Copper-catalyzed high selectively synthesis of 2-

benzylbenzo[b]thiazinones and 2-benzylidenebenzo[b]thiazinones

from 2-iodophenyl cinnamamides and potassium sulfide

Wenjuan Liu, Hao Min, Xiaoming Zhu, Guobo Deng* and Yun Liang*

National &Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources,Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules, Hunan Normal University, Changsha, Hunan, 410081, China E-mail: gbdeng@hunnu.edu.cn; yliang@hunnu.edu.cn.

Supporting Information

1) General Information	S2
2) Synthesis of Starting Materials	S2
3) Typical Procedures	
4) Deuterated Control Experiment	S5
5) Characterization Data	S6
6) References	S17
7) Scanned ¹ H NMR and ¹³ C NMR Spectra of All Compounds	S18
8) Crystal Data	S48

1) General Information

NMR spectra of the products 2a-2s, 2u, 2v, 3a were obtained using Bruker Avance-500 instruments, calibrated to TMS (¹H NMR spectra) and CD(H)Cl₃ (¹³C NMR spectra) as the internal reference (0.00 ppm for ¹H NMR spectra and 77.00 ppm for ¹³C NMR spectra). NMR spectra of the products 2t, 3t-3tg were recorded using Bruker Avance-500 instruments, calibrated to residual DMSO-d₆ as the internal reference (2.50 ppm for ¹H NMR spectra and 40.00 ppm for ¹³C NMR spectra). Highresolution massspectra. (HRMS) were recorded on a Bruker Apex IV FTMS mass spectrometer using ESI (electrospray ionization). Reactions were monitored by thinlayer chromatography. Column chromatography (petroleum ether/ethyl acetate) was performed on silica gel(200-300 mesh). Unless stated otherwise, all reagents were used as received and the following reaction solvents were distilled under anhydrous conditions over the appropriate drying agent and transferred under argon via a syringe. Dichloromethane was distilled over CaH₂, tetrahydrofuran was distilled over Na and benzophenone.

2) Synthesis of Starting Materials¹

A solution of substituted cinnamic acid (1.0 equiv) and DMF (2~3 drops) in CH₂Cl₂ was prepared and cooled to 0 °C. A bubbler was attached to the vessel and (COCl)₂ (2 equiv) was added dropwise. After 5 minutes, the reaction was allowed to warm to room temperature and was stirred for 1 hour. The acyl chloride was concentrated *in* vacuum and redissolved in CH₂Cl₂. A solution of the substituted 2-iodoaniline (1.0 equiv), DMAP (0.05 equiv) and NEt₃ (2.0 equiv) was prepared in CH₂Cl₂ and cooled to 0 °C. The acyl chloride solution was added dropwise into the vessel containing the substituted 2-iodoaniline. After 5 minutes, the reaction was allowed to warm to room temperature and was stirred 5 hours. The reaction was allowed to warm to room temperature and was stirred 5 hours. The reaction was allowed to warm to room temperature and was stirred 5 hours. The reaction was quenched with a saturated NaHCO₃ solution and extracted with CH₂Cl₂ (3 x 15 mL). The combined extracts

were washed with brine, dried over Na₂SO₄, concentrated under reduced pressure and purified by column chromatography to afford the pure product.

A solution of the unsubstituted acrylamide (1.0 equiv) in THF was prepared and cooled to 0 °C. NaH (60%, 2.0 equiv) was added to the solution and the mixture was stirred for 15 minutes before adding R_3 -X (2 equiv) dropwise. The reaction was allowed to warm at room temperature after 10 minutes and was stirred for 2 hours to overnight. The reaction was quenched with cold water and extracted with EtOAc (3 x 15 mL). The combined extracts were washed with brine, dried over Na₂SO₄, concentrated under reduced pressure and purified by column chromatography to afford the pure product.

3) Typical Procedures

General Procedure for the Synthesis of 2-benzyl-4-methyl-2H-benzo[b][1,4]thia -zin-3(4H)-ones

The sealed Schlenk tube was charged with 2-iodophenyl cinnamamides (0.2 mmol), K_2S (3 equiv), Cu_2O (10 mol %), 1,10-Phen (20 mol %), DBU(3 equiv) and DMA (2 mL). Then the mixture was stirred at 140 °C (oil bath temperature). After the reaction was finished, the reaction mixture was cooled to room temperature, quenched by water and extracted with ethyl acetate. The combined organic layer was washed with brine, and dried over Na_2SO_4 , and concentrated in vacuum, and the resulting residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate) to afford the pure product.

General Procedure for the Synthesis of (Z)-2-benzylidene-2H-benzo[b][1,4]thiazin-3(4H)-ones

The sealed Schlenk tube was charged with 2-iodophenyl cinnamamides (0.2 mmol), K_2S (3 equiv), Cu_2O (10 mol %), Neocuproine (20 mol %), and DMF (2 mL). Then under the protection of nitrogen atmosphere, the mixture was stirred at 80 °C (oil bath temperature). After the reaction was finished, the reaction mixture was cooled to room temperature, quenched by water and extracted with ethyl acetate. The combined organic layer was washed with brine, and dried over Na_2SO_4 , and concentrated in vacuum, and the resulting residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate/ dichloromethane) to afford the pure product.

 Table S1 Optimization of reaction condition for the Synthesis of (Z)-2-benzylidene

 2H-benzo[b][1,4]thiazin-3(4H)-ones^a

	H N O 1t	+ K ₂ S <u>(C</u> DM	Cu], Ligand IF, 80 °C, N <u></u>	$rac{r}{2}$ R ² $\frac{1}{12}$	H S 3t
Entry	Catalyst	Ligand	Solvent	S	Yield 3t ^b (%)
1	Cu ₂ O	2,2-ру	DMF	K_2S	72%
2	CuBr	2,2-ру	DMF	K_2S	50%
3	CuCl	2,2-ру	DMF	K_2S	38%
4	CuI	2,2-ру	DMF	K_2S	30%
5	CuSCN	2,2-ру	DMF	K_2S	34%
6	CuCN	2,2-ру	DMF	K_2S	40%
7	CuBr ₂	2,2-ру	DMF	K_2S	46%
8	$Cu(OAc)_2$	2,2-ру	DMF	K_2S	47%
9	Cu ₂ O		DMF	K_2S	80%
10	Cu ₂ O	TMEDA	DMF	K_2S	76%
11	Cu ₂ O	1,10-phen	DMF	K_2S	79%
12	Cu ₂ O	Neocuproine	DMF	K_2S	91%

13	Cu ₂ O	2,2'-Biquinoline	DMF	K_2S	84%
14	Cu ₂ O	Bathocuproine	DMF	K_2S	81%
15	Cu ₂ O	Neocuproine	DMSO	K_2S	55%
16	Cu ₂ O	Neocuproine	NMP	K_2S	50%
17	Cu ₂ O	Neocuproine	DMA	K_2S	62%
18	Cu ₂ O	Neocuproine	MeCN	K_2S	48%
19 ^c	Cu ₂ O	Neocuproine	DMF	K_2S	Trace
20^d	Cu ₂ O	Neocuproine	DMF	K_2S	53%
21	Cu ₂ O	Neocuproine	DMF	Na_2S	
22	Cu ₂ O	Neocuproine	DMF	Li_2S	Trace
23	Cu ₂ O	Neocuproine	DMF	S	
24^{e}	Cu ₂ O	Neocuproine	DMF	K_2S	25%
25 ^f	Cu ₂ O	Neocuproine	DMF	K_2S	Trace

^a Conditions: 1t (0.20 mmol), K₂S (0.60 mmol), Cu catalyst (10 mol %), ligand (20 mol %), solvent (2 mL), N₂, at 80 °C for 12 h.^b Isolated yield.
 ^c 60 °C. ^d 100 °C. ^e air. ^f O₂.

4) Deuterated Control Experiment

The sealed Schlenk tube charged with (Z)-2-benzylidene-2Hwas benzo[b][1,4]thiazin-3(4H)-one **3t** (0.2 mmol), K₂S (3 equiv), DBU (3 equiv), D₂O (3 equiv), Cu₂O (10 mol %), 1,10-Phen (20 mol %), and DMAc (2 mL). Then under the protection of nitrogen atmosphere, the mixture was stirred at 140 °C (oil bath temperature). After the reaction was finished, the reaction mixture was cooled to room temperature, quenched by water and extracted with ethyl acetate. The combined organic layer was washed with brine, and dried over Na₂SO₄, and concentrated in vacuum, and the resulting residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate/ dichloromethane) to afford 2t in 63% yield.

Scanned ¹H NMR Spectra of deuterated 2t

Figure S1 Scanned ¹H NMR Spectra of deuterated 2t

5) Characterization Data

2-benzyl-4-methyl-2H-benzo[b][1,4]thiazin-3(4H)-one (**2a**)²: yellow oil (50 mg, 93%); **¹H NMR** (500 MHz, CDCl₃) δ: 7.33 (d, *J* = 7.5 Hz, 1H), 7.30-7.22 (m, 4H), 7.14 (d, *J* = 7.0 Hz, 2H), 7.08 (d, *J* = 8.5 Hz, 1H), 7.03 (t, *J* = 7.5 Hz, 1H), 3.62 (dd, *J* = 10.0, 5.0 Hz, 1H), 3.46 (s, 3H), 3.26 (dd, *J* = 14.0, 5.0 Hz, 1H), 2.72 (dd, *J* = 14.5, 10.0 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ: 167.0, 139.7, 137.3, 129.2, 128.9, 128.3, 127.2, 126.8, 123.5, 121.4, 117.2, 45.0, 35.0, 32.4.

4-methyl-2-(2-methylbenzyl)-2H-benzo[b][1,4]thiazin-3(4H)-one (**2b**): yellow oil (48 mg, 86%); ¹**H NMR** (500 MHz, CDCl₃) δ: 7.32 (dd, *J* = 8.0, 1.0 Hz, 1H), 7.26 (td, *J* = 8.5, 1.5 Hz, 1H), 7.13-7.12 (m, 3H), 7.08 (d, *J* = 8.0 Hz, 1H), 7.04-7.01 (m, 2H), 3.62

(dd, J = 10.0, 5.5 Hz, 1H), 3.45 (s, 3H), 3.26 (dd, J = 14.5, 5.5 Hz, 1H), 2.74 (dd, J = 14.0, 10.0Hz, 1H), 2.26 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ : 166.9, 139.7, 136.3, 135.5, 130.3, 130.0, 128.9, 127.1, 126.9, 125.7, 123.4, 121.5, 117.1, 44.0, 32.4, 32.3, 19.2. HRMS (ESI) m/z calcd for C₁₇H₁₈NOS⁺ (M+H)⁺ 284.11036, found 284.11014.

4-methyl-2-(3-methylbenzyl)-2H-benzo[b][1,4]thiazin-3(4H)-one (**2c**): yellow oil (49 mg, 87%); ¹H NMR (500 MHz, CDCl₃) δ : 7.32 (dd, J = 7.5, 1.0 Hz, 1H), 7.25 (td, J = 8.5, 1.5 Hz, 1H), 7.17 (t, J = 7.5 Hz, 1H), 7.08-7.01 (m, 3H), 6.69 (s, 1H), 6.93 (d, J = 7.5 Hz, 1H), 3.61 (dd, J =10.0, 5.0 Hz, 1H), 3.45 (s, 3H), 3.23 (dd, J = 14.0, 5.0 Hz, 1H), 2.69 (dd, J = 14.0, 10.0Hz, 1H), 2.32 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ : 167.0, 139.8, 137.9, 137.2, 129.9, 128.8, 128.2, 127.6, 127.1, 126.2, 123.4, 121.6, 117.1, 45.0, 35.0, 32.3, 21.3. HRMS (ESI) m/z calcd for C₁₇H₁₈NOS⁺ (M+H)⁺ 284.11036, found 284.11063.

4-methyl-2-(4-methylbenzyl)-2H-benzo[b][1,4]thiazin-3(4H)-one (**2d**): yellow oil (46 mg, 81%); ¹**H NMR** (500 MHz, CDCl₃) δ : 7.32 (d, *J* = 8.0 Hz, 1H), 7.25 (t, *J* = 7.0 Hz, 1H), 7.10-7.06 (m, 3H), 7.03-7.00 (m, 3H), 3.59 (dd, *J*=10.0, 5.0 Hz, 1H), 3.45 (s, 3H), 3.21 (dd, *J* = 14.0, 5.5 Hz, 1H), 2.67 (dd, *J* = 14.5, 10.0Hz, 1H), 2.31 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ : 167.0, 139.7, 136.3, 134.2, 129.0(2C), 128.8, 127.1, 123.4, 121.5, 117.1, 45.1, 34.6, 32.3, 21.0. HRMS (ESI) m/z calcd for C₁₇H₁₈NOS⁺ (M+H)⁺ 284.11036, found 284.11038.

2-(3,4-dimethoxybenzyl)-4-methyl-2H-benzo[b][1,4]thiazin-3(4H)-one (2e): yellow solid (45 mg,69%); mp: 97.1-98.5 °C ¹H NMR (500 MHz, CDCl₃) δ : 7.33 (d, *J* = 7.5 Hz, 1H), 7.26 (t, *J* = 7.5 Hz, 1H), 7.08 (d, *J* = 8.0 Hz, 1H), 7.04 (t, *J* = 8.0 Hz, 1H),

6.78 (d, J = 8.5 Hz, 1H), 6.68 (s, 2H), 3.85 (s, 3H), 3.84 (s, 3H), 3.61 (dd, J = 10.0, 5.0 Hz, 1H), 3.46 (s, 3H), 3.20 (dd, J = 14.0, 5.0 Hz, 1H), 2.69 (dd, J = 14.5, 10.0Hz, 1H), 2.29 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ : 167.0, 148.6, 147.8, 139.7, 129.7, 128.7, 127.1, 123.4, 121.4, 121.3, 117.1, 112.3, 110.9, 55.7(2C), 45.1, 34.6, 32.3. HRMS (ESI) m/z calcd for C₁₈H₂₀NO₃S⁺ (M+H)⁺ 330.11584, found 330.11594.

2-(2-fluorobenzyl)-4-methyl-2H-benzo[b][1,4]thiazin-3(4H)-one (**2f**): yellow oil (53 mg, 93%); ¹H NMR (500 MHz, CDCl₃) δ : 7.31 (dd, J = 7.5, 1.0 Hz, 1H), 7.26 (td, J = 8.5, 1.5 Hz, 1H), 7.23-7.19 (m, 1H), 7.11 (td, J = 7.5, 1.5 Hz, 1H), 7.09-6.98 (m, 4H), 3.70 (dd, J =9.5, 6.0 Hz, 1H), 3.45 (s, 3H), 3.30 (dd, J = 14.0, 6.0 Hz, 1H), 2.80 (dd, J = 14.0, 9.5Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ : 166.6, 161.2 (d, J = 244.6 Hz, 1C), 139.6, 131.3 (d, J = 4.4 Hz, 1C), 128.9, 128.7 (d, J = 8.1 Hz, 1C), 127.2, 124.3 (d, J = 15.5 Hz, 1C), 123.9 (d, J = 3.5 Hz, 1C), 123.4, 121.2, 117.1, 115.2 (d, J = 21.8 Hz, 1C), 43.4, 32.3, 29.0 (d, J = 1.6 Hz, 1C). HRMS (ESI) m/z calcd for C16H15FNOS⁺ (M+H)⁺ 288.08529, found 288.08527.

2-(3-fluorobenzyl)-4-methyl-2H-benzo[b][1,4]thiazin-3(4H)-one (**2g**): yellow soild (42 mg, 73%); ¹H NMR (500 MHz, CDCl₃) δ : 7.33 (dd, J = 7.5, 1.0 Hz, 1H), 7.29-7.22 (m, 2H), 7.08 (d, J = 8.0 Hz, 1H),7.04 (td, J = 8.0, 1.0 Hz, 1H), 6.94-6.90 (m, 2H),6.86 (d, J = 9.5 Hz, 1H), 3.60 (dd, J =10.0, 5.5 Hz, 1H), 3.46 (s, 3H), 3.26 (dd, J = 14.0, 5.5 Hz, 1H), 2.74 (dd, J = 14.5, 10.0Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ : 166.7, 162.6 (d, J = 244.5 Hz, 1C), 139.8 (d, J = 7.4 Hz, 1C), 139.7, 129.7 (d, J = 8.3 Hz, 1C), 128.8, 127.3, 124.8 (d, J = 2.6 Hz, 1C), 123.6, 121.3, 117.2, 116.1 (d, J = 21.4 Hz, 1C), 113.8 (d, J = 20.9 Hz, 1C), 44.6, 34.8, 32.4. HRMS (ESI) m/z calcd for C₁₆H₁₅FNOS⁺ (M+H)⁺ 288.08529, found 288.08536.

2-(4-fluorobenzyl)-4-methyl-2H-benzo[b][1,4]thiazin-3(4H)-one (**2h**): yellow soild (47 mg, 82%); mp: 127.4-128.8 °C ¹H NMR (500 MHz, CDCl₃) δ : 7.32 (d, *J* = 7.5 Hz, 1H), 7.26 (t, *J* = 8.0 Hz, 1H), 7.11-7.02 (m, 3H), 7.03 (t, *J* = 7.5 Hz, 1H), 6.96 (t, *J* = 8.5 Hz, 2H), 3.57 (dd, *J* = 9.5, 5.0 Hz, 1H), 3.45 (s, 3H), 3.21 (dd, *J* = 14.5, 5.5 Hz, 1H), 2.73 (dd, *J* = 14.5, 10.0Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ : 166.8, 161.7 (d, *J* = 243.8 Hz, 1C), 139.7, 133.0 (d, *J* = 3.1 Hz, 1C), 130.7 (d, *J* = 8.0 Hz, 1C), 128.8, 127.2, 123.5, 121.3, 117.2, 115.1 (d, *J* = 21.0 Hz, 1C), 45.0, 34.3, 32.2. HRMS (ESI) m/z calcd for C₁₆H₁₅FNOS⁺ (M+H)⁺ 288.08529, found 288.08533.

2-(4-chlorobenzyl)-4-methyl-2H-benzo[b][1,4]thiazin-3(4H)-one (**2i**): yellow solid (50 mg, 83%); mp: 101.0-105.4 °C ¹H NMR (500 MHz, CDCl₃) δ : 7.32 (d, *J* = 7.5 Hz, 1H), 7.28-7.23 (m, 3H), 7.08-7.06 (m, 3H), 7.03 (t, *J* = 7.5 Hz, 1H), 3.59 (dd, *J* =9.5, 5.0 Hz, 1H), 3.45 (s, 3H), 3.22 (dd, *J* = 14.0, 5.5 Hz, 1H), 2.74 (dd, *J* = 14.5, 10.0Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ : 166.7, 139.6, 135.7, 132.7, 130.5, 128.8, 128.4, 127.2, 123.5, 121.2, 117.2, 44.7, 34.4, 32.4. HRMS (ESI) m/z calcd for C₁₆H₁₅ClNOS⁺ (M+H)⁺ 304.05574, found 304.05594.

2-(4-bromobenzyl)-4-methyl-2H-benzo[b][1,4]thiazin-3(4H)-one (**2j**): yellow solid (39 mg, 56%); mp: 76.5-78.0 °C ¹H NMR (500 MHz, CDCl₃) δ : 7.40 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 7.5 Hz, 1H), 7.30 (t, J = 7.5 Hz, 1H), 7.07 (d, J = 8.5 Hz, 1H), 7.06-7.01 (m, 3H), 3.58 (dd, J =9.5, 5.0 Hz, 1H), 3.45 (s, 3H), 3.20 (dd, J = 14.5, 5.5 Hz, 1H), 2.71 (dd, J = 14.0, 9.5Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ : 166.7, 139.7, 136.3, 131.4, 130.9, 128.8, 127.3, 123.6, 121.2, 120.8, 117.2, 44.7, 34.5, 32.4. HRMS (ESI) m/z calcd for C₁₆H₁₅BrNOS⁺ (M+H)⁺ 348.00522, found 348.00534.

4-methyl-2-(4-(trifluoromethyl)benzyl)-2H-benzo[b][1,4]thiazin-3(4H)-one (2k): yellow solid (53 mg, 78%); mp: 79.0-82.0 °C ¹H NMR (500 MHz, CDCl₃) δ : 7.54 (d, J = 8.0 Hz, 2H), 7.33 (d, J = 8.0 Hz, 1H), 7.29-7.26 (m, 3H), 7.08 (d, J = 8.5 Hz, 1H) 7.05 (t, J = 8.0 Hz, 1H), 3.63 (dd, J = 10.0, 5.5 Hz, 1H), 3.46 (s, 3H), 3.32 (dd, J =14.0, 5.0 Hz, 1H), 2.83 (dd, J = 14.5, 10.0 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ : 166.6, 141.4, 139.7, 129.6, 129.1(q, J = 32.1 Hz), 128.8, 127.4, 125.2(q, J = 3.6 Hz), 123.6, 123.0, 121.1, 117.3, 44.5, 34.9, 32.4. ¹⁹F NMR (470 MHz, CDCl₃) δ : -62.4. HRMS (ESI) m/z calcd for C₁₇H₁₅F₃NOS⁺ (M+H)⁺ 338.08210, found 338.08224.

4-methyl-2-(3-nitrobenzyl)-2H-benzo[b][1,4]thiazin-3(4H)-one (**2I**): yellow solid (17 mg, 27%); mp: 89.2-90.1 °C ¹**H NMR** (500 MHz, CDCl₃) δ : 7.40 (dd, *J* = 8.0, 1.0 Hz, 1H), 8.01 (s, 1H), 7.52 (d, *J* = 7.5 Hz, 1H), 7.47 (t, *J* = 8.0 Hz, 1H), 7.35 (d, *J* = 7.5 Hz, 1H), 7.29 (td, *J* = 8.5, 1.5 Hz, 1H), 7.08 (q, *J* = 8.0 Hz, 2H), 3.65 (dd, *J* = 9.5, 5.5 Hz, 1H), 3.48 (s, 3H), 3.36 (dd, *J* = 14.0, 5.5 Hz, 1H), 2.91 (dd, *J* = 14.0, 9.0Hz, 1H). ¹³**C NMR** (125 MHz, CDCl₃) δ : 166.4, 148.2, 139.7, 139.4, 135.5, 128.3, 128.9, 127.6, 124.3, 123.8, 122.1, 120.9, 117.4, 44.4, 34.9, 32.5. HRMS (ESI) m/z calcd for C₁₆H₁₅N₂O₃S⁺ (M+H)⁺ 315.07979, found 315.07977.

2-benzyl-4,7-dimethyl-2H-benzo[b][1,4]thiazin-3(4H)-one (**2n**): yellow oil (48 mg,88%); ¹**H** NMR (500 MHz, CDCl₃) δ : 7.28 (t, J = 7.0 Hz, 2H), 7.24-7.21 (m, 1H), 7.15-7.13 (m, 3H), 7.05 (d, J = 8.5 Hz, 1H), 6.96 (d, J = 8.5 Hz, 1H), 3.59 (dd, J = 10.0, 5.0 Hz, 1H), 3.42 (s, 3H), 3.25 (dd, J = 14.0, 5.0 Hz, 1H), 2.72 (dd, J = 14.0, 10.0Hz, 1H), 2.29 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ : 166.8, 137.4, 133.2, 129.2, 129.1, 128.3, 127.8, 126.7, 121.1, 117.0, 45.1, 35.0, 32.3, 20.4. HRMS (ESI) m/z

calcd for C₁₇H₁₈NOS⁺ (M+H)⁺ 284.11036, found 284.11026.

2-benzyl-7-methoxy-4-methyl-2H-benzo[b][1,4]thiazin-3(4H)-one (**2o**): yellow oil (33 mg,55%); ¹H NMR (500 MHz, CDCl₃) δ : 7.29 (t, J = 7.0 Hz, 2H), 7.25 (d, J = 8.5 Hz, 1H), 7.16 (d, J = 7.0 Hz, 2H), 7.00 (d, J = 9.0 Hz, 1H), 6.88 (d, J = 3.0 Hz, 1H), 6.81 (dd, J = 8.5, 2.5 Hz, 1H), 3.79 (s, 3H), 3.62 (dd, J = 10.0, 5.5 Hz, 1H), 3.43 (s, 3H), 3.28 (dd, J = 14.0, 5.0 Hz, 1H), 2.74 (dd, J = 14.5, 10.5Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ : 166.6, 155.5, 137.5, 133.6, 129.2, 128.4, 126.9, 122.8, 118.8, 113.7, 113.2, 55.6, 453.4, 35.1, 32.5. HRMS (ESI) m/z calcd for C₁₇H₁₈NO₂S⁺ (M+H)⁺ 300.10528, found 300.10492.

2-benzyl-7-fluoro-4-methyl-2H-benzo[b][1,4]thiazin-3(4H)-one (**2p**): yellow solid (46 mg, 81%); mp: 77.4-78.3 °C ¹H NMR (500 MHz, CDCl₃) δ : 7.31-7.28 (m, 2H), 7.25-7.22 (m, 1H), 7.14 (d, J = 6.5 Hz, 1H), 7.05 (dd, J =8.0, 2.5 Hz, 1H), 7.02 (dd, J = 9.0, 5.0 Hz, 1H), 6.96 (td, J = 7.5, 2.5 Hz, 1H), 3.63 (dd, J =10.0, 5.0 Hz, 1H), 3.44 (s, 3H), 3.27 (dd, J = 14.0, 5.0 Hz, 1H), 2.73 (dd, J = 14.0, 10.0Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ : 166.5, 158.1 (d, J = 244.5 Hz, 1C), 137.0, 136.2 (d, J = 2.6 Hz, 1C), 129.1, 128.4, 126.9, 123.4 (d, J = 8.5 Hz, 1C), 118.3 (d, J = 8.3 Hz, 1C), 115.5 (d, J = 24.4 Hz, 1C), 114.0 (d, J = 22.5 Hz, 1C), 45.0, 35.1, 32.6. HRMS (ESI) m/z calcd for C₁₆H₁₅FNOS⁺ (M+H)⁺ 288.08529, found 288.08536.

2-benzyl-7-chloro-4-methyl-2H-benzo[b][1,4]thiazin-3(4H)-one (**2q**): yellow solid (49 mg, 81%); mp: 69.3-70.6 °C ¹H NMR (500 MHz, CDCl₃) δ : 7.31-7.28 (m, 3H), 7.24 (d, J = 7.0 Hz, 1H), 7.21 (dd, J = 8.5, 2.0 Hz, 1H), 7.14 (d, J = 7.5 Hz, 2H), 6.98 (d, J = 9.0 Hz, 1H), 3.61 (dd, J = 10.0, 5.5 Hz, 1H), 3.43 (s, 3H), 3.26 (dd, J = 14.5,

5.5 Hz, 1H), 2.73 (dd, J = 14.5, 10.0Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ : 166.5, 138.3, 136.9, 129.1, 128.5, 128.4, 128.3, 127.1, 127.0, 123.2, 118.1, 44.8, 35.1, 32.4. HRMS (ESI) m/z calcd for C₁₆H₁₅CINOS⁺ (M+H)⁺ 304.05574, found 304.05582.

2-benzyl-4,6-dimethyl-2H-benzo[b][1,4]thiazin-3(4H)-one (**2r**): yellow oil (42 mg,74%); ¹**H** NMR (500 MHz, CDCl₃) δ : 7.28 (t, J = 7.0 Hz, 2H), 7.23 (d, J = 7.0 Hz, 1H), 7.21 (d, J = 8.0 Hz, 1H), 7.14 (d, J = 7.5 Hz, 2H), 6.90 (s, 1H), 6.86 (d, J = 7.5 Hz, 1H), 3.59 (dd, J = 10.0, 5.0 Hz, 1H), 3.45 (s, 3H), 3.23 (dd, J = 14.0, 5.0 Hz, 1H), 2.71 (dd, J = 14.0, 10.0Hz, 1H), 2.37 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ : 167.1, 139.6, 137.4, 137.2, 129.2, 128.7, 128.3, 126.8, 124.3, 117.9, 117.8, 45.2, 34.9, 32.3, 21.4. HRMS (ESI) m/z calcd for C₁₇H₁₈NOS⁺ (M+H)⁺ 284.11036, found 284.11026.

2-benzyl-6-fluoro-4-methyl-2H-benzo[b][1,4]thiazin-3(4H)-one (**2s**): yellow solid (46 mg, 80%); mp: 62.0-62.8 °C ¹H NMR (500 MHz, CDCl₃) δ : 7.28 (q, *J* = 8.0 Hz, 3H), 7.23 (t, *J* = 7.0 Hz, 1H), 7.13 (d, *J* = 7.0 Hz, 2H), 6.81 (dd, *J* = 10.5, 2.5 Hz, 1H), 6.76 (td, *J* = 8.5, 2.5 Hz, 1H), 3.61 (dd, *J* = 10.0, 5.5 Hz, 1H), 3.43 (s, 3H), 3.25 (dd, *J* = 14.5, 5.5 Hz, 1H), 2.73 (dd, *J* = 14.0, 10.0Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ : 166.8, 161.9 (d, *J* = 243.6 Hz, 1C), 140.9 (d, *J* = 9.9 Hz, 1C), 137.1, 129.8 (d, *J* = 9.1 Hz, 1C), 129.1, 128.3, 126.9, 116.3 (d, *J* = 2.9 Hz, 1C), 110.3 (d, *J* = 22.0 Hz, 1C), 105.0 (d, *J* = 26.5 Hz, 1C), 44.8, 35.0, 32.3. HRMS (ESI) m/z calcd for C₁₆H₁₅FNOS⁺ (M+H)⁺ 288.08529, found 288.08530.

2-benzyl-2H-benzo[b][1,4]thiazin-3(4H)-one $(2t)^3$: yellow soild (43 mg, 85%); ¹H NMR (500 MHz, DMSO-d₆) δ : 10.65 (s, 1H),7.28 (t, J = 6.5 Hz, 3H), 7.23-7.18 (m, 4H), 7.02 (d, J = 8.0 Hz, 1H), 6.98 (d, J = 7.5 Hz, 1H), 3.80 (dd, J = 10.0, 6.0Hz, 1H), 3.19 (dd, *J* = 14.5, 6.0 Hz, 1H), 2.70 (dd, *J* = 14.0, 9.5 Hz, 1H). ¹³C NMR (125 MHz, DMSO-d₆) δ: 166.7, 137.9, 137.4, 129.6, 128.7, 128.3, 127.5, 127.1, 123.6, 118.2, 117.3, 43.2, 35.3.

2-benzyl-4-phenyl-2H-benzo[b][1,4]thiazin-3(4H)-one (**2u**): yellow solid (21 mg, 32%); mp: 141.9-143.2 °C ¹H NMR (500 MHz, CDCl₃) δ : 7.48 (t, J = 7.5 Hz, 2H), 7.41 (t, J = 7.0 Hz, 1H), 7.37 (dd, J = 7.5, 1.5 Hz, 1H), 7.23 (t, J = 7.0 Hz, 2H), 7.26 (t, J = 7.5 Hz, 1H), 7.21 (dd, J = 11.5, 7.0 Hz, 1H), 7.05 (td, J = 7.5, 1.5 Hz, 1H), 7.01 (td, J = 7.5, 1.5 Hz, 1H), 6.50 (dd, J = 8.0, 1.0 Hz, 1H), 3.80 (dd, J = 10.0, 5.5 Hz, 1H), 3.37 (dd, J = 14.5, 5.5 Hz, 1H), 2.89 (dd, J = 14.0, 9.5Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ : 166.5, 140.7, 139.7, 137.2, 129.8, 129.4, 128.8, 128.7, 128.4, 128.2, 127.0, 126.8, 123.7, 121.2, 119.8, 45.3, 35.0. HRMS (ESI) m/z calcd for C₂₁H₁₈NOS⁺ (M+H)⁺ 332.11036, found 332.11041.

2,4-dibenzyl-2H-benzo[b][1,4]thiazin-3(4H)-one (2v)⁴: yellow solid (58 mg, 82%); ¹H NMR (500 MHz, CDCl₃) δ : 7.32-7.27 (m, 5H), 7.23 (q, J = 7.0 Hz, 2H), 7.18 (t, J= 8.0 Hz, 4H), 7.10 (td, J = 8.0, 1.5 Hz, 1H), 7.01 (d, J = 8.5 Hz, 1H), 6.97 (td, J = 7.5, 1.0 Hz, 1H), 5.33 (d, J =16.0 Hz, 1H), 5.12 (d, J = 16.5 Hz, 1H), 3.73 (dd, J =10.0, 5.0 Hz, 1H), 3.36 (dd, J = 14.5, 5.5 Hz, 1H), 2.82 (dd, J = 14.0, 10.0 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ : 166.8, 139.2, 137.2, 136.8, 129.3, 128.9, 128.7, 128.3, 127.2, 127.1, 126.9, 126.2, 123.7, 121.6, 117.7, 48.7, 45.1, 34.8.

(Z)-2-benzylidene-2H-benzo[b][1,4]thiazin-3(4H)-one (**3t**)⁵: yellow soild (46 mg,

91%); ¹**H** NMR (500 MHz, DMSO-d₆) δ: 11.04 (s, 1H), 7.80 (s, 1H), 7.66 (d, *J* = 7.5 Hz, 2H), 7.50 (t, *J* = 7.5 Hz, 2H), 7.40 (t, *J* = 7.5 Hz, 1H), 7.30 (d, *J* = 8.0 Hz, 1H), 7.18 (td, *J* = 8.0, 1.0 Hz, 1H), 7.06 (d, *J* = 8.0 Hz, 1H), 7.00 (td, *J* = 8.5, 1.0 Hz, 1H). ¹³**C** NMR (125 MHz, DMSO-d₆) δ: 159.0, 134.8, 134.7, 131.1, 130.4, 129.3, 127.5, 125.7, 123.7, 120.9, 117.2, 115.5.

(Z)-2-(2-methylbenzylidene)-2H-benzo[b][1,4]thiazin-3(4H)-one (**3ta**): yellow soild (34 mg, 63%); mp: 171.8-173.1 °C ¹H NMR (500 MHz, DMSO-d₆) δ : 11.02 (s, 1H), 7.85 (s, 1H), 7.44 (d, J = 5.5 Hz, 1H), 7.29 (s, 3H), 7.22 (d, J = 8.0 Hz, 1H), 7.16 (t, J = 7.5 Hz, 1H), 7.06 (d, J = 8.0 Hz, 1H), 6.97 (t, J = 7.5 Hz, 1H), 2.27 (s, 3H). ¹³C NMR (125 MHz, DMSO-d₆) δ : 159.2, 137.4, 134.8, 133.9, 130.8, 130.4, 129.3, 128.7, 127.3, 126.2, 125.7, 123.6, 122.4, 117.2, 115.8, 20.0. HRMS (ESI) m/z calcd for C₁₆H₁₄NOS⁺ (M+H)⁺ 268.07906, found 268.07907.

(Z)-2-(3-methylbenzylidene)-2H-benzo[b][1,4]thiazin-3(4H)-one (**3tb**): yellow soild (36 mg, 68%); mp: 138.7-139.8 °C ¹**H NMR** (500 MHz, DMSO-d₆) δ : 11.00 (s, 1H), 7.76 (s, 1H), 7.48-7.45 (m, 2H), 7.39 (t, J = 7.5 Hz, 1H), 7.31 (d, J = 7.5 Hz, 1H), 7.22 (d, J = 7.5 Hz, 1H), 7.18 (td, J = 8.5, 1.0 Hz, 1H), 7.06 (d, J = 8.0 Hz, 1H), 7.01 (td, J = 7.5, 1.0 Hz, 1H), 2.37 (s, 3H). ¹³C NMR (125 MHz, DMSO-d₆) δ : 159.1, 138.4, 134.8, 134.7, 131.3, 131.0, 130.0, 129.0, 127.4, 127.4, 125.7, 123.7, 120.7, 117.2, 115.6, 21.5. HRMS (ESI) m/z calcd for C₁₆H₁₄NOS⁺ (M+H)⁺ 268.07906, found 268.07898.

(Z)-2-(4-methylbenzylidene)-2H-benzo[b][1,4]thiazin-3(4H)-one $(3tc)^6$: yellow soild (36 mg, 67%); ¹H NMR (500 MHz, DMSO-d₆) δ : 10.97 (s, 1H), 7.76 (s, 1H), 7.57 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.0 Hz, 3H), 7.18 (td, J = 8.5, 1.5 Hz, 1H), 7.05 (d, J = 8.0 Hz, 1H), 7.00 (td, J = 8.5, 1.0 Hz, 1H), 2.35 (s, 3H). ¹³C NMR (125 MHz, DMSO-d₆) δ : 159.2, 139.2, 134.7, 132.0, 131.2, 130.4, 129.7, 127.4, 125.7, 123.6, 119.7, 117.1, 115.5, 21.5.

(*Z*)-2-(3,4-dimethoxybenzylidene)-2*H*-benzo[*b*][1,4]thiazin-3(4*H*)-one (**3td**)⁶: yellow soild (44 mg, 71%); ¹**H NMR** (500 MHz, DMSO-d₆) δ: 10.91 (s, 1H), 7.75 (s, 1H), 7.31-7.29 (m, 3H), 7.17 (t, *J* = 7.5 Hz, 1H), 7.08 (d, *J* = 9.0 Hz, 1H), 7.05 (d, *J* = 8.0 Hz, 1H), 7.00 (t, *J* = 7.5 Hz, 1H), 3.82 (s, 3H) ,3.81(s, 3H). ¹³**C NMR** (125 MHz, DMSO-d₆) δ: 159.5, 149.9, 148.9, 134.8, 131.4, 127.6, 127.4, 125.7, 123.7, 123.6, 118.0, 117.1, 115.6, 114.2, 112.1, 56.1.

(Z)-2-(4-fluorobenzylidene)-2H-benzo[b][1,4]thiazin-3(4H)-one (**3te**): yellow soild (31 mg, 57%); mp: 135.2-137.6 °C ¹**H NMR** (500 MHz, DMSO-d₆) δ : 11.03 (s, 1H), 7.79 (s, 1H), 7.74 (dd, J = 8.5, 6.0 Hz, 2H), 7.34 (t, J = 8.5 Hz, 2H), 7.31 (d, J = 7.5 Hz, 1H), 7.19 (t, J = 7.5 Hz, 1H), 7.06 (d, J = 7.5 Hz, 1H), 7.01 (t, J = 7.5 Hz, 1H).

¹³**C NMR** (125 MHz, DMSO-d6) δ : 162.3 (d, J = 246.4 Hz, 1C), 159.0, 134.7, 132.6 (d, J = 8.4 Hz, 1C), 131.4 (d, J = 3.1 Hz, 1C), 130.1, 127.5, 125.7, 123.7, 120.6, 117.3, 116.2 (d, J = 21.5 Hz, 1C), 115.2. HRMS (ESI) m/z calcd for C₁₅H₁₁FNOS⁺ (M+H)⁺ 272.05399, found 272.05402.

(Z)-2-benzylidene-7-methyl-2H-benzo[b][1,4]thiazin-3(4H)-one (**3tf**): yellow soild (44 mg, 82%); mp: 178.6-180.0 °C ¹**H NMR** (500 MHz, DMSO-d₆) δ : 10.94 (s, 1H), 7.78 (s, 1H), 7.66 (d, J = 7.5 Hz, 2H), 7.49 (t, J = 7.5 Hz, 2H), 7.40 (t, J = 7.0 Hz, 1H), 7.10 (s, 1H), 6.99-6.94 (m, 2H), 2.20 (s, 3H). ¹³C NMR (125 MHz, DMSO-d₆) δ : 158.9, 134.9, 133.0, 132.3, 130.9, 130.3, 129.2, 129.1, 128.1, 125.7, 121.1, 117.2, 115.2, 20.0. HRMS (ESI) m/z calcd for C₁₆H₁₄NOS⁺ (M+H)⁺ 268.07906, found 268.07901.

(Z)-2-benzylidene-7-fluoro-2H-benzo[b][1,4]thiazin-3(4H)-one (**3tg**): yellow soild (27 mg, 50%); mp: 174.7-177.1 °C ¹**H NMR** (500 MHz, DMSO-d₆) δ : 11.07 (s, 1H), 7.81 (s, 1H), 7.65 (d, J = 7.5 Hz, 2H), 7.50 (t, J = 7.5 Hz, 2H), 7.41 (t, J = 7.5 Hz, 1H), 7.29 (d, J = 9.0 Hz, 1H), 7.09-7.03 (m, 2H). ¹³C NMR (125 MHz, DMSO-d6) δ : 158.7, 158.0 (d, J = 239.6 Hz, 1C), 134.6, 131.7, 131.4, 130.3, 129.4, 129.1, 120.1, 118.6 (d, J = 8.6 Hz, 1C), 117.1 (d, J = 8.9 Hz, 1C), 114.5 (d, J = 22.9 Hz, 1C), 112.4 (d, J = 26.1 Hz, 1C). HRMS (ESI) m/z calcd for C₁₅H₁₁FNOS⁺ (M+H)⁺ 272.05399, found 272.05389.

(Z)-2-benzylidene-4-methyl-2H-benzo[b][1,4]thiazin-3(4H)-one (**3a**)⁵: yellow soild (15 mg, 28%); ¹**H NMR** (500 MHz, DMSO-d₆) δ : 7.90 (s, 1H), 7.62 (d, J = 8.0 Hz, 2H), 7.43 (t, J = 7.5 Hz, 2H), 7.35 (t, J = 7.5 Hz, 1H), 7.25-7.21 (m, 2H), 7.05 (d, J = 8.0 Hz, 1H), 7.01 (td, J = 7.5, 1.0 Hz, 1H), 3.55 (s, 3H). ¹³**C NMR** (125 MHz, DMSO-d₆) δ : 162.5, 137.5, 134.9, 134.8, 130.3, 128.7, 128.4, 127.1, 126.3, 123.4, 119.7, 116.6, 32.8.

6) References

- Vachhani, D. D.; Butani, H. H.; Sharma, N.; Bhoya, U. C.; Shah, A. K.; Van der Eycken, E. V. *Chem. Commun.* 2015, *51*, 14862.
- 2. Babudri, F.; Nunno, Di; Floroi, S. Synthesis. 1982, 1982, 488.
- Trapani, G.; Latrofa, A.; Reho, A.; Franco, M.; Liso, G. J. Heterocyclic Chem. 1992, 29,1155.
- 4. Takamizawa, A.; Sato, H.; Sato, Y. Chem. Pharm. Bull. 1972, 20, 892.
- 5. Sharifi, A.; Ansari, M.; Darabi, H. R.; Abaee, M. S. J. Sulfur Chem. 2016, 37,593.
- 6. Baliah, V.; Rangarajan, T. J. Chem. Soc. 1960, 0, 4703.

8) Crystal Data

Table 1 Crystal data and structure refinement for 2u.

Identification code	2u
Empirical formula	$C_{22}H_{19}NOS$
Formula weight	345.44
Temperature/K	293(2)
Crystal system	triclinic
Space group	P-1
a/Å	9.6100(5)
b/Å	9.7305(5)
c/Å	10.0325(5)
$\alpha/^{\circ}$	74.741(5)
β/°	85.698(4)
γ/°	81.494(4)
Volume/Å ³	894.47(8)
Z	2
$\rho_{calc}g/cm^3$	1.283
µ/mm ⁻¹	1.663
F(000)	364.0
Crystal size/mm ³	0.3 imes 0.3 imes 0.2
Radiation	$CuK\alpha (\lambda = 1.54184)$
2Θ range for data collection/°	9.312 to 133.186
Index ranges	$-10 \le h \le 11, -10 \le k \le 11, -10 \le l \le 11$
Reflections collected	5274
Independent reflections	$3160 [R_{int} = 0.0164, R_{sigma} = 0.0239]$
Data/restraints/parameters	3160/0/226
Goodness-of-fit on F ²	1.041
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0407, wR_2 = 0.1092$

Final R indexes [all data]

 $R_1 = 0.0441, wR_2 = 0.1139$

Largest diff. peak/hole / e Å-3

0.18/-0.22

Table 2 Crystal data and structure refinement for 3t.

Identification code	3t
Empirical formula	C ₁₅ H ₁₁ NOS
Formula weight	253.31
Temperature/K	293
Crystal system	orthorhombic
Space group	Pbca
a/Å	14.55837(15)
b/Å	6.82995(9)
c/Å	25.1099(2)
$\alpha/^{\circ}$	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	2496.75(5)
Z	8
$\rho_{calc}g/cm^3$	1.348
µ/mm ⁻¹	2.180
F(000)	1056.0
Crystal size/mm ³	$0.4\times0.3\times0.05$
Radiation	CuKa (λ = 1.54184)

2Θ range for data collection/°	9.302 to 133.136
Index ranges	-17 \leq h \leq 17, -7 \leq k \leq 8, -29 \leq l \leq 29
Reflections collected	30991
Independent reflections	2202 [$R_{int} = 0.0429, R_{sigma} = 0.0155$]
Data/restraints/parameters	2202/0/163
Goodness-of-fit on F ²	1.061
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0344, wR_2 = 0.0903$
Final R indexes [all data]	$R_1 = 0.0356, wR_2 = 0.0913$
Largest diff. peak/hole / e Å ⁻³	0.15/-0.23

