Supporting Information for

A novel approach to $\mathbf{5 H}$-pyrazino[2,3-b]indoles via annulation of 3-diazoindolin-2-imines with $\mathbf{2 H}$-azirines or 5-alkoxyisoxazoles under Rh(II) catalysis

Julia O. Ruvinskaya, Nikolai V. Rostovskii, Ilya P. Filippov, Alexander F. Khlebnikov and Mikhail S. Novikov*
St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg, 199034 Russia
*E-mail: m.novikov@spbu.ru

TABLE OF CONTENTS

\qquadSynthesis of 3-diazoindolin-2-imines 22
Synthesis of 2 H -azirines 3 4
Synthesis of $5 H$-pyrazino[2,3-b]indoles 4 5
Characterization data for 5H-pyrazino[2,3-b]indoles 4 6
References 17
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 3-diazoindolin-2-imines $\mathbf{2 h}$-j,n,o 18
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of azirines $\mathbf{3 d}, \mathbf{I}$ 23
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $5 H$-pyrazino[2,3- b]indoles 4 25
X-Ray crystal structure of compound $\mathbf{4 j}$ 58

General Information

Melting points were determined on a Stuart Melting Point Apparatus SMP30 and are uncorrected. ${ }^{1} \mathrm{H}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(100 \mathrm{MHz})$ NMR spectra were recorded on a Bruker AVANCE 400 spectrometer in solvents indicated below. Chemical shifts (δ) are reported in parts per million downfield from tetramethylsilane. High-resolution mass spectra were recorded on a Bruker MaXis mass spectrometer, electrospray ionization, positive mode. IR spectrum was recorded on a FTIR-8400S Shimadzu spectrometer using KBr disc method. Thin-layer chromatography (TLC) was conducted on aluminum sheets precoated with SiO_{2} ALUGRAM SIL G/UV254. Column chromatography was performed on silica gel $60 \mathrm{M}(0.04-0.063 \mathrm{~mm})$. All solvents were distilled and dried prior to use. Toluene was distilled and stored over sodium metal. 1,2-Dichloroethane was washed with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ and water, distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$, and stored over anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$. Acetonitrile was distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$ and redistilled from $\mathrm{K}_{2} \mathrm{CO}_{3}$. DMSO was refluxed over CaH_{2} and distilled in vacuo. The catalysts $\mathrm{Rh}_{2}(\mathrm{Oct})_{4}{ }^{1}$, $\mathrm{Rh}_{2}(\mathrm{Piv})_{4}{ }^{2}$, and $\mathrm{Rh}_{2}(\mathrm{esp})_{2}{ }^{3}$ were prepared by the reported procedures and gave satisfactory elemental analyses. Isoxazoles $\mathbf{1 a}, \mathbf{b}, \mathbf{d}-\mathbf{f},{ }^{4} \mathbf{1 c , g},{ }^{5} 3$-diazoindolin-2-imines $\mathbf{2 a}-\mathbf{g}, \mathbf{k}-\mathbf{m}^{6}$ and azirines $\mathbf{3 e},{ }^{7} \mathbf{3 f}, \mathbf{g},{ }^{8} \mathbf{3 h},{ }^{9} \mathbf{3 i}, \mathbf{j},{ }^{10} \mathbf{3} \mathbf{k}^{5}$ were prepared by the reported procedures.

Synthesis of 3-diazoindolin-2-imines 2

General procedure for the synthesis of 3-diazoindolin-2-imines 2

3-Diazoindolin-2-imines $\mathbf{2}$ were prepared similarly to the reported procedure. ${ }^{6}$ To an oven-dried round-bottom flask equipped with a magnetic stirring bar were added corresponding indole (10 mmol), sulfonyl azide (20 mmol), and anhydrous DMSO (20 mL). The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 18 h , then quenched with water $(200 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 200$ $\mathrm{mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The crude product was purified by column chromatography on silica gel (eluent petroleum ether-EtOAc, 3:1).

Note that low conversion of indoles with electron-withdrawing substituents was observed (about 5-20\%).
3-Diazoindolin-2-imines $\mathbf{2 a}-\mathbf{g}, \mathbf{k}-\mathbf{m}$ are known compounds and have full characterization data. ${ }^{6}$

N-(3-Diazo-1-methyl-7-nitroindolin-2-ylidene)-4-methylbenzenesulfonamide (2h)

Orange solid (185 mg , yield 5%); mp $180-182{ }^{\circ} \mathrm{C}$ (dec.); $R_{f}=0.59$ (hexane-EtOAc, $1: 1$); ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.91(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.34$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 156.0$, 143.1, 139.2, 136.4, 129.5, 126.9, 126.5, 122.7, 122.3, 121.8, 120.2, 32.8, 21.5; HRMS-ESI [M $+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S}^{+}$372.0761; found 372.0774 .

N-(6-Chloro-3-diazo-1-methylindolin-2-ylidene)-4-methylbenzenesulfonamide (2i)

Orange solid (432 mg , yield 12%); mp $192-194^{\circ} \mathrm{C} ; R_{f}=0.32$ (hexane-EtOAc, 3:1); IR (KBr), $\mathrm{v} / \mathrm{cm}^{-1}: 2145\left(\mathrm{C}=\mathrm{N}^{+}=\mathrm{N}^{-}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.22-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $155.5,142.6,139.8,135.0,131.8,129.4,126.3,123.0,117.5,117.2,110.2,64.3,29.1,21.5$; HRMS-ESI $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{14}{ }^{35} \mathrm{ClN}_{4} \mathrm{O}_{2} \mathrm{~S}^{+} 361.0521$; found 361.0530.

N-(6-Bromo-3-diazo-1-methylindolin-2-ylidene)-4-methylbenzenesulfonamide (2j)

Orange solid (525 mg , yield 13%); mp $168-170{ }^{\circ} \mathrm{C}$ (dec.); $R_{f}=0.33$ (hexane-EtOAc, $3: 1$); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 155.3,142.7,139.8,135.3,129.4,126.4$, 125.8, 119.1, 117.9, 117.8, 113.0, 64.3, 29.1, 21.5; HRMS-ESI $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{14}{ }^{79} \mathrm{BrN}_{4} \mathrm{O}_{2} \mathrm{~S}^{+} 405.0015$; found 405.0028.

N -(4-Bromo-3-diazo-1-methylindolin-2-ylidene)-4-methylbenzenesulfonamide (2n)

Orange solid (242 mg , yield 6%); mp 197-198 ${ }^{\circ} \mathrm{C}$ (dec.); $R_{f}=0.41$ (hexane-EtOAc, $3: 1$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{t}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 155.9$, 142.6, 140.1, 135.4, 129.3, 126.9, 126.7, 126.3, 116.7, 113.0, 108.6, 29.1, 21.5; HRMS-ESI [M $+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{14}{ }^{79} \mathrm{BrN}_{4} \mathrm{O}_{2} \mathrm{~S}^{+} 405.0015$; found 405.0022.

N-(3-diazo-1-methyl-1,3-dihydro-2H-pyrrolo[2,3-b]pyridin-2-ylidene)-4methylbenzenesulfonamide (20)

Orange solid (229 mg , yield 7\%); mp 173-174 ${ }^{\circ} \mathrm{C}$ (dec.); $R_{f}=0.35$ (hexane-EtOAc, $1: 1$); ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 8.24(\mathrm{dd}, J=5.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.95-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{dd}, J=7.6,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{dd}, J=7.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 155.3,146.6,145.4,142.8,139.6,129.4,126.4,124.0,118.3,113.5,27.9,21.5 ;$ HRMS-ESI $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}^{+}$328.0863; found 328.0877.

Synthesis of $\mathbf{2 H}$-azirines 3

General procedure for the synthesis of azirine-2-carboxylates 3a-d and azirine-2carboxamide 31^{11}
To a solution of isoxazole (0.6 mmol) in degassed acetonitrile (5 mL) was added iron(II) chloride tetrahydrate ($12 \mathrm{mg}, 0.06 \mathrm{mmol}$) under a stream of argon and the mixture was stirred at room temperature for 24 h . Then the reaction mixture was filtered through a pad of Celite and the solvent was removed in vacuo. The crude product was purified by flash chromatography on silica gel (eluent petroleum ether-EtOAc).
Azirine-2-carboxylates $\mathbf{3 a},{ }^{5} \mathbf{3 b},{ }^{12} \mathbf{3} \mathbf{c}^{13}$ are known compounds and have full characterization data.

Methyl 3-(4-nitrophenyl)-2H-azirine-2-carboxylate (3d)

Obtained from 5-methoxy-3-(4-nitrophenyl)isoxazole. ${ }^{14}$ Yellow solid (120 mg , yield 91%); mp $96-98{ }^{\circ} \mathrm{C} ; R_{f}=0.39$ (hexane-EtOAc, 3:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.49-8.44(\mathrm{~m}, 2 \mathrm{H}), 8.14-8.10$ $(\mathrm{m}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 171.2,158.5,150.8,131.3,127.9,124.5$, 52.6, 30.3; HRMS-ESI [M + Na] ${ }^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{NaO}_{4}{ }^{+}$243.0376; found 243.0382.

N -Benzyl- N -methyl-3-phenyl-2 H -azirine-2-carboxamide (31)

Obtained from N-benzyl- N-methyl-3-phenylisoxazol-5-amine. ${ }^{5}$ Yellow oil (123 mg , yield 78%); $R_{f}=0.39$ (hexane-EtOAc, 1:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ (rotameric mixture ~ 1:1) 7.93 (d, $J=7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.48-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.28(\mathrm{~m}, 5 \mathrm{H})$, 5.00 and $4.88(\mathrm{AB}-\mathrm{q}, ~ J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.78$ and $4.56(\mathrm{AB}-\mathrm{q}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 1.5 \mathrm{H})$, $3.16(\mathrm{~s}, 0.5 \mathrm{H}), 3.09(\mathrm{~s}, 0.5 \mathrm{H}), 3.08(\mathrm{~s}, 1.5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ (rotameric mixture $\left.\sim 1: 1\right)$ $170.8,170.5,159.3,159.0,137.0,136.8,133.43,133.37,130.29,130.26,129.14,129.06,129.0$, $128.6,128.2,127.8,127.4,126.5,123.1,123.0,53.3,51.5,34.9,34.6,29.1,29.0$; HRMS-ESI $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}^{+}$265.1335; found 265.1343 .

Synthesis of $\mathbf{5 H}$-pyrazino[2,3-b]indoles 4

(A)

3

General Procedure A (for 4a-d,i-m)

Azirine 3 (0.2 mmol), 3-diazoindolin-2-imine 2a ($0.4-0.8 \mathrm{mmol}$), $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ ($4.4 \mathrm{mg}, 0.01$ mmol), and toluene (1 mL) were placed into a screw cap glass tube and heated at $140{ }^{\circ} \mathrm{C}$ (oil bath temperature) under stirring for 1 h . The solvent was removed in vacuo, and the residue was purified by column chromatography on silica gel (eluent hexane-EtOAc, 3:1) to give the desired products.

General Procedure B (for $\mathbf{4 e - h}, \mathbf{t}-\mathbf{z}, \mathbf{a a}-\mathbf{a f}$)

Azirine 3 (0.2 mmol), 3-diazoindolin-2-imine $2(0.4-0.6 \mathrm{mmol}), \mathrm{Rh}_{2}(\mathrm{OAc})_{4}(4.4 \mathrm{mg}, 0.01$ mmol), and toluene (1 mL) were placed into a screw cap glass tube and heated at $140^{\circ} \mathrm{C}$ (oil bath temperature) under stirring until nitrogen evolution had ceased (about $2-5 \mathrm{~min}$). Then, for elimination of p-toluenesulfinic acid, to the reaction mixture was added p-toluenesulfonic acid $(14 \mathrm{mg}, 0.08 \mathrm{mmol})$. The resulting mixture was stirred at $140{ }^{\circ} \mathrm{C}$ for 1 h and then concentrated in vacuo. The residue was purified by column chromatography on silica gel (eluent hexane-EtOAc, $3: 1$) to give the desired products.

General Procedure C (for 4a,n-s)

5-Alkoxyisoxazole $1(0.2 \mathrm{mmol}), \mathrm{Rh}_{2}(\mathrm{OAc})_{4}(4.4 \mathrm{mg}, 0.01 \mathrm{mmol})$, and toluene $(1 \mathrm{~mL})$ were placed into a screw cap glass tube and heated at $140^{\circ} \mathrm{C}$ (oil bath temperature) under stirring for 3 h until full consumption of isoxazole was detected (control by TLC, eluent hexane- $\mathrm{Et}_{2} \mathrm{O}, 3: 1$). Then 3-diazoindolin-2-imine $\mathbf{2 a}(0.6 \mathrm{mmol})$ was added to the reaction mixture. The resulting mixture was stirred at $140^{\circ} \mathrm{C}$ for 1 h and then concentrated in vacuo. The residue was purified by column chromatography on silica gel (eluent hexane-EtOAc, 3:1) to give the desired products.

Characterization data for 5H-pyrazino[2,3-b]indoles 4

Methyl 5-methyl-2-phenyl-5H-pyrazino[2,3-b]indole-3-carboxylate (4a)

Obtained from azirine 3a and 3-diazoindolin-2-imine 2a (0.6 mmol) according to the general procedure A (55 mg , yield 87%). Also obtained from isoxazole $\mathbf{1 a}$ and 3-diazoindolin-2-imine 2a (0.6 mmol) according to the general procedure $\mathrm{C}(47 \mathrm{mg}$, yield $75 \%)$. White solid; mp $143-145{ }^{\circ} \mathrm{C} ; R_{f}=0.37$ (hexane-EtOAc, $3: 1$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.46(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.76-7.69 (m, 3H), 7.58-7.40 (m, 5H), 4.04 (s, 3H), 3.84 (s,3H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 168.1$, $145.8,143.3,143.0,139.2,138.9,136.8,130.1,128.8,128.39,128.38,122.4,121.2,119.2$, 109.6, 52.7, 27.8; HRMS-ESI $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{NaO}_{2}{ }^{+} 340.1056$; found 340.1070.

Methyl 2-(4-methoxyphenyl)-5-methyl-5H-pyrazino[2,3-b]indole-3-carboxylate (4b)

Obtained from azirine 3b and 3-diazoindolin-2-imine 2a (0.6 mmol) according to the general procedure A as a white solid (58 mg , yield 84%); mp $151-153^{\circ} \mathrm{C} ; R_{f}=0.20$ (hexane- EtOAc , 3:1); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.44(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.65(\mathrm{~m}, 3 \mathrm{H}), 7.53(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.44-7.38 (m, 1H), 7.08-7.03 (m, 2H), $4.02(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 168.4,160.0,145.5,143.3,142.9,138.9,136.8,131.4,130.1$ (2C), 122.4, 121.1, 119.3, 114.0, 109.6, 55.3, 52.8, 27.8; HRMS-ESI $[M+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{+} 348.1343$; found 348.1335 .

Methyl 2-(4-bromophenyl)-5-methyl-5H-pyrazino[2,3-b]indole-3-carboxylate (4c)

Obtained from azirine 3c and 3-diazoindolin-2-imine 2a (0.4 mmol) according to the general procedure A as a white solid (51 mg , yield 65%); mp $167-169^{\circ} \mathrm{C} ; R_{f}=0.48$ (hexane-EtOAc, 3:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.44(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.57(\mathrm{~m}, 4 \mathrm{H}), 7.55$ $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 167.8, 144.7, 143.5, 143.2, 138.9, 138.0, 137.0, 131.6, 130.5, 130.4, 122.9, 122.5, 121.4, 119.1,
109.7, 52.9, 27.9; HRMS-ESI [M + Na] ${ }^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{14}{ }^{79} \mathrm{BrN}_{3} \mathrm{NaO}_{2}{ }^{+}$418.0162; found 418.0169 .

Methyl 5-methyl-2-(4-nitrophenyl)-5H-pyrazino[2,3-b]indole-3-carboxylate (4d)

Obtained from azirine 3d and 3-diazoindolin-2-imine $\mathbf{2 a}(0.6 \mathrm{mmol})$ according to the general procedure A as a white solid (40 mg , yield 55%); mp $224-225^{\circ} \mathrm{C} ; R_{f}=0.49$ (hexane-EtOAc, 3:1); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.46(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.41-8.35(\mathrm{~m}, 2 \mathrm{H}), 7.92-7.85(\mathrm{~m}, 2 \mathrm{H})$, $7.81-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 167.3,147.7,145.6,143.7$ (2C), 143.4, 138.9, 137.2, 130.8, 129.9, 123.5, 122.6, 121.7, 119.0, 109.9, 53.0, 28.0; HRMS-ESI $[M+H]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{+} 363.1088$; found 363.1090 .

5-Methyl-2,3-diphenyl-5H-pyrazino[2,3-b]indole (4e)

Obtained from azirine $\mathbf{3 e}$ and 3-diazoindolin-2-imine $\mathbf{2 a}(0.4 \mathrm{mmol})$ according to the general procedure $\mathrm{B}(62 \mathrm{mg}$, yield $93 \%)$. Also obtained from azirine $\mathbf{3 e}$ and 3-diazoindolin-2-imine $\mathbf{2 b}$ $(0.4 \mathrm{mmol})$ according to the general procedure $\mathrm{B}(40 \mathrm{mg}$, yield $60 \%)$. White solid; mp 202-203 ${ }^{\circ} \mathrm{C} ; R_{f}=0.47$ (hexane-EtOAc, 3:1); ${ }^{\mathrm{H}} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.47(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.64(\mathrm{~m}$, $1 \mathrm{H}), 7.60-7.51(\mathrm{~m}, 5 \mathrm{H}), 7.43-7.31(\mathrm{~m}, 7 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 148.3,145.5$, 144.3, 142.4, 140.3, 140.0, 134.1, 130.27, 130.26, 128.8, 128.1, 128.0 (2C), 127.5, 121.9, 120.7, 119.8, 109.3, 27.6; HRMS-ESI [M + H] ${ }^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{3}{ }^{+}$336.1495; found 336.1507.

3-(4-Chlorophenyl)-5-methyl-2-phenyl-5H-pyrazino[2,3-b]indole (4f)

Obtained from azirine 3f and 3-diazoindolin-2-imine 2a (0.4 mmol) according to the general procedure B as a white solid (73 mg , yield 99%); mp $198-200{ }^{\circ} \mathrm{C} ; R_{f}=0.40$ (hexane-EtOAc, 3:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.46(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 5 \mathrm{H})$, 7.43-7.35 (m, 4H), 7.34-7.29 (m, 2H), 4.02 ($\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 146.9,145.3,144.3$, $142.5,140.1,138.5,134.4,134.2,131.6,130.2,129.0,128.31,128.28,127.7,122.0,120.9$, 119.7, 109.4, 27.6; HRMS-ESI [M + H ${ }^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{17}{ }^{35} \mathrm{ClN}_{3}{ }^{+}$370.1106; found 370.1119.

2-(4-Chlorophenyl)-5-methyl-3-phenyl-5H-pyrazino[2,3-b]indole (4g)

Obtained from azirine $\mathbf{3 g}$ and 3-diazoindolin-2-imine $\mathbf{2 a}(0.6 \mathrm{mmol})$ according to the general procedure B as a white solid (51 mg , yield 69%); $\mathrm{mp} 220-222^{\circ} \mathrm{C} ; R_{f}=0.65$ (hexane-EtOAc, 3:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.44(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.51(\mathrm{~m}, 3 \mathrm{H})$, $7.50-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 2 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $148.3,144.4,144.1,142.4,139.8,138.8,134.2,133.6,131.6,130.2,129.0,128.33,128.25$ (2C), 121.9, 120.9, 119.7, 109.4, 27.6; HRMS-ESI $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{17}{ }^{35} \mathrm{ClN}_{3}{ }^{+} 370.1106$; found 370.1119 .

3,5-Dimethyl-2-phenyl-5H-pyrazino[2,3-b]indole (4h)

Obtained from azirine $\mathbf{3 h}$ and 3 -diazoindolin-2-imine $\mathbf{2 a}$ (0.4 mmol) according to the general procedure B as a white solid (40 mg , yield 73%); mp $150-151^{\circ} \mathrm{C} ; R_{f}=0.41$ (hexane-EtOAc, 3:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.40(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.60(\mathrm{~m}, 1 \mathrm{H})$, $7.56-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 147.1,146.2,144.4,141.6,140.3,133.3,129.5,128.30,128.29,127.8,121.5,120.6$, 119.9, 109.2, 27.4, 23.8; HRMS-ESI [M + H] ${ }^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{3}{ }^{+}$274.1339; found 274.1352.

5-Methyl-2-(4-methylphenyl)-5H-pyrazino[2,3-b]indole (4i)

Azirine 3i (0.2 mmol), 3-diazoindolin-2-imine 2a (0.24 mmol), $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(4.4 \mathrm{mg}, 0.01 \mathrm{mmol})$, and 1,2 -dichloroethane (1 mL) were placed into a screw cap glass tube and heated at $115^{\circ} \mathrm{C}$ (oil bath temperature) under stirring for 1 h . The solvent was removed in vacuo, and the residue was purified by column chromatography on silica gel (eluent hexane-EtOAc, 3:1) to give $\mathbf{4 i}$ as a white solid (20 mg , yield 37%): mp $140-142{ }^{\circ} \mathrm{C} ; R_{f}=0.40$ (hexane-EtOAc, $3: 1$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.85(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.68-7.63(\mathrm{~m}, 1 \mathrm{H})$, $7.50(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.34(\mathrm{~m}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $145.4,144.5,141.9,138.3,137.2,135.4,135.3,129.6,128.9,126.7,121.9,120.7,119.9,109.3$, 27.5, 21.2; HRMS-ESI $[M+H]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{3}{ }^{+}$274.1339; found 274.1346.

2-(4-Methoxyphenyl)-5-methyl-5H-pyrazino[2,3-b]indole (4j)

Obtained from azirine $\mathbf{3 j}$ and 3-diazoindolin-2-imine $\mathbf{2 a}$ as described above for the synthesis of 4i. White solid (30 mg , yield 52%); mp $112-114{ }^{\circ} \mathrm{C} ; R_{f}=0.30$ (hexane-EtOAc, $3: 1$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.83(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.12-8.06(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.52(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.06(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 160.0,145.2,144.3,141.9,136.8,135.3,130.8,128.8,128.0,121.8,120.6,119.8$, 114.3, 109.3, 55.4, 27.5; HRMS-ESI [M + H] ${ }^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}^{+}$290.1288; found 290.1299.

tert-Butyl 5-methyl-2-phenyl-5H-pyrazino[2,3-b]indole-3-carboxylate (4k)

Obtained from azirine $\mathbf{3 k}$ and 3 -diazoindolin-2-imine $\mathbf{2 a}(0.6 \mathrm{mmol})$ according to the general procedure A as a white solid (50 mg , yield 70%); $\mathrm{mp} 165-166^{\circ} \mathrm{C} ; R_{f}=0.37$ (hexane-EtOAc, 3:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.44(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.67(\mathrm{~m}, 3 \mathrm{H}), 7.56-7.45(\mathrm{~m}, 4 \mathrm{H})$, 7.43-7.37(m, 1H), $4.04(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 166.6,145.7,143.3,143.1$, 140.9, 139.6, 136.2, 129.8, 129.2, 128.3, 128.2, 122.4, 121.0, 119.3, 109.5, 82.8, 27.8, 27.6; HRMS-ESI $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+} 360.1707$; found 360.1723 .

N-Benzyl- $\mathrm{N}, 5$-dimethyl-2-phenyl-5H-pyrazino[2,3-b]indole-3-carboxamide (41)

Obtained from azirine 31 and 3-diazoindolin-2-imine 2a (0.6 mmol) according to the general procedure A as a yellow oil (64 mg , yield 79%): $R_{f}=0.51$ (hexane-EtOAc, 1:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ (rotameric mixture ~ 1:1.5) $8.48-8.41(\mathrm{~m}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 0.8 \mathrm{H}), 7.89-7.82$ $(\mathrm{m}, 1.2 \mathrm{H}), 7.74-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.25(\mathrm{~m}, 2 \mathrm{H})$, $7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 1.2 \mathrm{H}), 7.07-7.03(\mathrm{~m}, 0.8 \mathrm{H}), 4.73(\mathrm{~s}, 1.2 \mathrm{H}), 4.08(\mathrm{~s}, 0.8 \mathrm{H})$, $4.03(\mathrm{~s}, 1.8 \mathrm{H}), 3.97(\mathrm{~s}, 1.2 \mathrm{H}), 2.95(\mathrm{~s}, 1.2 \mathrm{H}), 2.52(\mathrm{~s}, 1.8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ (rotameric mixture ~ 1:1.3) 169.4, 169.0, 143.6, 143.5, 143.3, 143.09, 143.07, 142.70, 142.69, 137.97, 137.95 , 136.06, 136.05, 135.9, 135.6, 129.63, 129.62, 129.2, 129.1, 128.65, 128.63, 128.61, 128.52 , 128.50, $128.46,128.3,127.6,127.43$, 127.38 , 122.1, 121.10, 121.09, 119.5, 109.6, 109.5, 54.1, 50.3, 35.1, 32.2, 27.8, 27.7; HRMS-ESI $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}^{+} 407.1866$; found 407.1867.

[3-(4-Bromophenyl)-1H-pyrazol-1-yl](5-methyl-2-phenyl-5H-pyrazino[2,3-b]indol-3-

 yl)methanone (4 m)

Obtained from azirine $\mathbf{3 m}$ and 3-diazoindolin-2-imine 2a (0.8 mmol) according to the general procedure A (reaction time: 5 min) as a white solid (82 mg , yield 81%); mp $171-172{ }^{\circ} \mathrm{C} ; R_{f}=$ 0.47 (hexane-EtOAc, $3: 1$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.53(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~d}, J=2.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.78-7.70(\mathrm{~m}, 3 \mathrm{H}), 7.58(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 5 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 2 \mathrm{H})$, $7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 166.4,155.0$, 145.8, 143.3, 143.2, 140.5, 138.3, 136.9, 131.7, 130.5, 130.3, 130.2, 128.7, 128.42, 128.40, 127.9, 123.4, 122.5, 121.3, 119.4, 109.7, 107.8, 27.9; HRMS-ESI $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{19}{ }^{79} \mathrm{BrN}_{5} \mathrm{O}^{+} 508.0767$; found 508.0791.

Methyl 2-(2,4-dimethylphenyl)-5-methyl-5H-pyrazino[2,3-b]indole-3-carboxylate (4n)

Obtained from isoxazole 1b and 3-diazoindolin-2-imine 2a according to the general procedure \mathbf{C} as a white solid (65 mg , yield 94%); mp 181-182 ${ }^{\circ} \mathrm{C} ; R_{f}=0.29$ (hexane-EtOAc, 3:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.44(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.22-7.08(\mathrm{~m}, 3 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 167.0,147.3,143.5,143.1,138.8,138.0,136.9,136.1,135.9,131.0,130.3,129.1$, 126.3, 122.6, 121.2, 119.1, 109.6, 52.6, 27.8, 21.3, 19.8; HRMS-ESI $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+} 346.1550$; found 346.1563 .

Methyl 2-(2,5-dimethylpheny)-5-methyl-5H-pyrazino[2,3-b]indole-3-carboxylate (4o)

Obtained from isoxazole 1c and 3-diazoindolin-2-imine 2a according to the general procedure C as a white solid (53 mg , yield 77%); mp $124-126^{\circ} \mathrm{C} ; R_{f}=0.29$ (hexane-EtOAc, 3:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.46(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 166.9,147.4,143.5,143.2,138.7,138.6,136.9,134.9,133.2,130.3$, $130.0,129.8,129.2,122.6,121.2,119.1,109.6,52.6,27.8,20.9,19.3$; HRMS-ESI $[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+}$346.1550; found 346.1558.

Methyl 2-(4-chlorophenyl)-5-methyl-5H-pyrazino[2,3-b]indole-3-carboxylate (4p)

Obtained from isoxazole 1d and 3-diazoindolin-2-imine 2a according to the general procedure C as a white solid (52 mg , yield 74%); mp $153-155{ }^{\circ} \mathrm{C} ; R_{f}=0.45$ (hexane-EtOAc, $3: 1$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.45(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.71(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 167.9, 144.7, 143.5, 143.1, 138.9, 137.5, 136.9, 134.7, 130.4, 130.2, 128.6, 122.5, 121.4, 119.1, 109.7, 52.9, 27.9; HRMS-ESI $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{15}{ }^{35} \mathrm{ClN}_{3} \mathrm{O}_{2}{ }^{+} 352.0847$; found 352.0860.

Methyl 2-(4-cyanophenyl)-5-methyl-5H-pyrazino[2,3-b]indole-3-carboxylate (4q)

Obtained from isoxazole 1e and 3-diazoindolin-2-imine $\mathbf{2 a}$ according to the general procedure C as a white solid (36 mg , yield 53%); mp 205-206 ${ }^{\circ} \mathrm{C}$; $R_{f}=0.30$ (hexane-EtOAc, 3:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.43(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.78(\mathrm{~m}, 4 \mathrm{H}), 7.75(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 167.4,144.0$, 143.6 (2C), 143.3, 138.8, 137.1, 132.1, 130.7, 129.6, 122.5, 121.7, 119.0, 118.7, 112.0, 109.9, 52.9, 27.9; HRMS-ESI $[M+H]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+} 343.1190$; found 343.1193.

Methyl 2-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-5-methyl-5H-pyrazino[2,3-b]indole-3carboxylate (4r)

Obtained from isoxazole $\mathbf{1 f}$ and 3-diazoindolin-2-imine $\mathbf{2 a}$ according to the general procedure C as a white solid (62 mg , yield 83%); mp $180-182{ }^{\circ} \mathrm{C} ; R_{f}=0.30$ (hexane-EtOAc, 3:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.43(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=8.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.34(\mathrm{~s}, 4 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 168.2,145.1,144.1,143.6,143.3$, 142.9, 139.0, 136.7, 132.2, 130.1, 122.4, 122.0, 121.2, 119.2, 117.9, 117.2, 109.6, 64.5, 64.3, 52.8, 27.8; HRMS-ESI [M + H] ${ }^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{4}{ }^{+} 376.1292$ found 376.1298.

Hexyl 5-methyl-2-phenyl-5H-pyrazino[2,3-b]indole-3-carboxylate (4s)

Obtained from isoxazole $\mathbf{1 g}$ and 3-diazoindolin-2-imine $\mathbf{2 a}$ according to the general procedure C as a white solid (61 mg , yield 79%); $R_{f}=0.57$ (hexane-EtOAc, $3: 1$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.45(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.68(\mathrm{~m}, 3 \mathrm{H}), 7.56-7.39(\mathrm{~m}, 5 \mathrm{H}), 4.22(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H})$, $1.51-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.07(\mathrm{~m}, 6 \mathrm{H}), 0.89(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 168.0$, $145.7,143.25,143.15,139.8,139.1,136.6,130.0,128.9,128.40,128.35,122.4,121.2,119.3$, 109.6, 66.2, 31.3, 28.1, 27.8, 25.3, 22.4, 13.9; HRMS-ESI $[M+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+}$ 388.2020 ; found 388.2027 .

5-Benzyl-2,3-diphenyl-5H-pyrazino[2,3-b]indole (4t)

Obtained from azirine 3e and 3-diazoindolin-2-imine $\mathbf{2 c}(0.4 \mathrm{mmol})$ according to the general procedure B as a white solid (59 mg , yield 72%); $\mathrm{mp} 205-206{ }^{\circ} \mathrm{C} ; R_{f}=0.49$ (hexane-EtOAc, 3:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.48(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.54(\mathrm{~m}, 5 \mathrm{H}), 7.45(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.41-7.27(\mathrm{~m}, 12 \mathrm{H}), 5.77(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 148.4,145.9,144.3,141.6,140.4,139.9$, $136.8,134.0,130.34,130.25,128.8,128.7,128.2,128.05,127.98,127.61,127.60,127.3,122.0$, 120.9, 120.1, 110.3, 45.1; HRMS-ESI [M + H] ${ }^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{~N}_{3}{ }^{+}$412.1808; found 412.1825.

5-Isopropyl-2,3-diphenyl-5H-pyrazino[2,3-b]indole (4u)

Obtained from azirine $\mathbf{3 e}$ and 3-diazoindolin-2-imine $\mathbf{2 d}$ (0.4 mmol) according to the general procedure B as a white solid (52 mg , yield 72%); mp $141-143{ }^{\circ} \mathrm{C} ; R_{f}=0.63$ (hexane-EtOAc, 9:1); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.48(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.50(\mathrm{~m}, 4 \mathrm{H})$, $7.40-7.30(\mathrm{~m}, 7 \mathrm{H}), 5.43(\mathrm{sept}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $147.9,145.2,143.9,140.9,140.5,140.2,134.0,130.35,130.25,128.5,128.1,128.0,127.9$, $127.5,122.1,120.25,120.21,110.8,46.0,20.9$; HRMS-ESI $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{3}{ }^{+}$ 364.1808; found 364.1817 .

5-Allyl-2,3-diphenyl-5H-pyrazino[2,3-b]indole (4v)

Obtained from azirine $\mathbf{3 e}$ and 3-diazoindolin-2-imine $2 \mathbf{e}(0.4 \mathrm{mmol})$ according to the general procedure B as a white solid (71 mg , yield 98%); mp $164-165^{\circ} \mathrm{C} ; R_{f}=0.57$ (hexane-EtOAc, 9:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.46(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.50(\mathrm{~m}, 5 \mathrm{H})$, $7.40(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 6 \mathrm{H}), 6.15-6.04(\mathrm{~m}, 1 \mathrm{H}), 5.30-5.16(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 148.3,145.8,143.9,141.7,140.3,140.0,134.0,132.4,130.3,130.2,128.7,128.1$, 128.02, 127.99, 127.6, 122.0, 120.8, 119.9, 117.4, 110.2, 43.7; HRMS-ESI $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{3}{ }^{+} 362.1652$; found 362.1660 .

2,3-Diphenyl-5H-pyrazino[2,3-b]indole (4w)

Obtained from azirine $\mathbf{3 e}$ and 3-diazoindolin-2-imine $\mathbf{2 f}$ (0.4 mmol) according to the general procedure B as a white solid (29 mg , yield 45%); mp $279-281^{\circ} \mathrm{C} ; R_{f}=0.49$ (hexane-EtOAc, 3:1); ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta 12.21(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.58(\mathrm{~m}, 2 \mathrm{H})$, 7.46-7.39 (m, 4H), 7.37-7.28 (m, 7H); ${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$) $\delta 147.9,144.8,144.1,141.1$, 140.1, 139.7, 133.3, 130.0, 129.9, 129.0, 127.94, 127.93, 127.91, 127.4, 121.1, 120.6, 119.3, 112.2; HRMS-ESI [M + H] ${ }^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{3}{ }^{+}$322.1339; found 322.1351.

6-Bromo-5-methyl-2,3-diphenyl-5H-pyrazino[2,3-b]indole (4x)

Obtained from azirine $\mathbf{3 e}$ and 3-diazoindolin-2-imine $2 \mathrm{~g}(0.4 \mathrm{mmol})$ according to the general procedure B as a white solid (72 mg , yield 87%); mp $239-241^{\circ} \mathrm{C} ; R_{f}=0.64$ (hexane-EtOAc, 9:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.40(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.51(\mathrm{~m}, 4 \mathrm{H})$, $7.39-7.32(\mathrm{~m}, 6 \mathrm{H}), 7.20(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 149.3,146.5$, $144.8,140.0,139.7,138.9,133.8,133.2,130.3,130.2,128.25,128.16,128.1,127.7,123.0$, 121.7, 120.9, 103.9, 30.7; HRMS-ESI $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{17}{ }^{79} \mathrm{BrN}_{3}{ }^{+} 414.0600$; found 414.0619.

5-Methyl-6-nitro-2,3-diphenyl-5H-pyrazino[2,3-b]indole (4y)

Obtained from azirine $\mathbf{3 e}$ and 3-diazoindolin-2-imine $\mathbf{2 h}(0.4 \mathrm{mmol})$ according to the general procedure B as a white solid (50 mg , yield 66%); mp $244-245{ }^{\circ} \mathrm{C} ; R_{f}=0.49$ (hexane-EtOAc, 3:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.71(\mathrm{dd}, J=7.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.51$ $(\mathrm{m}, 4 \mathrm{H}), 7.44(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.33(\mathrm{~m}, 6 \mathrm{H}), 4.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 150.4$, $147.8,145.6,139.6,139.3,136.5,133.7,132.5,130.2,130.1,128.6,128.3,128.2,128.1,126.8$, 125.3, 124.3, 119.9, 31.4; HRMS-ESI $[M+H]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+}$381.1346; found 381.1352 .

7-Chloro-5-methyl-2,3-diphenyl-5H-pyrazino[2,3-b]indole (4z)

Obtained from azirine $\mathbf{3 e}$ and 3 -diazoindolin-2-imine $\mathbf{2 i}$ (0.4 mmol) according to the general procedure B as a white solid (50 mg , yield 68%); mp $232-234^{\circ} \mathrm{C} ; R_{f}=0.57$ (hexane-EtOAc, 9:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.35(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.49(\mathrm{~m}, 5 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 7 \mathrm{H}), 4.00$ (s, 3 H$) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 148.7,146.1,144.6,142.8,140.1,139.8,134.7,133.5,130.23$, $130.18,128.19,128.16,128.1,127.7,122.8,121.4,118.3,109.7,27.7$; HRMS-ESI $[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{23} \mathrm{H}_{17}{ }^{35} \mathrm{ClN}_{3}{ }^{+} 370.1106$; found 370.1105 .

7-Bromo-5-methyl-2,3-diphenyl-5H-pyrazino[2,3-b]indole (4aa)

Obtained from azirine $\mathbf{3 e}$ and 3-diazoindolin-2-imine $\mathbf{2 j}$ (0.4 mmol) according to the general procedure B as a white solid (53 mg , yield 64%); mp $250-252^{\circ} \mathrm{C} ; R_{f}=0.59$ (hexane-EtOAc, 9:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.29(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.58-7.48(\mathrm{~m}, 5 \mathrm{H}), 7.38-7.31$ (m, 6H), $4.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 148.8,146.2,144.4,142.9,140.1,139.8,133.5$, $130.23,130.19,128.21,128.17,128.1,127.7,124.1,123.0,122.7,118.7,112.7,27.7$; HRMS-ESI $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{17}{ }^{79} \mathrm{BrN}_{3}{ }^{+}$414.0600; found 414.0594.

5,8-Dimethyl-2,3-diphenyl-5H-pyrazino[2,3-b]indole (4ab)

Obtained from azirine $\mathbf{3 e}$ and 3-diazoindolin-2-imine $\mathbf{2 k}$ (0.4 mmol) according to the general procedure B as a white solid (67 mg , yield 96%); mp $231-232{ }^{\circ} \mathrm{C} ; R_{f}=0.52$ (hexane-EtOAc, 3:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.27(\mathrm{~s}, 1 \mathrm{H}), 7.59-7.51(\mathrm{~m}, 4 \mathrm{H}), 7.48(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 6 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}\right) \delta 148.1,145.2$, $144.5,140.7,140.4,140.1,134.0,130.3,130.24,130.23,130.17$, 128.1, 128.02, 127.97, 127.4, 121.7, 119.8, 109.0, 27.6, 21.3; HRMS-ESI $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{3}{ }^{+} 350.1652$; found 315.1660 .

8-Methoxy-5-methyl-2,3-diphenyl-5H-pyrazino[2,3-b]indole (4ac)

Obtained from azirine 3e and 3-diazoindolin-2-imine $\mathbf{2 l}(0.4 \mathrm{mmol})$ according to the general procedure B as a white solid (62 mg , yield 85%); mp 199-200 ${ }^{\circ} \mathrm{C}$; $R_{f}=0.43$ (hexane-EtOAc, 3:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.50(\mathrm{~m}, 4 \mathrm{H}), 7.44(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.38-7.28(\mathrm{~m}, 7 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 154.8,148.3,145.1,144.6$, $140.4,140.0,137.2,133.9,130.3,130.2,128.1,128.02,128.01,127.5,119.9,118.9,110.3$, 103.5, 56.0, 27.6; HRMS-ESI $[M+H]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}^{+} 366.1601$; found 366.1613.

8-Bromo-5-methyl-2,3-diphenyl-5H-pyrazino[2,3-b]indole (4ad)

Obtained from azirine $\mathbf{3 e}$ and 3 -diazoindolin-2-imine $\mathbf{2 m}(0.4 \mathrm{mmol})$ according to the general procedure B as a white solid (82 mg , yield 99%); mp $228-229^{\circ} \mathrm{C} ; R_{f}=0.63$ (hexane-EtOAc, 3:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.58(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{dd}, J=8.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.49(\mathrm{~m}$, $4 \mathrm{H}), 7.40(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 6 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 149.2$, 146.1, 144.4, 140.8, 140.0, 139.7, 132.8, 131.4, 130.24, 130.16, 128.3, 128.2, 128.1, 127.7, 124.6, 121.3, 113.7, 110.9, 27.7; HRMS-ESI $[M+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{17}{ }^{79} \mathrm{BrN}_{3}{ }^{+} 414.0600$; found 414.0614 .

9-Bromo-5-methyl-2,3-diphenyl-5H-pyrazino[2,3-b]indole (4ae)

Obtained from azirine $\mathbf{3 e}$ and 3-diazoindolin-2-imine $\mathbf{2 n}(0.6 \mathrm{mmol})$ according to the general procedure B as a white solid (69 mg , yield 84%); mp $235-236^{\circ} \mathrm{C}$; $R_{f}=0.59$ (hexane-EtOAc, 3:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.66-7.54(\mathrm{~m}, 5 \mathrm{H}), 7.52-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.30(\mathrm{~m}, 6 \mathrm{H}), 4.04(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 148.7,145.6,144.0,143.2,140.06,140.05,133.5,130.4,130.2,128.9$, 128.3, 128.2, 128.0, 127.6, 124.9, 118.7, 117.1, 108.2, 27.7; HRMS-ESI $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{17}{ }^{79} \mathrm{BrN}_{3}{ }^{+} 414.0600$; found 414.0617.

5-Methyl-2,3-diphenyl-5H-pyrido[3',2':4,5]pyrrolo[2,3-b]pyrazine (4af)

Obtained from azirine 3 e and 3-diazoindolin-2-imine 2 o (0.5 mmol) according to the general procedure B as a white solid (59 mg , yield 88%); mp $203-204{ }^{\circ} \mathrm{C} ; R_{f}=0.20$ (hexane -EtOAc , 3:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.72-8.66(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.31(\mathrm{~m}, 7 \mathrm{H}), 4.13(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 152.9,149.5,148.8,146.7,144.2,140.0,139.6,132.0,130.3,130.12$, 130.07, 128.3, 128.2, 128.1, 127.8, 116.8, 113.5, 26.5; HRMS-ESI $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{4}{ }^{+}$337.1448; found 337.1463.

Methyl
b]indole-3-carboxylate (5a)
Obtained from azirine 3a and 3-diazoindolin-2-imine 2a (0.6 mmol) according to the general procedure A (temperature: $110^{\circ} \mathrm{C}$, reaction time: 2 min) as a white solid (53 mg , yield 56%); mp $100-103{ }^{\circ} \mathrm{C} ; R_{f}=0.47$ (hexane-EtOAc, 3:1); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.74-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 166.8,147.5,145.0,136.6,135.7,132.8,129.7,129.2,128.1,127.0,126.8$, 124.6, 123.0, 122.1, 120.9, 120.0, 118.4, 110.1, 58.1, 53.2, 31.2, 21.5; HRMS-ESI [M + H] ${ }^{+}$ calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}^{+} 474.1482$; found 474.1499.

References

1. A.-M. Giroud-Godquin, J.-C. Marchon, D. Guillon and A. Skoulios, J. Phys. Chem., 1986, 90, 5502.
2. F. A. Cotton and T. R. Felthouse, Inorg. Chem., 1980, 19, 323.
3. K. P. Kornecki and J. F. Berry, Eur. J. Inorg. Chem., 2012, 2012, 562.
4. I. A. Smetanin, M. S. Novikov, A. V. Agafonova, N. V. Rostovskii, A. F. Khlebnikov, I. V. Kudryavtsev, M. A. Terpilowski, M. K. Serebriakova, A. S. Trulioff and N. V. Goncharov, Org. Biomol. Chem., 2016, 14, 4479.
5. N. V. Rostovskii, A. V. Agafonova, I. A. Smetanin, M. S. Novikov, A. F. Khlebnikov, J. O. Ruvinskaya and G. L. Starova, Synthesis, 2017, 49, 4478.
6. G. R. Sheng, K. Huang, Z. H. Chi, H. L. Ding, Y. P. Xing, P. Lu and Y. G. Wang, Org. Lett., 2014, 16, 5096;
7. F. W. Fowler, A. Hassner and L. A. Levy, J. Am. Chem. Soc., 1967, 89, 2077.
8. K. Okamoto, A. Mashida, M. Watanabe and K. Ohe, Chem. Commun., 2012, 48, 3554.
9. H. Bader and H.-J. Hansen, Helv. Chim. Acta, 1978, 61, 286.
10. A. Hortmann, D. Robertson and B. Gillard, J. Org. Chem., 1972, 37, 322.
11. S. Auricchio, A. Bini, E. Pastormerlo and A. M. Truscello, Tetrahedron, 1997, 53, 10911.
12. N. S. Y. Loy, A. Singh, X. Xu and C.-M. Park, Angew. Chem., Int. Ed., 2013, 52, 2212.
13. D. An, X. Guan, R. Guan, L. Jin, G. Zhang and S. Zhang, Chem. Commun., 2016, 52, 11211.
14. N. V. Rostovskii, J. O. Ruvinskaya, M. S. Novikov, A. F. Khlebnikov, I. A. Smetanin, A. V. Agafonova, J. Org. Chem., 2017, 82, 256.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 3-diazoindolin-2-imines $2 \mathrm{~h}-\mathrm{j}, \mathrm{n}, \mathrm{o}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{2 h}$

$\stackrel{n}{\text { Non }}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{2 i}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{2} \mathbf{j}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{2 n}$

ホ

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 2 o

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of azirines 3d, 1
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{3 d}$

$\stackrel{n}{\text { n }}$
$\stackrel{\sim}{n}$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 31 (rotameric mixture $\sim 1: 1$)

$\stackrel{\sim}{\mathrm{m}} \mathrm{O}_{0}^{\circ} \stackrel{\square}{\circ}$	¢ ${ }_{\text {g }}$	∞
N人゚	กnin	¢-M
I	11	V V

$\stackrel{\ominus}{\circ}$

| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{5 H}$-pyrazino[2,3-b]indoles 4

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{4 a}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{4 b}$

ハ

[^0]${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{4 c}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{4 d}$

* \infty
* \infty

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{4 e}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{4 f}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{4 g}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{4 h}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{4 i}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{4} \mathbf{j}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{4 k}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{4 I}$ (rotameric mixture $\sim 1: 1.5$)

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{4 m}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{4 n}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 40

200	190	180	170	160	150	140	130	120	110	$\begin{aligned} & 100 \\ & \mathrm{ppm} \end{aligned}$	90	80	70	60	50	40	30	20	10

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{4 p}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{4 q}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{4 r}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 4 s

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{4 t}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{4 u}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{4 v}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{4 w}$

$$
\stackrel{\sim}{1}
$$

$\stackrel{\stackrel{+}{m}}{1} \stackrel{n}{i}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{4 x}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{4 y}$

Γ	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{4 z}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{4 a a}$
(江

$\begin{array}{lllllllllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{4 a b}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 4ac

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{4 a d}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 4ae

Nico
$\stackrel{8}{\text { i }}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{4 a f}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 a}$

(

X-Ray crystal structure of compound $\mathbf{4 j}$

[^0]: $\begin{array}{llllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & & & & & & & \end{array}$

