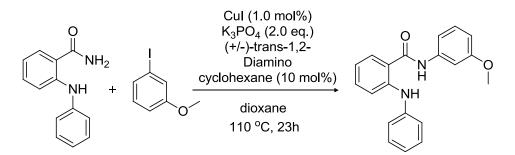


According to literature J. AM. CHEM. SOC. 2003, 125, 6653-6655•6653, a Schlenk tube was charged with CuI (9.7 mg, 0.050 mmol, 5.0 mol%), 2-aminobenzamide (167 mg, 1.2 mmol), K₂CO₃ (276 mg, 2.0 equiv), evacuated and backfilled with argon. N,N'-dimethylethylenediamine (11 μ L, 0.10 mmol, 10 mol%), bromobenzene (106 μ L, 1.0 mmol) and toluene (1.0 mL) were added under argon. The Schlenk tube was sealed with a Teflon valve and the reaction mixture was stirred at 110 °C for 22 h. Product was obtained as white solid (172mg, 85%) after purification by silica gel flash chromatography (PE:EA = 8:1).

(8) 2-amino-N-phenylbenzamide (CAS: 4424-17-3)

¹H NMR (400 MHz, CDCl₃) δ 7.75 (s, 1H), 7.56 (dd, *J* = 8.8, 1.2 Hz, 2H), 7.47 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.36 (t, *J* = 8.0 Hz, 2H), 7.25 (dd, *J* = 15.4, 1.5 Hz, 1H), 7.18 – 7.11 (m, 1H), 6.75 – 6.68 (m, 2H), 5.49 (br, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 167.61, 148.98, 137.87, 132.77, 129.08, 127.19, 124.52, 120.57, 117.56, 116.86, 116.27. HRMS (ESI) m/z calcd for C₁₃H₁₃N₂O⁺ (M+H) + 213.10224, found 213.10252.

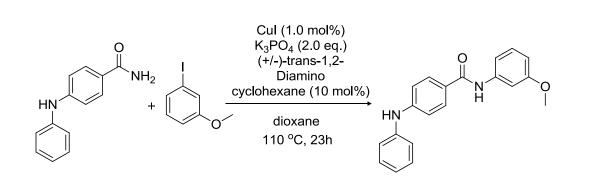
According to literature J. Am. Chem. Soc. 2001, 123, 7727-7729, a Schlenk tube was charged with CuI (1.0 mg, 0.005 mmol, 1.0 mol%), 4-aminobenzamide (83.4 mg, 1.2 mmol), K₃PO₄ (212.5 mg, 2 equiv), evacuated and backfilled with argon. rac-trans-1,2-cyclohexanediamine (7 μ L, 0.05 mmol, 10 mol%), 1-iodo-3-methoxybenzene (70 uL, 0.5 mmol) and toluene (0.5 mL) were added under argon. The Schlenk tube was sealed with a Teflon valve and the reaction mixture was stirred at 110 °C for 23 h. Product was obtained as white solid (90.3mg, 75%) after purification by silica gel flash chromatography (PE:EA = 1:1).


(10) 4-amino-N-(3-methoxyphenyl)benzamide (CAS: 897594-57-9)

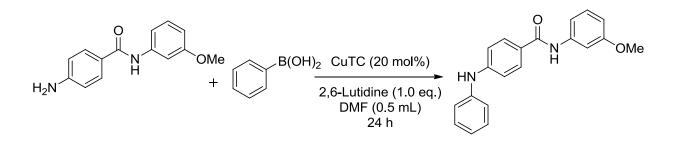
¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 8.8 Hz, 3H), 7.44 (t, J = 2.0 Hz, 1H), 7.23 (d, J = 8.4 Hz, 1H), 7.06 (dd, J = 8.0, 1.2 Hz, 1H), 6.74 - 6.65 (m, 3H), 4.03 (br, 2H), 3.83 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 165.41, 160.23, 149.99, 139.61, 129.66, 128.88, 124.26, 114.27, 112.08, 110.17, 105.56, 55.34.

HRMS (ESI) m/z calcd for $C_{14}H_{15}N_2O_2^+$ (M+H)⁺ 243.11280, found 243.11275.


According to literature J. Am. Chem. Soc. 2001, 123, 7727-7729, a Schlenk tube was charged with CuI (1.0 mg, 0.005 mmol, 1.0 mol%), 2-(phenylamino)benzamide (127.2 mg, 1.2 mmol), K₃PO₄ (212.5 mg, 2 equiv), evacuated and backfilled with argon. rac-trans-1,2-cyclohexanediamine (7 μ L, 0.05 mmol, 10 mol%), 1-iodo-3-methoxybenzene (70 uL, 0.5 mmol) and toluene (0.5 mL) were added under argon. The Schlenk tube was sealed with a Teflon valve and the reaction mixture was stirred at 110 °C for 23 h Product was obtained as yellow viscous liquid (93.7mg, 59%) after purification by silica gel flash chromatography (PE:EA = 8:1).

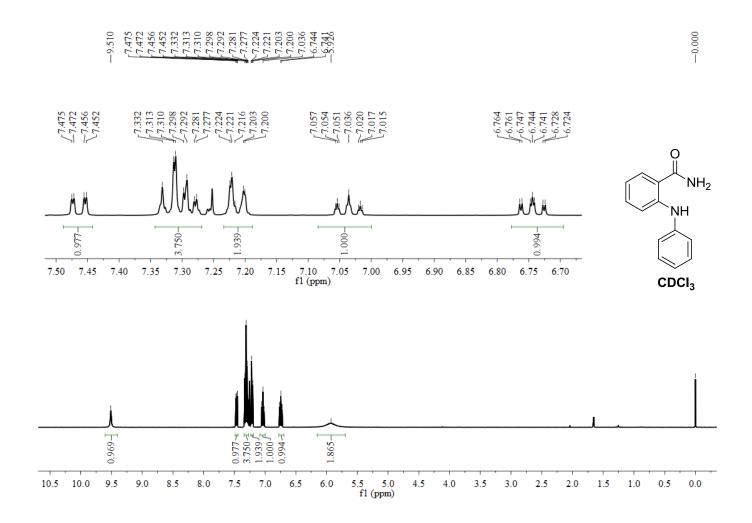
(9) N-(3-methoxyphenyl)-2-(phenylamino)benzamide (CAS: 1181002-63-0)

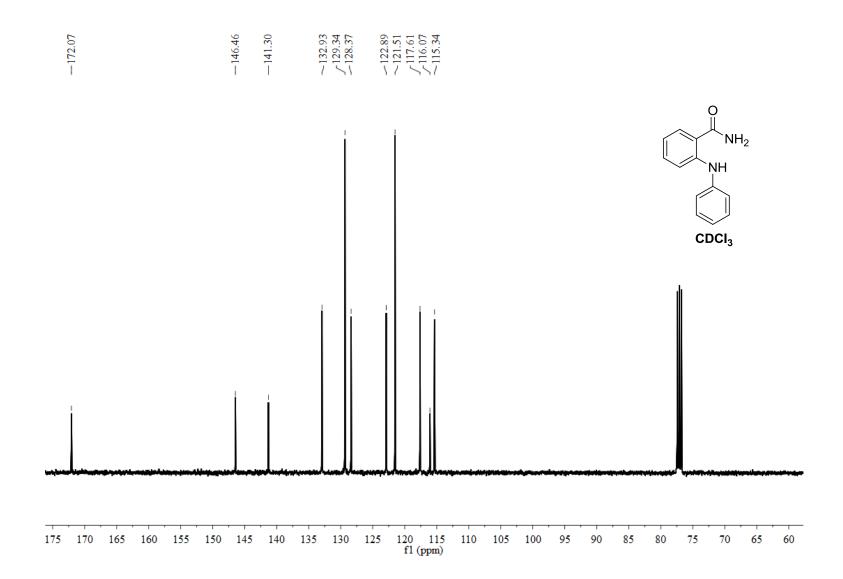

¹H NMR (400 MHz, CDCl₃) δ 9.06 (s, 1H), 7.94 (s, 1H), 7.54 (dd, J = 8.0, 1.2 Hz, 1H), 7.37 – 7.32 (m, 1H), 7.28 (dt, J = 11.9, 5.7 Hz, 4H), 7.22 (d, J = 8.0 Hz, 1H), 7.17 (d, J = 7.6 Hz, 2H), 7.02 (m, 2H), 6.83 – 6.77 (m, 1H), 6.69 (dd, J = 8.4, 2.0 Hz, 1H), 3.79 (s, 3H).

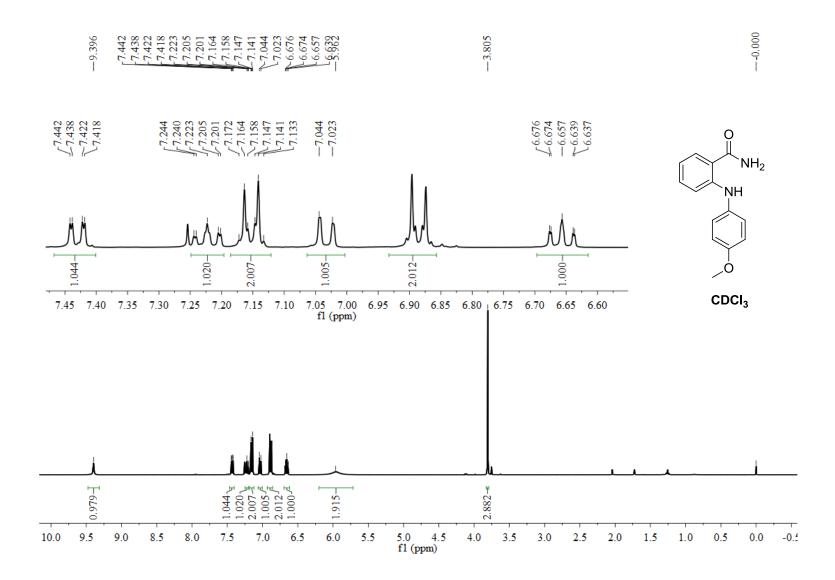
¹³C NMR (101 MHz, CDCl₃) δ 167.78, 160.24, 145.72, 141.40, 138.92, 132.68, 129.81, 129.37, 127.66, 122.71, 120.91, 118.86, 118.32, 116.00, 112.86, 110.57, 106.44, 55.38.

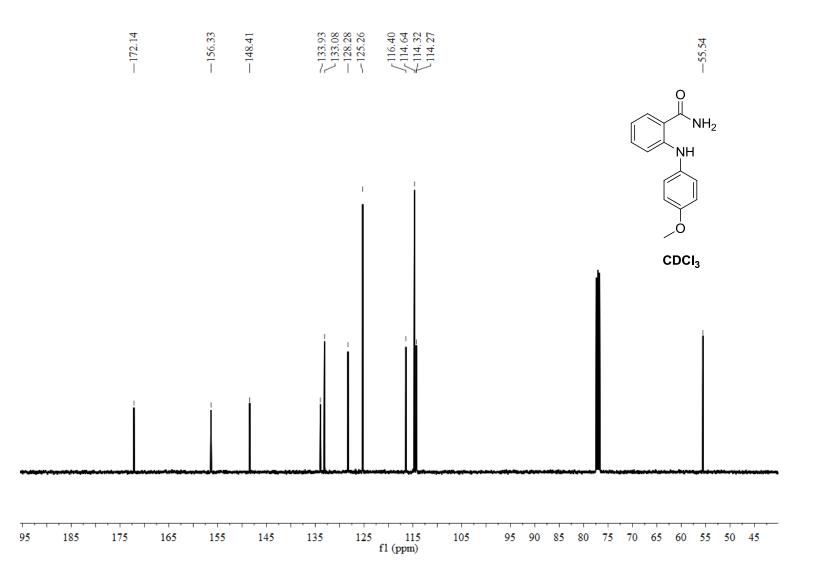
HRMS (ESI) m/z calcd for $C_{20}H_{19}N_2O_2^+$ (M+H)⁺ 319.14410, found 319.14423.

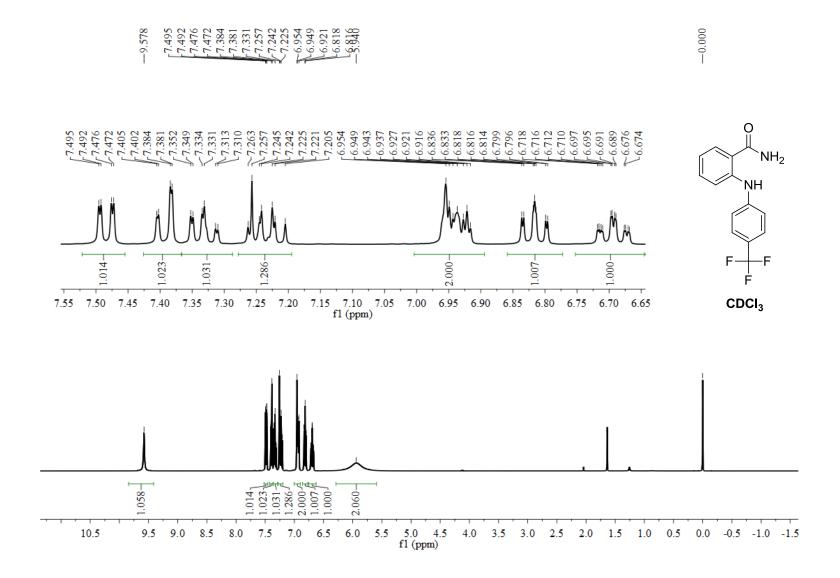
According to literature J. Am. Chem. Soc. 2001, 123, 7727-7729, a Schlenk tube was charged with CuI (1.0 mg, 0.005 mmol, 1.0 mol%), 4-(phenylamino)benzamide (127.2 mg, 1.2 mmol), K₃PO₄ (212.5 mg, 2 equiv), evacuated and backfilled with argon. rac-trans-1,2-cyclohexanediamine (7 μ L, 0.05 mmol, 10 mol%), 1-iodo-3-methoxybenzene (70 uL, 0.5 mmol) and toluene (0.5 mL) were added under argon. The Schlenk tube was sealed with a Teflon valve and the reaction mixture was stirred at 110 °C for 23 h. Product was obtained as white solide (155.1mg, 97%) after purification by silica gel flash chromatography (PE:EA = 3:1).


A flame-dried 100 mL pear shaped flask were placed with a stirring bar. Then, 4-amino-N-(3-methoxyphenyl)benzamide (48.4 mg, 0.2 mmol, 1.0 eq.), CuTC (7.6 mg, 0.04 mmol, 20 mol%), 2,6-Lutidine (23 μ L, 0.2 mmol, 1.0 eq.), arylboronic acid (36.6 mg, 0.75 mmol, 1.5 eq.), and DMF (0.5 mL) were added. The resulting mixture was stirred vigorously at ambient temperature for 24 hours. The reaction mixture was treated with EtOAc (5.0 mL) and water (5.0 mL). The organic layer was separated, and the aqueous layer was extracted with EtOAc (3 × 5.0 mL). The combined organic phase was washed with brine (2 × 5.0 mL), dried over anhydrous Na₂SO₄, and concentrated to afford residue, which was purified by column chromatography on silica gel to give the target product, Product was obtained as white solide (59.3 mg, 93%) after purification by silica gel flash chromatography (PE:EA = 3:1).


(11) N-(3-methoxyphenyl)-4-(phenylamino)benzamide


¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.8 Hz, 2H), 7.73 (s, 1H), 7.45 (t, *J* = 4.0, 2.0 Hz, 1H), 7.34 (t, *J* = 16, 8.4 Hz, 2H), 7.23 (d, *J* = 8.4 Hz, 1H), 7.17 (d, *J* = 7.2 Hz, 2H), 7.06 (t, *J* = 16.8, 8.0 Hz, 4H), 6.69 (dd, *J* = 8.0, 1.6 Hz, 1H), 6.02 (s, 1H), 3.83 (s, 3H).


¹³C NMR (101 MHz, CDCl₃) δ 165.25, 160.24, 147.24, 141.04, 139.53, 129.69, 129.55, 128.80, 125.66, 122.98, 120.14, 115.24, 112.16, 110.27, 105.64, 55.35.


4 Copies of NMR

