SUPPLEMENTARY INFORMATION

Structure-reactivity correlations of the abnormal Beckmann reaction of dihydrolevoglucosenone oxime

Amani Alhifthi, Lars Goergik, Jonathan M. White,* Spencer J. Williams*

School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia, 3010

Table of Contents

Table S1. Bond distances and angles for oximes 1-8 derived from single crystal X-ray structures3
Table S2. Natural atomic charges for oximes at PW6B95/def2-TZVP level of theory. 5
Table S3. Donor-acceptor stabilization energies (E(2)) for $\sigma_{C1-C2} \rightarrow \sigma^*_{N-O}$ interactions in Cyrene and cyclohexanone oximes at the revPBE/def2-TZVP level of theory
Table S4. Donor-acceptor stabilization energies (E(2)) for $n_{05} \rightarrow \sigma^*_{C1-C2}$ and $n_{06} \rightarrow \sigma^*_{C1-C2}$ interactions for Cyrene oximes at the revPBE/def2-TZVP level of theory
Table S5. Donor-acceptor stabilization energies (E(2)) for $\sigma_{C1-C2} \rightarrow \sigma^*_{N-O}$ interactions in Cyrene and cyclohexanone oximes at the TPSS/def2-TZVP level of theory
Table S6. Donor-acceptor stabilization energies (E(2)) for $n_{05} \rightarrow \sigma^*_{C1-C2}$ and $n_{06} \rightarrow \sigma^*_{C1-C2}$ interactions for Cyrene oximes at the TPSS/def2-TZVP level of theory
Table S7. Donor-acceptor stabilization energies (E(2)) for $\sigma_{C1-C2} \rightarrow \sigma^*_{N-O}$ interactions in Cyrene and cyclohexanone oximes at the B3LYP/def2-TZVP level of theory
Table S8. Donor-acceptor stabilization energies (E(2)) for $n_{05} \rightarrow \sigma^*_{C1-C2}$ and $n_{06} \rightarrow \sigma^*_{C1-C2}$ interactions for Cyrene oximes at the B3LYP/def2-TZVP level of theory
Table S9. Donor-acceptor stabilization energies (E(2)) for $\sigma_{C1-C2} \rightarrow \sigma^*_{N-O}$ interactions in Cyrene and cyclohexanone oximes at the PBE0/def2-TZVP level of theory
Table S10. Donor-acceptor stabilization energies (E(2)) for $n_{05} \rightarrow \sigma^*_{C1-C2}$ and $n_{06} \rightarrow \sigma^*_{C1-C2}$ interactions for Cyrene oximes at the PBE0/def2-TZVP level of theory
Table S11. NBO hybrid orbitals for the σ_{C1-C2} bond
<i>Table S12. NBO hybrid orbitals for the</i> σ_{C2-N} <i>and</i> π_{C2-N} <i>bonds</i>
Table S13. NBO hybrid orbitals for the σ_{C1-O5} bond.12
Table S14. NBO hybrid orbitals for the σ_{C1-O6} bond
Table S15. NBO hybrid orbitals for the σ_{N-O} bonds

Table S16. NBO hybrid orbitals for the σ_{C2-C3} bond	15
Table S17. NBO hybrid orbitals for the N lone pair.	16
Figure S1. Plots showing variations in a range of geometric parameters for the series of oximes 8. (a) Bond distances and (b) angles, as a function of leaving group ability	s 1- 17
Figure S2. Plots showing variations in (a) C2 chemical shift and (b) C1 chemical shift, as a function of leaving group ability.	18
Figure S3. Plots showing comparison of $n_{05} \rightarrow \sigma^*_{C1-C2}$ and $n_{06} \rightarrow \sigma^*_{C1-C2}$ interactions at the Tand PW6B95 levels of theory, as a function of leaving group ability.	'PSS 19
Optimized Geometries of Cyrene Oximes	20
(Z)-Dihydrolevoglucosenone oxime	20
(Z)-Dihydrolevoglucosenone O-(phenyl)oxime	21
(Z)-Dihydrolevoglucosenone O-(acetyl)oxime	23
(Z)-Dihydrolevoglucosenone O-(3-nitrobenzoyl)oxime	24
(Z)-Dihydrolevoglucosenone O-(3,5-dinitrobenzoyl)oxime	26
(Z)-Dihydrolevoglucosenone O-(trifluoroacetyl)oxime	28
Cyclohexanone oxime	29
Cyclohexanone <i>O</i> -(phenyl)oxime	30
Cyclohexanone <i>O</i> -(acetyl)oxime	32
Cyclohexanone O-(3-nitrobenzoyl)oxime	33
Cyclohexanone O-(3,5-dinitrobenzoyl)oxime	35
Cyclohexanone O-(trifluoroacetyl)oxime	37
¹ H-NMR and ¹³ C-NMR spectra for Oximes (1-8):	38
(<i>Z</i>)-Dihydrolevoglucosenone oxime (1).	38
(Z)-Dihydrolevoglucosenone O-(4-bromobenzyl)oxime (2).	40
(<i>Z</i>)-Dihydrolevoglucosenone <i>O</i> -(phenyl)oxime (3).	42
(Z)-Dihydrolevoglucosenone O-(4-nitrophenyl)oxime (4)	44
(<i>Z</i>)-Dihydrolevoglucosenone <i>O</i> -(acetyl)oxime (5)	46
(<i>Z</i>)-Dihydrolevoglucosenone <i>O</i> -(3-nitrobenzoyl)oxime (6)	48
(<i>Z</i>)-Dihydrolevoglucosenone <i>O</i> -(4-nitrobenzoyl)oxime (7)	50
(Z)-Dihydrolevoglucosenone O-(3,5-dinitrobenzoyl)oxime (8)	52
Dihydrolevoglucosenone <i>O</i> -(2-nitrobenzoyl)oxime (11).	56
Nitriles 12 and 13	58

Table S1. Bond distances and angles for oximes 1-8 derived from single crystal X-ray structures.

Distances are in Ångstroms, angles are in degrees. pK_a values are from Ref. {Dean, 1999 #7949} Except for 4-bromobenzyl alcohol, for which the pK_a value was predicted using the Advanced Chemistry Development (ACD/Labs) Software V11.02.

p <i>K</i> _a value	N-O	C1-C2	C2-C3	C1-O1	C1-O5	N-C2	C1-C2-N	C2-N-O	01-C1-O5	C3-C2-N	O1-C1-C2	O5-C1-C2
16	1.405(1)	1.503(2)	1.500(1)	1.416(2)	1.425(1)	1.278(1)	116.4(4)	112.69(9)	105.39(9)	127.9(1)	108.31(9)	109.98(9)
	1.408(1)	1.505(2)	1.500(2)	1.409(1)	1.428(1)	1.280(1)	115.8(1)	112.27(9)	105.45(9)	127.1(1)	109.33(9)	109.11(9)
14.2	1.417(5)	1.505(5)	1.504(6)	1.405(5)	1.420(5)	1.278(5)	115.5(3)	111.5(3)	105.8(3)	128.7(4)	110.1(3)	109.3(3)
	1.410(5)	1.502(5)	1.499(6)	1.415(5)	1.425(5)	1.276(5)	115.5(3)	112.1(3)	105.9(3)	130.0(4)	107.7(3)	110.3(3)
9.9	1.426(2)	1.505(2)	1.449(2)	1.403(2)	1.425(2)	1.276(2)	114.3(1)	110.5(1)	106.0(1)	129.1(1)	109.2(1)	109.0(1)
7.15	1.437(2)	1.513(3)	1.500(3)	1.405(2)	1.425(2)	1.273(2)	115.5(2)	109.7(1)	106.2(1)	129.0(2)	109.0(2)	108.1(2)
4.75	1.441(1)	1.515(2)	1.499(2)	1.403(2)	1.423(2)	1.276(2)	114.4(1)	109.4(1)	106.1(1)	129.9(1)	110.0(1)	107.6(1)
3.46	1.442(1)	1.515(1)	1.501(1)	1.406(1)	1.421(1)	1.275(2)	114.61(9)	109.30(8)	105.94(8)	130,4(1)	107.38(8)	110.03

3

3.44	1.445(3)	1.516(5)	1.499(5)	1.405(4)	1.411(4)	1.275(4)	114.0(3)	109.1(2)	106.2(3)	129.4(3)	109.3(3)	108.4(3)
	1.444(5)	1.509(5)	1.505((5)	1.413(4)	1.425(4)	1.271(4)	114.7(3)	108.8(3)	105.6(3)	130.7(3)	107.2(3)	110.1(3)
	1.448(4)	1.512(5)	1.498(5)	1.406(5)	1.420(4)	1.276(4)	115.9(3)	108.1(2)	105.8(3)	129.1(3)	108.7(3)	108.7(3)
	1.447(4)	1.510(5)	1.498(5)	1.412(4)	1.419(4)	1.272(5)	115.0(3)	108.0(3)	105.9(3)	130.6(3)	107.7(3)	109.9(3)
2.85	1.445(3)	1.516(5)	1.499(5)	1.405(4)	1.411(4)	1.278(3)	115.1(2)	108.3(2)	106.2(2)	128.9(2)	109.0(2)	108.1(2)

		Cyrene	oximes	Cyclohexanone oximes			
R	pK _a	C1	05	O6	C2	C1	C-anti
Н	16	0.3058 3	-0.48453	-0.49869	0.17671	0.22821	-0.43697
C ₆ H ₅	9.9	0.3054 4	-0.48230	-0.49703	0.20595	0.25918	-0.43845
CH ₃ CO	4.75	0.3046 0	-0.48048	-0.49566	0.21098	0.27141	-0.44008
3-NO ₂ C ₆ H ₄ CO	3.46	0.3044 3	-0.47820	-0.49448	0.21763	0.27124	-0.43989
3,5- (NO ₂) ₂ C ₆ H ₃ C O	2.85	0.3046 1	-0.47741	-0.49314	0.22550	0.28207	-0.44088
CF ₃ CO	0.50	0.3045 0	-0.47660	-0.49214	0.23163	0.28227	-0.44089

 Table S2. Natural atomic charges for oximes at PW6B95/def2-TZVP level of theory.

Table S3. Donor-acceptor stabilization energies (E(2)) for $\sigma_{C1-C2} \rightarrow \sigma^*_{N-O}$ interactions in Cyrene and cyclohexanone oximes at the revPBE/def2-TZVP level of theory.

		Cyrene oximes				
R	pK _a	<i>E</i> (2)	$\Delta \mathrm{E}_{\mathrm{ij}}$	q _i		
		(kcal mol ⁻¹)	(au)			
Н	16	4.81	0.46	1.96979		
CH ₃ CO	4.75	5.42	0.44	1.96598		
CF ₃ CO	0.50	5.96	0.42	1.96096		

Calculations at this level of theory were only performed on a subset of structurally simple oximes.

Table S4. Donor-acceptor stabilization energies (*E*(2)) for $n_{05} \rightarrow \sigma^*_{C1-C2}$ and $n_{06} \rightarrow \sigma^*_{C1-C2}$ interactions for Cyrene oximes at the revPBE/def2-TZVP level of theory.

		LP O5			LP O6			
R	pK _a	<i>E</i> (2)	ΔE_{ij}	q _i	<i>E</i> (2)	ΔE _{ij}	q _i	
		(kcal mol ⁻¹)	(au)		(kcal mol ⁻¹)	(au)		
Н	16	1.76	0.66	1.88928	1.79	0.65	1.89863	
CH ₃ CO	4.75	1.85	0.65	1.88648	1.85	0.64	1.89639	
CF ₃ CO	0.50	1.95	0.64	1.88361	1.95	0.64	1.89368	

Calculations at this level of theory were only performed on a subset of structurally simple oximes.

Cyrene oximes Cyclohexanone oximes ΔE_{ij} R pK_a *E*(2) ΔE_{ij} *E*(2) q_i q_i (kcal mol⁻¹) (kcal mol-(au) (au) ¹) Η 16 4.84 0.49 1.97051 4.80 0.47 1.96761 1.96591 C_6H_5 9.9 5.13 0.49 1.96884 5.12 0.46 CH₃CO 1.96671 1.96436 4.75 5.46 0.47 5.36 0.45 3-NO₂C₆H₄CO 0.47 1.96350 5.42 1.96400 3.46 5.51 0.45 3,5-2.85 0.46 5.69 1.96364 5.58 0.44 1.96252 $(NO_2)_2C_6H_3CO$ CF₃CO 0.50 6.01 0.44 1.96171 5.90 0.42 1.95950

Table S5. Donor-acceptor stabilization energies (E(2)) for $\sigma_{C1-C2} \rightarrow \sigma^*_{N-O}$ interactions in Cyrene and cyclohexanone oximes at the TPSS/def2-TZVP level of theory.

Table S6. Donor-acceptor stabilization energies (*E*(2)) for $n_{05} \rightarrow \sigma^*_{C1-C2}$ and $n_{06} \rightarrow \sigma^*_{C1-C2}$ interactions for Cyrene oximes at the TPSS/def2-TZVP level of theory.

		LP O5			LP O6		
R	p <i>K</i> _a	<i>E</i> (2)	ΔE_{ij}	q_i	<i>E</i> (2)	$\Delta \mathrm{E}_{\mathrm{ij}}$	q_i
		(kcal mol ⁻¹)	(au)		(kcal mol ⁻¹)	(au)	
Н	16	1.81	0.70	1.89305	1.85	0.69	1.90177
C ₆ H ₅	9.9	1.86	0.70	1.89160	1.85	0.69	1.90050
CH ₃ CO	4.75	1.91	0.69	1.89036	1.92	0.69	1.89964
3-NO ₂ C ₆ H ₄ CO	3.46	1.97	0.69	1.88918	1.94	0.68	1.89829
3,5-(NO ₂) ₂ C ₆ H ₃ CO	2.85	2.02	0.69	1.8820	1.98	0.68	1.89721
CF ₃ CO	0.50	2.02	0.69	1.88752	2.02	0.68	1.89698

Table S7. Donor-acceptor stabilization energies (*E*(2)) for $\sigma_{C1-C2} \rightarrow \sigma^*_{N-O}$ interactions in Cyrene and cyclohexanone oximes at the B3LYP/def2-TZVP level of theory.

		Cyrene oximes					
R	p <i>K</i> _a	<i>E</i> (2)	ΔE _{ij}	q _i			
		(kcal mol ⁻¹)	(au)				
Н	16	5.23	0.60	1.97314			
CH ₃ CO	4.75	5.94	0.58	1.96958			
CF ₃ CO	0.50	6.62	0.55	1.96512			

Calculations at this level of theory were only performed on a subset of structurally simple oximes.

Table S8. Donor-acceptor stabilization energies (*E*(2)) for $n_{05} \rightarrow \sigma^*_{C1-C2}$ and $n_{06} \rightarrow \sigma^*_{C1-C2}$ interactions for Cyrene oximes at the B3LYP/def2-TZVP level of theory.

Calculations at this level of theory were only performed on a subset of structurally simple oximes.

		LP O5			LP O6		
R	pK _a	<i>E</i> (2)	ΔE_{ij}	q _i	<i>E</i> (2)	ΔE_{ij}	q _i
		(kcal mol ⁻¹)	(au)		(kcal mol ⁻¹)	(au)	
Н	16	2.77	0.73	1.90473	2.91	0.73	1.91281
CH ₃ CO	4.75	2.90	0.73	1.90272	2.90	0.72	1.91135
CF ₃ CO	0.50	3.06	0.72	1.90046	3.15	0.71	1.90928

Table S9. Donor-acceptor stabilization energies (E(2)) for $\sigma_{C1-C2} \rightarrow \sigma^*_{N-O}$ interactions in Cyrene and cyclohexanone oximes at the PBE0/def2-TZVP level of theory.

		Cyrene oximes					
R	pK _a	<i>E</i> (2)	ΔE _{ij}	q _i			
		(kcal mol ⁻¹)	(au)				
Н	16	5.79	0.65	1.97346			
CH ₃ CO	4.75	6.58	0.63	1.96981			
CF ₃ CO	0.50	7.34	0.60	1.96540			

Calculations at this level of theory were only performed on a subset of structurally simple oximes.

Table S10. Donor-acceptor stabilization energies (*E*(2)) for $n_{05} \rightarrow \sigma^*_{C1-C2}$ and $n_{06} \rightarrow \sigma^*_{C1-C2}$ interactions for Cyrene oximes at the PBE0/def2-TZVP level of theory.

		LP O5			LP O6		
R	p <i>K</i> _a	<i>E</i> (2)	ΔE _{ij}	q _i	<i>E</i> (2)	ΔE _{ij}	q _i
		(kcal mol ⁻¹)	(au)		(kcal mol ⁻¹)	(au)	
Н	16	3.40	0.75	1.90483	3.59	0.75	1.91286
CH ₃ CO	4.75	3.55	0.75	1.90287	3.70	0.74	1.91140
CF ₃ CO	0.50	3.72	0.74	1.90068	3.87	0.73	1.90939

Calculations at this level of theory were only performed on a subset of structurally simple oximes.

R	pK _a	bond	atom	$h_{ m A}$	C_A	%s	%p	%d
Н	16	σC1-C2	C1	$sp^{2.49}d^{0.01}$	0.7043	28.64	71.20	0.15
			C2	<i>sp</i> ^{2.38}	0.7099	29.54	70.32	0.10
C_6H_5	9.9	σC1-C2	C1	$sp^{2.51}d^{0.01}$	0.7037	28.46	71.38	0.15
			C2	$sp^{2.41}$	0.7105	29.27	70.59	0.10
CH ₃ CO	4.75	σC1-C2	C1	$sp^{2.54}d^{0.01}$	0.7029	28.20	71.63	0.15
			C2	<i>sp</i> ^{2.44}	0.7113	29.06	70.80	0.10
3-NO2C4H4CO	3 46	σC1-C2	C1	$sp^{2.57}d^{0.01}$	0 7018	27 97	71 87	0.15
0 11020011400	00		C2	sp ^{2.43}	0.7123	29.09	70.77	0.10
3,5-(NO ₂) ₂ C ₆ H ₃ CO	2.85	σC1-C2	C1	$sp^{2.60}d^{0.01}$	0.7010	27.77	72.06	0.15
			C2	$sp^{2.44}$	0.7131	29.02	70.84	0.10
CF ₃ CO	0.50	σC1-C2	C1	$sp^{2.61}d^{0.01}$	0.7007	27.64	72.19	0.15
			C2	$sp^{2.46}$	0.7134	28.85	71.02	0.10

Table S11. NBO hybrid orbitals for the $\sigma_{C1\text{-}C2}$ bond.

Table S12. NBO hybrid orbitals for the $\sigma_{C2\text{-}N}$ and $\pi_{C2\text{-}N}$ bonds.

							2 (
R	p <i>K</i> _a	bond	atom	h_{A}	C_A	%s	%р	%d
Н	16	σC2-N	C2	<i>sp</i> ^{1.84}	0.6486	35.23	64.65	0.07
			Ν	$sp^{1.47}d^{0.01}$	0.7611	40.36	59.13	0.49
			C2					
		πC2-N	Ν	$sp^{1.00}$	0.6561	0.00	99.85	0.10
				$sp^{1.00}$	0.7547	0.00	99.69	0.29
C_6H_5	9.9	σC2-N	C2	$sp^{1.82}$	0.6467	35.45	64.43	0.07
			Ν	$sp^{1.48}d^{0.01}$	0.7627	40.19	59.30	0.50
		πC2-N	C2	1.00	0 (170	0.00	00.05	0.11
			C2	<i>sp</i> ^{1.00}	0.6478	0.00	99.85	0.11
			Ν	$sp^{1.00}$	0.7618	0.00	99.68	0.30
CH ₃ CO	4.75	σC2-N	C2	$sp^{1.81}$	0.6490	35.51	64.37	0.08
			Ν	$sp^{1.52}d^{0.01}$	0.7608	39.45	60.01	0.52
		πC2-N	C2	1.00	0.6466	0.00	00.04	0.11
			C2	$sp^{1.00}$	0.6466	0.00	99.84	0.11
			Ν	$sp^{1.00}$	0.7628	0.00	99.65	0.33
3-NO ₂ C ₆ H ₄ CO	3.46	σC2-N	C2	$sp^{1.82}$	0.6487	35.44	64.44	0.08
			Ν	$sp^{1.52}d^{0.01}$	0.7611	39.44	60.01	0.53
		πC2-N	C^{2}	cn 1.00	0.6433	0.00	00 8/	0.12
			N	sp sp ^{1.00}	0.0455	0.00	99.64	0.12
			1	sp	0.7050	0.00	JJ.0 1	0.54
3,5-(NO ₂) ₂ C ₆ H ₃ CO	2.85	σC2-N	C2	$sp^{1.83}$	0.6482	35.35	64.52	0.08
			Ν	$sp^{1.52}d^{0.01}$	0.7615	39.52	59.94	0.53
		πC2-N	C^{2}	sp1.00	0 6389	0.00	00.83	0.12
			N	sp sp ^{1.00}	0.0505	0.00	99.64	0.12
			14	sp	0.7075	0.00	JJ.0 1	0.54
CF ₃ CO	0.5	σC2-N	C2	$sp^{1.83}$	0.6481	35.31	64.57	0.08
			Ν	$sp^{1.50}d^{0.01}$	0.7616	39.71	59.75	0.53
		πC2-N	C^{2}	sp1.00	0.6351	0.00	99 83	0.13
			N	sp $sp^{1.00}$	0 7724	0.00	99 6 <i>1</i>	0.15
			1 N	sp	0.7724	0.00	77.0 4	0.54

R	pK _a	bond	atom	$h_{ m A}$	C_A	%s	%р	%d
Н	16	σ C1-O5	C1	$sp^{3.52}d^{0.01}$	0.5918	22.10	77.77	0.12
			05	$sp^{3.24}d^{0.01}$	0.8061	23.52	76.13	0.34
C_6H_5	9.9	σ C1-O5	C1	$sp^{3.51}d^{0.01}$	0.5924	22.17	77.70	0.12
			05	$sp^{3.23}d^{0.01}$	0.8056	23.56	76.09	0.35
CH ₃ CO	4.75	σ C1-O5	C1	$sp^{3.50}d^{0.01}$	0.5924	22.21	77.65	0.12
			05	$sp^{3.21}d^{0.01}$	0.8056	23.65	76.00	0.35
3-NO ₂ C ₆ H ₄ CO	3.46	σ C1-O5	C1	$sp^{3.47}d^{0.01}$	0.5931	22.32	77.55	0.12
			05	$sp^{3.21}d^{0.01}$	0.8051	23.67	75.97	0.35
3,5-(NO ₂) ₂ C ₆ H ₃ CO	2.85	σ C1-O5	C1	sp ^{3.46} d ^{0.01}	0.5936	22.39	77.48	0.12
			05	$sp^{3.20}d^{0.01}$	0.8048	23.71	75.93	0.35
CF ₃ CO	0.5	σ C1-O5	C1	$sp^{3.46}d^{0.01}$	0.5938	22.40	77.47	0.12
			O5	$sp^{3.21}d^{0.01}$	0.8046	23.68	75.97	0.35

Table S13. NBO hybrid orbitals for the $\sigma_{C1\text{-}O5}$ bond.

R	pK _a	bond	atom	h _A	C_A	%s	%p	%d
Н	16	σ C1-O6	C1	$sp^{3.54}d^{0.01}$	0.5905	22.00	77.88	0.11
			06	$sp^{3.11}d^{0.01}$	0.8071	24.26	75.42	0.30
C_6H_5	9.9	σ C1-O6	C1	$sp^{3.53}d^{0.01}$	0.5911	22.07	77.81	0.11
			06	$sp^{3.10}d^{0.01}$	0.8066	24.30	75.39	0.31
			~ .	2 52 50 01				
CH ₃ CO	4.75	σ C1-O6	Cl	$sp^{3.52}d^{0.01}$	0.5911	22.10	77.78	0.11
			06	$sp^{3.10}d^{0.01}$	0.8066	24.32	75.36	0.31
	2.46	- 61 0(C 1	3 51 10 01	0.5017	22.16	77 70	0.11
3-NO ₂ C ₆ H ₄ CO	3.40	6 CI-06	CI	spsisia	0.3917	22.10	11.12	0.11
			06	$sp^{3.10}d^{0.01}$	0.8062	24.32	75.36	0.31
3,5-(NO ₂) ₂ C ₆ H ₃ CO	2.85	σ C1-O6	C1	$sp^{3.49}d^{0.01}$	0.5924	22.27	77.61	0.11
			O6	$sp^{3.09}d^{0.01}$	0.8057	24.39	75.30	0.31
	0.5		61	3 47 10 01	0.5007	22 2 4		0.11
CF ₃ CO	0.5	σ C1-O6	CI	$sp^{5.47}d^{0.01}$	0.5927	22.36	77.52	0.11
			06	$sp^{3.08}d^{0.01}$	0.8055	24.44	75.24	0.31

Table S14. NBO hybrid orbitals for the $\sigma_{\rm C1-O6}$ bond.

R	p <i>K</i> _a	bond	atom	h _A	C_A	%s	%p	%d
Н	16	σ N-O	N	sp ^{5.75} d ^{0.01}	0.6392	14.77	84.99	0.22
			0	sp ^{4.38} d ^{0.01}	0.7690	18.54	81.20	0.25
C_6H_5	9.9	σ N-O	Ν	sp ^{5.85} d ^{0.01}	0.6310	14.58	85.21	0.20
			0	$sp^{4.28}d^{0.01}$	0.7758	18.90	80.92	0.16
CH ₃ CO	4.75	σ N-O	Ν	$sp^{6.48}d^{0.02}$	0.6226	13.35	86.43	0.21
			0	$sp^{4.33}d^{0.01}$	0.7826	18.72	81.11	0.16
3-NO ₂ C ₆ H ₄ CO	3.46	σ N-O	N	$sp^{6.72}d^{0.02}$	0.6167	12.92	86.85	0.21
			0	$sp^{4.25}d^{0.01}$	0.7872	19.02	80.82	0.14
3,5-(NO ₂) ₂ C ₆ H ₃ CO	2.85	σ N-O	Ν	sp ^{7.04} d ^{0.02}	0.6122	12.41	87.37	0.21
			0	$sp^{4.26}d^{0.01}$	0.7907	18.97	80.88	0.14
CF ₃ CO	0.5	σ N-O	N	$sp^{7.56}d^{0.02}$	0.6093	11.65	88.12	0.22
			0	$sp^{4.35}d^{0.01}$	0.7930	18.66	81.18	0.14

Table S15. NBO hybrid orbitals for the $\sigma_{\text{N-O}}$ bonds.

D	nV	bond	atom	h		<u>0/ a</u>	0/n	0/.4
К	pκ _a	bolla	atom	$n_{\rm A}$	C_A	708	yoh	70 U
Н	16	σC2-C3	C2	<i>sp</i> ^{1.83}	0.7050	35.25	64.64	0.05
			C3	$sp^{2.84}d^{0.01}$	0.7092	25.99	73.84	0.15
C_6H_5	9.9	σC2-C3	C2	<i>sp</i> ^{1.83}	0.7059	35.30	64.60	0.05
			C3	$sp^{2.84}d^{0.01}$	0.7083	26.00	73.84	0.14
CH ₃ CO	4.75	σC2-C3	C2	<i>sp</i> ^{1.82}	0.7059	35.44	64.46	0.05
			C3	$sp^{2.85}d^{0.01}$	0.7083	25.96	73.87	0.14
3-NO ₂ C ₆ H ₄ CO	3.46	σC2-C3	C2	<i>sp</i> ^{1.81}	0.7062	35.49	64.41	0.05
			C3	$sp^{2.85}d^{0.01}$	0.7080	25.93	73.91	0.14
3,5-(NO ₂) ₂ C ₆ H ₃ CO	2.85	σC2-C3	C2	<i>Sp</i> ^{1.80}	0.7074	35.65	64.25	0.05
			C3	$Sp^{2.86}d^{0.01}$	0.7068	25.86	73.97	0.14
CF ₃ CO	0.5	σC2-C3	C2	$Sp^{1.78}$	0.7088	35.88	64.01	0.05
			C3	$sp^{2.88}d^{0.01}$	0.7054	25.75	74.08	0.15

Table S16. NBO hybrid orbitals for the $\sigma_{\text{C2-C3}}$ bond.

R	pK _a	bond	atom	h _A	%s	%p	%d
Н	16	nN	LPN	<i>sp</i> ^{1.22}	45.03	54.84	0.13
C_6H_5	9.9	nN	LPN	<i>sp</i> ^{1.20}	45.33	54.55	0.12
CH ₃ CO	4.75	nN	LPN	<i>sp</i> ^{1.11}	47.30	52.55	0.15
3-NO ₂ C ₆ H ₄ CO	3.46	nN	LPN	<i>sp</i> ^{1.09}	47.71	2.14	0.15
3,5-(NO ₂) ₂ C ₆ H ₃ CO	2.85	nN	LPN	$sp^{1.07}$	48.16	51.70	0.14
CF ₃ CO	0.5	nN	LPN	$sp^{1.05}$	48.72	51.13	0.14

 $h_{\rm A}$: natural atomic hybrids; C_A : polarization coefficient.

Figure S1. Plots showing variations in a range of geometric parameters for the series of oximes 1-8. (a) Bond distances and (b) angles, as a function of leaving group ability.

Figure S2. Plots showing variations in (a) C2 chemical shift and (b) C1 chemical shift, as a function of leaving group ability.

Figure S3. Plots showing comparison of $n_{05} \rightarrow \sigma^*_{C1-C2}$ and $n_{06} \rightarrow \sigma^*_{C1-C2}$ interactions at the TPSS and PW6B95 levels of theory, as a function of leaving group ability.

Optimized Geometries of Cyrene Oximes

All geometries were optimized at the TPSS-D3(BJ)/def2-TZVP level of theory and are presented in Cartesian coordinates (Å).

(Z)-Dihydrolevoglucosenone oxime							
С	1.530162	5.679199	3.446329				
Н	2.235403	5.784281	2.744992				
С	1.836637	6.527974	4.648167				
С	0.856054	6.432445	5.779331				
Н	0.099521	7.050040	5.614362				
Н	1.296330	6.704544	6.622884				
С	0.325699	4.993938	5.915761				
Н	0.956936	4.462796	6.461867				
Н	-0.546092	5.008904	6.384734				
С	0.155917	4.334469	4.560138				
Н	-0.202445	3.405609	4.655977				
С	-0.703454	5.155700	3.602139				
Н	-1.172141	4.569470	2.956145				
Н	-1.373735	5.690344	4.096758				
Ν	2.899049	7.236322	4.587907				
0	1.429960	4.331126	3.867768				
0	0.244040	6.011003	2.931270				
0	3.095625	8.016953	5.738836				
Н	3.887288	8.298286	5.640394				
Total Energy		: -514.	60360283 Eh				

(Z)-Dihydrolevoglucosenone O-(phenyl)oxime

С	1.004174	3.706666	14.868272
Н	0.368505	4.381750	14.493376
С	2.425367	4.054490	14.514096
С	3.471778	3.037281	14.857789
Η	3.855530	3.253708	15.744479
Н	4.202416	3.085884	14.191233
С	2.910797	1.603347	14.887453
Н	3.004171	1.197331	13.989343
Н	3.437893	1.059206	15.524524
С	1.447962	1.580407	15.298503
Н	1.090987	0.646446	15.287953
С	1.159441	2.256683	16.638262
Н	0.377767	1.842544	17.082789
Н	1.941929	2.196383	17.241455
С	4.084515	6.589935	12.904912
С	5.307014	7.232976	13.013529
Н	5.956544	6.933690	13.638736
С	5.566386	8.323138	12.191653
Н	6.398482	8.777044	12.257559
С	4.617536	8.753561	11.275879
Н	4.799709	9.498704	10.715888
С	3.402771	8.093174	11.179529
Н	2.755346	8.389517	10.550911
С	3.121983	6.998958	11.995607
Н	2.290148	6.544371	11.930057
Ν	2.565166	5.202205	13.974802

- O 0.709228 2.422691 14.386521
- O 0.884007 3.630389 16.286093
- O 3.941979 5.463539 13.708723

Total Energy : -745.71680526 Eh

(Z)-Dihydrolevoglucosenone O-(acetyl)oxime

С	3.097172	8.963653	4.490746
Н	3.514514	8.831023	3.591853
С	3.402240	7.796792	5.407153
С	2.752979	7.846332	6.757889
Н	3.337597	8.340324	7.386244
Н	2.642406	6.924663	7.103474
С	1.377340	8.535506	6.690671
Η	0.690088	7.870005	6.437157
Η	1.144287	8.889029	7.585845
С	1.368268	9.672267	5.685715
Н	0.478582	10.129104	5.666146
С	2.496677	10.676868	5.898623
Η	2.235839	11.576118	5.576130
Η	2.741638	10.737383	6.855929
С	5.520701	5.103902	5.527599
С	5.865462	4.178471	6.648598
Н	5.757724	3.251472	6.351054
Н	5.270637	4.348883	7.407769
Н	6.794840	4.328503	6.921485
Ν	4.225582	6.948806	4.926054
0	1.709626	9.137514	4.380476
0	3.593559	10.142900	5.114697
0	4.519819	5.949065	5.921617
0	6.033306	5.127418	4.448086
Total	Energy	: -667.2	33248082 Eh

(Z)-Dihydrolevoglucosenone O-(3-nitrobenzoyl)oxime

С	5.182307	13.247564	8.859416
Н	5.530629	13.568219	9.841088
С	5.100345	11.740544	8.724775
С	4.651111	11.246734	7.373377
Н	3.553126	11.276868	7.368104
Η	4.946325	10.206349	7.229857
С	5.203332	12.146394	6.242254
Н	6.232712	11.855822	6.008126
Η	4.604165	12.013359	5.333939
С	5.215285	13.616120	6.661638
Η	5.653718	14.257507	5.894455
С	3.861140	14.123450	7.177771
Η	3.758869	15.208085	7.070775
Η	3.008299	13.622867	6.706227
С	5.736848	8.855314	10.505592
С	5.410060	7.428824	10.191640
С	5.965128	6.448232	11.018760
Η	6.601514	6.725177	11.850779
С	5.683175	5.116905	10.747578
С	4.867972	4.721115	9.690188
Η	4.682920	3.666264	9.526101
С	4.314881	5.706864	8.877199
Η	3.672369	5.424160	8.049173
С	4.583229	7.052711	9.122741
Η	4.147582	7.817438	8.490436
N	5.399559	11.076851	9.777176

Ν	6.275072	4.068915	11.618004
0	6.041279	13.748981	7.848291
0	3.885064	13.798631	8.587664
0	5.224093	9.662941	9.512795
0	6.362944	9.229877	11.464546
0	6.988011	4.439394	12.551897
0	6.013416	2.893409	11.347164
Tota	l Energy	: -1064	.99930653 Eh

(Z)-Dihydrolevoglucosenone O-(3,5-dinitrobenzoyl)oxime

С	5.297132	2.813160	7.687402
Η	5.868419	2.365627	8.500629
С	3.963867	3.376720	8.141265
С	3.121459	3.977912	7.045847
Η	3.471029	5.009397	6.904054
Η	2.075640	4.032874	7.350133
С	3.276407	3.186657	5.725522
Η	2.620569	2.309977	5.740626
Η	2.974420	3.814329	4.879341
С	4.711606	2.696053	5.539757
Η	4.822425	2.084157	4.642464
С	5.765959	3.805697	5.654526
Η	6.690839	3.552319	5.127023
Η	5.401123	4.781294	5.315971
С	2.032857	3.736253	10.976759
С	0.726612	4.451756	11.164990
С	0.159438	5.254189	10.169243
Η	0.645254	5.400927	9.214155
С	-1.055155	5.880283	10.421738
С	-1.736051	5.743772	11.624022
Η	-2.682489	6.238291	11.801341
С	-1.142516	4.939547	12.589094
С	0.071196	4.293560	12.390341
Н	0.504641	3.675638	13.168158
N	3.734388	3.293386	9.397431
N	-1.653540	6.729868	9.356981

- N -1.846298 4.764927 13.889827
- O 5.059489 1.853938 6.671695
- O 6.046884 3.869385 7.073469
- O 2.443985 3.905539 9.680555
- O 2.600416 3.111424 11.836305
- O -1.037736 6.815671 8.292129
- O -2.721774 7.285860 9.611423
- O -2.919691 5.352383 14.031061
- O -1.305681 4.045691 14.729602
- Total Energy : -1269.81293791 Eh

(Z)-Dihydrolevoglucosenone O-(trifluoroacetyl)oxime

С	3.137552	9.007999	4.501389
Н	3.578735	8.948622	3.506633
С	3.516250	7.832886	5.384364
С	2.912945	7.849123	6.764219
Η	3.553058	8.495013	7.380109
Н	2.938009	6.854199	7.209804
С	1.475146	8.419911	6.730432
Н	0.772072	7.634614	6.434336
Н	1.188946	8.764311	7.730791
С	1.357353	9.561979	5.721447
Н	0.334749	9.935787	5.642474
С	2.398158	10.673448	5.918266
Н	2.064623	11.629860	5.503759
Н	2.693265	10.805004	6.964709
С	5.444853	4.995340	5.316115
С	5.647896	3.891018	6.395859
N	4.313913	6.993553	4.843021
0	1.724528	9.057200	4.409015
0	3.540821	10.215935	5.155669
0	4.587615	5.920261	5.805258
0	5.988301	4.948471	4.249738
F	5.073978	4.175465	7.585195
F	6.964125	3.699725	6.607047
F	5.119651	2.730046	5.950779

Total Energy : -966.27892763 Eh

Cyclohexanone oxime

0	5.664252	5.562310	2.337721
Н	4.805896	5.147920	2.157509
Ν	5.339667	6.948099	2.158414
С	6.359034	7.705499	2.339808
С	6.136555	9.183298	2.156674
Н	6.300241	9.685881	3.121878
Н	5.100555	9.361985	1.856013
С	7.134761	9.752825	1.128244
Н	6.900422	9.340375	0.137995
Н	7.015381	10.840412	1.062168
С	8.577833	9.390046	1.503201
Н	8.835332	9.868096	2.459437
Н	9.273646	9.784794	0.753386
С	8.751108	7.871083	1.632923
Н	9.777621	7.624863	1.928141
Н	8.575208	7.400178	0.657039
С	7.765230	7.272403	2.660013
Н	7.834998	6.184483	2.689958
Н	8.020909	7.653946	3.659599
Total Energy		: -365.7	77780667 Eh

Cycl	ohexanone (0-(phenyl)ox	time
0	5.123221	5.675012	2.915194
N	4.953359	7.079924	2.693643
С	6.088238	7.681306	2.676855
С	6.045331	9.165771	2.427935
Н	6.425279	9.679774	3.323513
Н	5.010524	9.481677	2.271643
С	6.941793	9.535222	1.227794
Н	6.502133	9.118099	0.312409
Н	6.962696	10.624558	1.109501
С	8.361705	8.983930	1.409960
Н	8.829844	9.465671	2.280433
Н	8.978551	9.234127	0.538834
С	8.342297	7.464687	1.620399
Н	9.357484	7.084454	1.781121
Н	7.954479	6.975564	0.717450
С	7.455621	7.068762	2.822059
Н	7.387777	5.985961	2.925618
Н	7.908113	7.468638	3.741382
С	3.925667	4.984638	2.945707
С	2.668678	5.572032	2.796562
С	4.054432	3.606625	3.145541
С	1.536749	4.757209	2.850371
С	2.913301	2.811945	3.195855
Н	5.046076	3.178807	3.258418
Н	2.590591	6.640281	2.643413
С	1.646743	3.381518	3.048846

- H 0.556257 5.211414 2.735145
- Н 0.757805 2.759381 3.089051
- Н 3.016957 1.741514 3.350970
- Total Energy : -597.21265974 Eh

Cyclohexanone O-(acetyl)oxime				
0	5.323610	5.660763	2.793778	
N	5.097212	7.078514	2.583283	
С	6.208007	7.721085	2.612559	
С	6.114154	9.207173	2.380294	
Н	6.443845	9.719992	3.295918	
Н	5.073978	9.486451	2.193064	
С	7.036310	9.628756	1.216761	
Н	6.644879	9.208772	0.281053	
Н	7.016200	10.719589	1.114473	
С	8.470341	9.131974	1.439946	
Н	8.891006	9.621960	2.329700	
Н	9.103706	9.416633	0.591719	
С	8.504403	7.610843	1.633421	
Н	9.526989	7.268824	1.827203	
Н	8.169304	7.116505	0.712516	
С	7.593698	7.164513	2.799455	
Н	7.568332	6.079209	2.893500	
Н	7.994075	7.577930	3.736698	
С	4.164948	4.906766	2.809017	
С	2.855956	5.632626	2.634225	
Н	2.729295	6.386004	3.416491	
Н	2.054796	4.894930	2.677354	
Н	2.838693	6.166091	1.680071	
Ο	4.295903	3.716145	2.965882	

Total Energy : -518.67816269 Eh

Cyclohexanone O-(3-nitrobenzoyl)oxime

0	5.227503	5.727545	2.986038
N	5.043523	7.138930	2.750105
С	6.175764	7.741499	2.698788
С	6.116500	9.221879	2.429619
Η	6.518625	9.748225	3.307716
Η	5.076317	9.530490	2.297877
С	6.978194	9.576239	1.199592
Η	6.515164	9.143513	0.303354
Η	6.988546	10.663509	1.065133
С	8.405591	9.035576	1.351141
Η	8.895780	9.534166	2.199477
Η	8.995748	9.273704	0.458716
С	8.401003	7.520024	1.586619
Η	9.421626	7.147491	1.728000
Η	7.992645	7.013260	0.702763
С	7.549119	7.138706	2.818354
Η	7.492575	6.057480	2.942929
Η	8.021358	7.558789	3.718212
С	4.036556	5.047192	3.054318
С	2.782313	5.643820	2.934574
С	4.155023	3.666440	3.261861
С	1.668522	4.815060	3.028844
С	3.013198	2.875871	3.349743
Η	5.145722	3.231836	3.351379
Η	2.671309	6.706031	2.775167
С	1.744335	3.441777	3.233626

- N 0.327512 5.439643 2.903210
- Н 0.837228 2.854729 3.297336
- O 0.275995 6.659735 2.724448
- O -0.657563 4.699271 2.984635
- Н 3.114758 1.806950 3.510115
- Total Energy : -802.03376042 Eh

Cyclohexanone O-(3,5-dinitrobenzoyl)oxime

0	5.228202	5.731803	2.995125
N	5.040137	7.149431	2.751042
С	6.174089	7.748644	2.699881
С	6.114651	9.227795	2.423553
Η	6.516622	9.755932	3.300308
Η	5.075035	9.537256	2.289699
С	6.978200	9.574824	1.192455
Н	6.515459	9.138578	0.297867
Н	6.988181	10.661372	1.053886
С	8.405021	9.034486	1.348191
Н	8.895473	9.537980	2.193271
Н	8.995003	9.266677	0.454315
С	8.399675	7.520557	1.592070
Н	9.419237	7.147980	1.738662
Н	7.993069	7.007983	0.710881
С	7.546376	7.146299	2.825417
Н	7.491810	6.066027	2.957727
Н	8.015710	7.573989	3.722942
С	4.043156	5.056631	3.064593
С	2.784600	5.652261	2.940182
С	4.159489	3.678323	3.277895
С	1.665094	4.831985	3.034450
С	2.999863	2.920853	3.361384
Η	5.128877	3.205265	3.376070
Н	2.677865	6.714487	2.776176
С	1.724714	3.461271	3.244027

N	0.323619	5.464611	2.902505
Н	0.834796	2.851276	3.312065
N	3.132668	1.456919	3.586240
0	0.286027	6.683165	2.720061
0	-0.660093	4.727223	2.984678
0	4.273530	0.999583	3.688744
0	2.093947	0.798635	3.655257
Total Energy : -1006.84930733 Eh			

Cyclohexanone O-(trifluoroacetyl)oxime

0	5.258111	5.763511	2.877651
Ν	5.053545	7.207864	2.641476
С	6.187814	7.803329	2.655613
С	6.140033	9.287736	2.395846
Н	6.502811	9.800227	3.298451
Н	5.108060	9.601156	2.219868
С	7.058598	9.650279	1.209011
Н	6.629669	9.236188	0.287627
Н	7.082078	10.739367	1.093028
С	8.474896	9.096509	1.410357
Н	8.938233	9.584961	2.279256
Н	9.098424	9.335594	0.541429
С	8.449476	7.580014	1.635586
Н	9.459832	7.195731	1.811407
Н	8.066229	7.079764	0.737032
С	7.553826	7.202508	2.836949
Н	7.494770	6.122709	2.967698
Н	7.985920	7.634223	3.750859
С	4.125287	5.031971	2.941565
С	2.755229	5.768083	2.800367
0	4.180014	3.841914	3.108446
F	1.768039	4.865474	2.931982
F	2.615072	6.349372	1.589264
F	2.578182	6.704014	3.757601
Total Energy		: -816.	83490193 Eh

¹H-NMR and ¹³C-NMR spectra for Oximes (1-8):

(Z)-Dihydrolevoglucosenone oxime (1). ¹H-NMR

(*Z*)-Dihydrolevoglucosenone *O*-(4-bromobenzyl)oxime (2). ¹H-NMR

(*Z*)-Dihydrolevoglucosenone *O*-(phenyl)oxime (3). ¹H-NMR

(*Z*)-Dihydrolevoglucosenone *O*-(4-nitrophenyl)oxime (4). ¹H-NMR

(Z)-Dihydrolevoglucosenone O-(acetyl)oxime (5). ¹H-NMR

¹³C-NMR

100 90 f1 (ppm) o

(*Z*)-Dihydrolevoglucosenone *O*-(3-nitrobenzoyl)oxime (6). ¹H-NMR

(*Z*)-Dihydrolevoglucosenone *O*-(4-nitrobenzoyl)oxime (7). ¹H-NMR

(*Z*)-Dihydrolevoglucosenone *O*-(3,5-dinitrobenzoyl)oxime (8). ¹H-NMR

Nitriles 9 and 10.

¹H-NMR

Dihydrolevoglucosenone *O*-(2-nitrobenzoyl)oxime (11). ¹H-NMR

Nitriles 12 and 13 ¹H-NMR

58