Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting Information

for

BF₃·Et₂O Catalyzed atom-economical approach to highly substituted indole-3-carbinols from nitrosobenzenes and propargylic alcohols

Sengodagounder Muthusamy^{a,*} Alagesan Balasubramani^a and Eringathodi Suresh^b

^aSchool of Chemistry, Bharathidasan University, Tiruchirappalli-620 024, India

^bAnalytical Discipline and Centralized Instrumentation Facility, Central Salt & Marine

Chemicals Research Institute, Bhavnagar-364 002, India

* Tel: +91-431-2407053; Fax: +91-431-2407045; E-mail: muthu@bdu.ac.in

Table of Contents	Page No.
Crystallographic Data of 30	S2
Copies of ¹ H and ¹³ C NMR spectra for compounds $3,4 \& 5$	S2-S25

Crystallographic data for product 30 (1579786)

Molecular formula C₄₈H₃₀F₅NO₂ Molecular weight M = 747.73Temperature T = 150 (2) K Radiation MoK\a Size $0.33 \times 0.23 \times 0.12$ mm Space group Triclinic, C2/c a = 29.898(3) Å b = 12.7893(14) Å c = 24.928(3) Å $\alpha = 90.00$ $\beta = 123.131(2)$ $\gamma = 90.00$ Volume V = 7982.2(15) Å3 $R_1 = 0.0364$ $wR_2 = 0.0452$ z = 8 Dcalcd = 1.244 mg cm⁻³ F(000) = 3088Absorption coefficient = 0.091 mm^{-1} $\lambda = 0.71073$ Å. No of unique reflections 7801 No of parameters 6303 $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}}$ (eÅ3) 0.290, -0.241

The intermolecular H-bonding interactions are:

 $\begin{array}{l} C(47)-H(47)\cdots F(3); \ H(47)\cdots F(3)=2.657 \ \text{\AA, and} < C(47)-H(47)\cdots F(3)=128.90^{\circ}\\ C(32)-H(32)\cdots F(5); \ H(32)\cdots F(5)=2.521 \ \text{\AA, and} < C(32)-H(32)\cdots F(5)=121.83^{\circ}\\ C(10)-H(10)\cdots O(2); \ H(10)\cdots O(2)=2.638 \ \text{\AA, and} < C(10)-H(10)\cdots O(2)=152.59^{\circ}\\ C(38)-H(38)\cdots O(1); \ H(38)\cdots O(1)=2.497 \ \text{\AA, and} < C(38)-H(38)\cdots O(1)=156.87^{\circ}\\ O(2)-H(1)\cdots O(1); \ H(1)\cdots O(1)=2.048 \ \text{\AA, and} < O(2)-H(1)\cdots O(1)=172.21^{\circ}\\ \end{array}$

S3

abs-213 PROTON CDC13 26_07_2016

 ^{13}C NMR (\delta) spectrum of **3b**

abs-222 PROTON CDCl3

abs-215 PROTON CDC13 09_08_2016

S7

abs-251 PROTON CDC13 15_05_2017

 13 C NMR (δ) spectrum of **3f**

abs-223 PROTON CDC13 26_09_2016

abs-214 PROTON CDC13 03_08_2016

abs-227 PROTON CDC13 06_10_2016

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm 13 C NMR (δ) spectrum of **3i**

¹³C NMR (δ) spectrum of **3j**

abs-122 I PROTON CDC13 08 09 2017

abs-164 PROTON CDC13

abs-150 PROTON CDC13

¹³C NMR (δ) spectrum of **30**

abs-198 PROTON CDC13 16_07_2016

abs-289 PROTON CDC13

S20

abs-228 PROTON CDC13 07_10_2016

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 $_{\rm ppm}$ ^{13}C NMR (δ) spectrum of 3r

abs-288 PROTON CDC13 01_12_2017

 ^{19}F NMR (\delta) spectrum of **5a**