Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting Information 1

I₂ catalyzed access of spiro[indoline-3,4'-pyridine] appended amine dyad: New ON-OFF chemosensors for Cu²⁺ and imaging in living cells

Animesh Mondal^a, Barnali Naskar^a, Sanchita Goswami^a, Chandraday Prodhan^b, Keya Chaudhuri^b and Chhanda Mukhopadhyay^a*

*E-mail: cmukhop@yahoo.co.in

...14-19

... 20-22

Figure S1. ESI-MS spectra of compound 5a-5f, 5h-5l and in copper complexes ...03-13

PhotophysicalCharacterization

Figure S2-12. Absorption spectra of compounds 5a-5f and 5h-5l upon titration with Cu^{2+}

Figure S13-17. Fluorescence Quenching Efficiency (FQE) of compounds 5d, 5f, 5h, 5j and 5k

Figure S18-28. Job's plot for determination of stoichiometry of Cu^{2+} : in solution of complexes 5a-5f and 5h-5l ... 23-28

Figure S29-33. Benesi-Hildebrand plot of fluorescence titration curves of 5d, 5f, 5h, 5j and 5k with Cu^{2+} ... 29-31

Figure S34-38. The limit of detection (LOD) of compounds 5d, 5f, 5h, 5j and 5k for Cu^{2+} as a function of $[Cu^{2+}]$... 32-34

Figure S39-43. Fluorescence emission spectra of chemosensor (5d, 5f, 5h, 5j and 5k) in thepresence of Cu^{2+} ion followed by addition of EDTA... 35-37

Figure S44-48. Emission intensity of compounds 5d, 5f, 5h, 5j and 5k in absence and inpresence of Cu^{2+} at different pH values in aqueous DMSO solution... 38-40

Figure S1. ESI-MS spectra of compound 5a-5f, 5h-5l and in copper complexes:

ESI-MS of compound 5b

ESI-MS of compound 5c

ESI-MS of compound 5d

ESI-MS of compound 5e

Supporting Information

ESI-MS of compound **5d+Cu**

ESI-MS of compound **5e+Cu**

ESI-MS of compound $\mathbf{5f+Cu}$

ESI-MS of compound **5h+Cu**

Supporting Information

ESI-MS of compound 5k+Cu

ESI-MS of compound **5l+Cu**

Figure S2. UV-vis spectra of **5a** (5×10^{-6} M) in DMSO/H₂O (1:9, v/v) HEPES buffer (pH = 7.4) solution in the presence of various concentrations of Cu²⁺ (0, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10) ×10⁻⁶ M. **Inset:** visual color change (yellow to colorless) observed with addition of Cu²⁺ ion to **5a** solution.

Figure S3. UV-vis spectra of **5b** (5×10^{-6} M) in DMSO/H₂O (1:9, v/v) HEPES buffer (pH = 7.4) solution in the presence of various concentrations of Cu²⁺ (0, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10) ×10⁻⁶ M. **Inset:** visual color change (yellow to colorless) observed with addition of Cu²⁺ ion to **5b** solution.

Figure S4. UV-vis spectra of **5c** (5×10^{-6} M) in DMSO/H₂O (1:9, v/v) HEPES buffer (pH = 7.4) solution in the presence of various concentrations of Cu²⁺ (0, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10) ×10⁻⁶ M. **Inset:** visual color change (yellow to colorless) observed with addition of Cu²⁺ ion to **5c** solution.

Figure S5. UV-vis spectra of **5d** (5×10^{-6} M) in DMSO/H₂O (1:9, v/v) HEPES buffer (pH = 7.4) solution in the presence of various concentrations of Cu²⁺ (0, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10) ×10⁻⁶ M. **Inset:** visual color change (green to colorless) observed with addition of Cu²⁺ ion to **5d** solution.

Figure S6. UV-vis spectra of **5e** (5×10^{-6} M) in DMSO/H₂O (1:9, v/v) HEPES buffer (pH = 7.4) solution in the presence of various concentrations of Cu²⁺ (0, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10) ×10⁻⁶ M. **Inset:** visual color change (yellow to colorless) observed with addition of Cu²⁺ ion to **5e** solution.

Figure S7. UV-vis spectra of **5f** (5×10^{-6} M) in DMSO/H₂O (1:9, v/v) HEPES buffer (pH = 7.4) solution in the presence of various concentrations of Cu²⁺ (0, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10) ×10⁻⁶ M. **Inset:** visual color change (yellow to colorless) observed with addition of Cu²⁺ ion to **5f** solution.

Figure S8. UV-vis spectra of **5h** (5×10^{-6} M) in DMSO/H₂O (1:9, v/v) HEPES buffer (pH = 7.4) solution in the presence of various concentrations of Cu²⁺ (0, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10) ×10⁻⁶ M. **Inset:** visual color change (yellow to colorless) observed with addition of Cu²⁺ ion to **5h** solution.

Figure S9. UV-vis spectra of **5i** $(5 \times 10^{-6} \text{ M})$ in DMSO/H₂O (1:9, v/v) HEPES buffer (pH = 7.4) solution in the presence of various concentrations of Cu²⁺ (0, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10) ×10⁻⁶ M. **Inset:** visual color change (yellow to colorless) observed with addition of Cu²⁺ ion to **5i** solution.

Figure S10. UV-vis spectra of **5j** (5×10^{-6} M) in DMSO/H₂O (1:9, v/v) HEPES buffer (pH = 7.4) solution solution in the presence of various concentrations of Cu²⁺ (0, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10) ×10⁻⁶ M. **Inset:** visual color change (yellow to colorless) observed with addition of Cu²⁺ ion to **5j** solution.

Figure S11. UV-vis spectra of **5**k (5×10^{-6} M) in DMSO/H₂O (1:9, v/v) HEPES buffer (pH = 7.4) solution in the presence of various concentrations of Cu²⁺ (0, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10) ×10⁻⁶ M. **Inset:** visual color change (yellow to colorless) observed with addition of Cu²⁺ ion to **5**k solution.

Figure S12. UV-vis spectra of **51** (5×10^{-6} M) in DMSO/H₂O (1:9, v/v) HEPES buffer (pH = 7.4) solution in the presence of various concentrations of Cu²⁺ (0, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10) ×10⁻⁶ M. **Inset:** visual color change (yellow to colorless) observed with addition of Cu²⁺ ion to **51** solution.

Figure S13. Fluorescence Quenching Efficiency (FQE), $[{(F_0 - F)/F_0} \times 100]$ of **5d** (5 × 10⁻⁶ M) in the presence of 4 equiv. of different cations except 2 equiv. of Cu²⁺ in solution [the green bar portion]. Fluorescence Quenching Efficiency (FQE) of a mixture of **5d** (5 × 10⁻⁶ M) with other metal ions (20 × 10⁻⁶ M) followed by the addition of Cu²⁺ (10 × 10⁻⁶ M) to the DMSO/H₂O (1:9, v/v) HEPES buffer (pH = 7.4) solution [the red bar portion] ($\lambda_{ex} = 375.7$ nm, $\lambda_{em} = 493.5$ nm).

Figure S14. Fluorescence Quenching Efficiency (FQE), $[{(F_0 - F)/F_0} \times 100]$ of **5f** (5 × 10⁻⁶ M) in the presence of 4 equiv. of different cations except 2 equiv. of Cu²⁺ in solution [the green bar portion]. Fluorescence Quenching Efficiency (FQE) of a mixture of **5f** (5 × 10⁻⁶ M) with other metal ions (20 × 10⁻⁶ M) followed by the addition of Cu²⁺ (10 × 10⁻⁶ M) to the DMSO/H₂O (1:9, v/v) HEPES buffer (pH = 7.4) solution [the pink bar portion] ($\lambda_{ex} = 310.9$ nm, $\lambda_{em} = 491.7$ nm).

Figure S15. Fluorescence Quenching Efficiency (FQE), $[\{(F_0 - F)/F_0\} \times 100]$ of **5h** (5 × 10⁻⁶ M) in the presence of 4 equiv. of different cations except 2 equiv. of Cu²⁺ in solution [the green bar portion]. Fluorescence Quenching Efficiency (FQE) of a mixture of **5h** (5 × 10⁻⁶ M) with other metal ions (20 × 10⁻⁶ M) followed by the addition of Cu²⁺ (10 × 10⁻⁶ M) to the DMSO/H₂O (1:9, v/v) HEPES buffer (pH = 7.4) solution [the red bar portion] ($\lambda_{ex} = 308.5$ nm, $\lambda_{em} = 498.7$ nm).

Figure S16. Fluorescence Quenching Efficiency (FQE), $[{(F_0 - F)/F_0} \times 100]$ of **5j** (5 × 10⁻⁶ M) in the presence of 4 equiv. of different cations except 2 equiv. of Cu²⁺ in solution [the green bar portion]. Fluorescence Quenching Efficiency (FQE) of a mixture of **5j** (5 × 10⁻⁶ M) with other metal ions (20 × 10⁻⁶ M) followed by the addition of Cu²⁺ (10 × 10⁻⁶ M) to the DMSO/H₂O (1:9, v/v) HEPES buffer (pH = 7.4) solution [the pink bar portion] ($\lambda_{ex} = 302.4$ nm, $\lambda_{em} = 497.8$ nm).

Figure S17. Fluorescence Quenching Efficiency (FQE), $[{(F_0 - F)/F_0} \times 100]$ of **5k** (5 × 10⁻⁶ M) in the presence of 4 equiv. of different cations except 2 equiv. of Cu²⁺ in solution [the cyan bar portion]. Fluorescence Quenching Efficiency (FQE) of a mixture of **5k** (5 × 10⁻⁶ M) with other metal ions (20 × 10⁻⁶ M) followed by the addition of Cu²⁺ (10 × 10⁻⁶ M) to the DMSO/H₂O (1:9, v/v) HEPES buffer (pH = 7.4) solution [the red bar portion] ($\lambda_{ex} = 312.5$ nm, $\lambda_{em} = 503.5$ nm).

Figure S18. Job's plot for determination of stoichiometry of Cu^{2+} : 5a complex in solution.

Figure S19. Job's plot for determination of stoichiometry of Cu^{2+} : **5b** complex in solution.

Figure S20. Job's plot for determination of stoichiometry of Cu^{2+} : **5c** complex in solution.

Figure S21. Job's plot for determination of stoichiometry of Cu^{2+} : 5d complex in solution.

Figure S22. Job's plot for determination of stoichiometry of Cu^{2+} : **5e** complex in solution.

Figure S23. Job's plot for determination of stoichiometry of Cu^{2+} : **5f** complex in solution.

Figure S24. Job's plot for determination of stoichiometry of Cu^{2+} : **5h** complex in solution.

Figure S25. Job's plot for determination of stoichiometry of Cu^{2+} : **5i** complex in solution.

Figure S26. Job's plot for determination of stoichiometry of Cu^{2+} : **5j** complex in solution.

Figure S27. Job's plot for determination of stoichiometry of Cu^{2+} : **5k** complex in solution.

Figure S28. Job's plot for determination of stoichiometry of Cu^{2+} : **51** complex in solution.

Figure S29. Benesi-Hildebrand plot $1 / (F_0 - F)$ vs. $1/[Cu^{2+}]$ for complexation between **5d** and Cu²⁺ derived from emission titration curve.

Figure S30. Benesi-Hildebrand plot $1 / (F_0 - F)$ vs. $1/[Cu^{2+}]$ for complexation between **5f** and Cu²⁺ derived from emission titration curve.

Figure S31. Benesi-Hildebrand plot $1 / (F_0 - F)$ vs. $1/[Cu^{2+}]$ for complexation between **5h** and Cu²⁺ derived from emission titration curve.

Figure S32. Benesi-Hildebrand plot $1 / (F_0 - F)$ vs. $1/[Cu^{2+}]$ for complexation between **5j** and Cu²⁺ derived from emission titration curve.

Figure S33. Benesi-Hildebrand plot $1 / (F_0 - F)$ vs. $1/[Cu^{2+}]$ for complexation between **5k** and Cu²⁺ derived from emission titration curve.

Detection limit calculation in emission spectroscopy:

The limit of detection (LOD) of compounds (5d, 5f, 5h, 5j, 5k) with Cu^{2+} was measured on the basis of fluorescence titration measurement. The detection limit was calculated using the following equation:

$$DL = K \times \frac{\sigma}{S}$$

where K = 2 or 3 (we take 3 in this case), ' σ ' is the standard deviation of the blank solution and 'S' is the slope between the ratio of emission intensity *versus* [Cu²⁺].

Figure S34. The limit of detection (LOD) of **5d** for Cu^{2+} as a function of $[Cu^{2+}]$.

Figure S35. The limit of detection (LOD) of **5f** for Cu^{2+} as a function of $[Cu^{2+}]$.

Figure S36. The limit of detection (LOD) of **5h** for Cu^{2+} as a function of $[Cu^{2+}]$.

Figure S37. The limit of detection (LOD) of **5j** for Cu^{2+} as a function of $[Cu^{2+}]$.

Figure S38. The limit of detection (LOD) of **5**k for Cu^{2+} as a function of $[Cu^{2+}]$.

Figure S39. Fluorescence emission spectra of chemosensor (5d) in the presence of Cu^{2+} ion followed by addition of EDTA.

Figure S40. Fluorescence emission spectra of chemosensor (**5f**) in the presence of Cu^{2+} ion followed by addition of EDTA.

Figure S41. Fluorescence emission spectra of chemosensor (**5h**) in the presence of Cu^{2+} ion followed by addition of EDTA.

Figure S42. Fluorescence emission spectra of chemosensor (5j) in the presence of Cu^{2+} ion followed by addition of EDTA.

Figure S43. Fluorescence emission spectra of chemosensor (**5k**) in the presence of Cu^{2+} ion followed by addition of EDTA.

Figure S44. Emission intensity of **5d** (5×10^{-6} M) in absence and in presence of Cu²⁺ as a function of pH values in aqueous DMSO solution at 493.5 nm.

Figure S45. Emission intensity of **5f** (5×10^{-6} M) in absence and in presence of Cu²⁺ as a function of pH values in aqueous DMSO solution at 491.7 nm.

Figure S46. Emission intensity of **5h** $(5 \times 10^{-6} \text{ M})$ in absence and in presence of Cu²⁺ as a function of pH values in aqueous DMSO solution at 498.7 nm.

Figure S47. Emission intensity of **5**j (5×10^{-6} M) in absence and in presence of Cu²⁺ as a function of pH values in aqueous DMSO solution at 497.8 nm.

Figure S48. Emission intensity of **5**k (5×10^{-6} M) in absence and in presence of Cu²⁺ as a function of pH values in aqueous DMSO solution at 503.5 nm.