Supplementary Information

A red-emitting fluorescence probe for hydrogen sulfide in living cells with a large Stokes shift

Lei Yang,^a Yuanan Su,^a Zhankui Sha,^b Yani Geng,^a Fengpei Qi ^{a,c} and Xiangzhi Song^{a*}

- ^{*a*} College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan Province, P. R. China, 410083.
- ^b Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei, Province, P.R. China 430074,
- ^c Department of Chemistry and Environmental Engineering, Hunan City University, Yiyang, Hunan Province, P. R. China, 413000.
- * Corresponding author. Fax: +86-731-88836954; Tel: +86-731-88836954; E-mail: xzsong@csu.edu.cn

Table S1	2
Fig. S1	3
Fig. S2	4
Fig. S3	4
Fig. S4	5
Fig. S5	5
Fig. S6	6
Fig. S7	6
Fig. S8	7
Fig. S9	7
Fig. S10	8
Fig. S11	8
Fig. S12	9
Fig. S13	10

Probe	λex/λem	Stokes shift	Literature
^t BuO N O N ₃ O O O	490 nm/525 nm	35 nm	J. Am. Chem. Soc. 2011, 133, 10078–10080
N ₃ O O N N N	440 nm/500 nm	60 nm	Anal. Chem. 2016, 88, 7873-7877
	375 nm/450 nm	75 nm	Chem. Comm, 2014, 50, 4214-4217
N ₃ N ₃ N	565 nm/590 nm	25 nm	Anal. Bioanal. Chem., 404, 2012, 1919–1923
HO O O N ₃	390 nm/483 nm	93 nm	J. Fluoresc, 23, 2013, 181–186
N ₃ O HOOC	480 nm/525 nm	45 nm	PNAS, 2013, 18, 7131– 7135
	350 nm/423 nm	73 nm	Org. Biomol. Chem., 2012, 10, 9683
	381 nm/462 nm	81 nm	RSC Adv., 2016, 6, 62406–62410
	575 nm/600 nm	25 nm	Chem. Commun., 2017, 53, 22752278
F F N ₃	444 nm/520 nm	76 nm	Org. Biomol. Chem., 2013, 11, 8166–8170
N ₃ O O	340 nm/445 nm	115 nm	Analyst, 2013, 138, 946– 951

Table S1 Fluorescent probes for Hydrogen sulfide based on the reaction of azido reduction.

	440 nm/540 nm	100 nm	Sensors and Actuators B, 2017, 248, 50–56
	346 nm/516 nm	170 nm	Tetrahedron, 2016, 72, 3531-3534
CN CN CN N O N N O N N O	485 nm/610 nm	125 nm	This Work

Fig. S1 Absorption (black) and emission (red) spectra of dye 5 in HEPES buffer (20.0 mM, 1.0 mM CTAB, pH=7.4).

Fig. S2 (a) Absorption spectra of Probe 1 (10.0 μ M) upon the treatment with electron donors in HEPES buffer (20.0 mM, 1.0 mM CTAB, pH = 7.4). (b) Absorption spectra of Probe 1 (10.0 μ M in response to Na₂S (5.0 equiv.) with the co-existence of electron donors in HEPES buffer (20.0 mM, 1.0 mM CTAB, pH = 7.4).

Fig. S3 ¹H NMR spectrum of compound 4 in CDCl₃.

Fig. S5 ¹H NMR spectrum of Probe 1 in CDCl₃.

Fig. S6 ¹³C NMR spectrum of Probe 1 in CDCl₃.

Fig. S7 ¹H NMR spectrum of the reaction product of Probe 1 with Na₂S in CDCl₃.

Fig. S9 HRMS spectrum of compound 4.

Fig. S11 HRMS spectrum of the reaction product from Probe 1 with Na₂S.

Comparison of Probe 1 and AcHS in response H₂S

AcHS in the literature (J. Org. Chem. 2014, 79, 9481–9489) was prepared to compare with our probe in the detection of H₂S in solution. In EtOH/PBS (v/v 1:4, pH=7.0), at least 120 min is needed to reach the maximized fluorescence enhancement when AcHS (10 µM) was treated with 100 equiv. of Na₂S. In our work, the fluorescence intensity reached a plateau within 30 min when our probe (10 µM) was treated with 5.0 equiv. of Na₂S in HEPES buffer (20.0 mM, pH = 7.4, 1.0 mM CTAB). CTAB (cetyl trimethyl ammonium Bromide) is a cationic surfactant, and forms micelles in aqueous solutions which act as "microreactors" to dramatically enhance the reaction rate between the organic reactant.^[1] The presence of CTAB in aqueous solution can significantly accelerate the reaction rate of many reactions at a low concentration.^[2] Therefore, we investigated the fluorescence response of AcHS (10 µM) toward Na₂S in HEPES buffer (20.0 mM, pH = 7.4 with 1.0 mM CTAB). First, we incubated Probe AcHS (10 μ M) in HEPES buffer (20.0 mM, pH = 7.4, 1.0 mM CTAB) with different concentrations of Na₂S (0-11 equiv.) for 1 hour. As shown in Fig. S12, the fluorescence signal levelled off when the concentration of Na₂S exceeded 100 µM (10 equiv.). As a result, the time-dependent fluorescence experiment was conducted using 100 μ M Na₂S to react with 10 μ M AcHS in HEPES buffer (20.0 mM, pH = 7.4, 1.0 mM CTAB). It was seen in Fig. S13 that a maximized fluorescence signal was obtained within 10 min. This result, coupled with our work and the work in the literature (J. Org. Chem. 2014, 79, 9481-9489), indicated that CTAB played an important role in accelerating the sensing reaction.

Fig. S12 (a) Fluorescence spectra of **AcHS** (10 μ M) with Na₂S (0-200 μ M) for 1 hour in HEPES buffer (20.0 mM, pH = 7.4, 1.0 mM CTAB). (b) Ratio of emission intensity of **AcHS** (10 μ M) after incubation with different concentrations of Na₂S for 1 hour in HEPES buffer (20.0 mM, pH = 7.4, 1.0 mM CTAB). Excitation wavelength: 410 nm. EX/EM slits: 5 nm.

Fig. S13 (a) Time-dependent fluorescence spectra of **AcHS** (10 μ M) with the solution of Na₂S (100 μ M) in HEPES buffer (20.0 mM, pH = 7.4, 1.0 mM CTAB). (b) Ratio of emission intensity of **AcHS** (10 μ M) with the solution of Na₂S (100 μ M) in HEPES buffer (20.0 mM, pH = 7.4, 1.0 mM CTAB) as a function of time. Excitation wavelength: 410 nm. EX/EM slits: 5 nm.

1. C. A. Bunton, F. Nome, F. H. Quina and L. S. Romsted, Ion binding and reactivity at charged aqueous interfaces, Accounts of Chemical Research, 1991, 24, 357-364.

2. B. Samiey, C.-H. Cheng, and J.Wu, Effects of Surfactants on the Rate of Chemical Reactions, Journal of Chemistry, 2014, Article ID 908476, 14 pages.