A General Strategy for the Synthesis of Indoloquinolizine Alkaloids via Cyanide-Catalyzed Imino-Stetter Reaction

Eunjoon Park and Cheol-Hong Cheon*

Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea

Spectroscopic Data

1. NMR Spectra of Ethyl 2-(2-(pyridin-2-yl)-1*H*-indol-3-yl)acetate (4aa)

a) ¹H NMR Spectrum (in CDCl₃, 500 MHz)

2. NMR Spectra of Methyl 2-(2-(pyridin-2-yl)-1*H*-indol-3-yl)acetate (4ba)
a) ¹H NMR Spectrum (in CDCl₃, 500 MHz)

3. NMR Spectra of Isopropyl 2-(2-(pyridin-2-yl)-1*H*-indol-3-yl)acetate (4ca)
a) ¹H NMR Spectrum (in CDCl₃, 500 MHz)

b) ¹³C NMR Spectrum (in CDCl₃, 125 MHz)

4. NMR Spectra of *tert*-Butyl-2-(2-(pyridin-2-yl)-1*H*-indol-3-yl)acetate (4da)
a) ¹H NMR Spectrum (in CDCl₃, 500 MHz)

5. NMR Spectra of N-Benzyl-2-(2-(pyridin-2-yl)-1*H*-indol-3-yl)acetamide (4ea)
a) ¹H NMR Spectrum (in CDCl₃, 500 MHz)

6. NMR Spectra of 2-(2-(Pyridin-2-yl)-1*H*-indol-3-yl)-piperidyl amide (4fa)
a) ¹H NMR Spectrum (in CDCl₃, 500 MHz)

b) ¹³C NMR Spectrum (in CDCl₃, 125 MHz)

7. NMR Spectra of Methyl 2-(5-bromo-2-(pyridin-2-yl)-1*H*-indol-3-yl)acetate (4ga)

a) ¹H NMR Spectrum (in CDCl₃, 500 MHz)

b) ¹³C NMR Spectrum (in CDCl₃, 125 MHz)

8. NMR Spectra of Ethyl 2-(6-bromo-2-(pyridin-2-yl)-1*H*-indol-3-yl)acetate (4ha) a) ¹H NMR Spectrum (in CDCl₃, 500 MHz)

9. NMR Spectra of Ethyl 2-(2-(pyridin-3-yl)-1*H*-indol-3-yl)acetate (4ab) a) ¹H NMR Spectrum (in CDCl₃, 500 MHz)

10. NMR Spectra of Ethyl 2-(2-(pyridin-4-yl)-1*H*-indol-3-yl)acetate (4ac)
a) ¹H NMR Spectrum (in CDCl₃, 500 MHz)

11. NMR Spectra of Ethyl 2-(2-(6-bromopyridin-2-yl)-1*H*-indol-3-yl)acetate (4ad)
a) ¹H NMR Spectrum (in DMSO-d₆, 500 MHz)

12. NMR Spectra of Ethyl 2-(2-(6-methoxypyridin-2-yl)-1*H*-indol-3-yl)acetate (4ae) a) ¹H NMR Spectrum (in CDCl₃, 500 MHz)

b) ¹³C NMR Spectrum (in CDCl₃, 125 MHz)

13. NMR Spectra of Ethyl 2-(2-(6-methylpyridin-2-yl)-1*H*-indol-3-yl)acetate (4af)
a) ¹H NMR Spectrum (in CDCl₃, 500 MHz)

14. NMR Spectra of Ethyl 2-(2-(5-methylpyridin-2-yl)-1*H*-indol-3-yl)acetate (4ag)
a) ¹H NMR Spectrum (in CDCl₃, 500 MHz)

15. NMR Spectra of Ethyl 2-(2-(4-methylpyridin-2-yl)-1*H*-indol-3-yl)acetate (4ah)
a) ¹H NMR Spectrum (in CDCl₃, 500 MHz)

16. NMR Spectra of Ethyl 2-(2-(3-methylpyridin-2-yl)-1*H*-indol-3-yl)acetate (4ai)
a) ¹H NMR Spectrum (in CDCl₃, 500 MHz)

17. NMR Spectra of Ethyl 2-(2-(quinolin-2-yl)-1*H*-indol-3-yl)acetate (4aj)
a) ¹H NMR Spectrum (in CDCl₃, 500 MHz)

18. NMR Spectra of Ethyl 2-(2-(isoquinolin-3-yl)-1*H*-indol-3-yl)acetate (4ak)
a) ¹H NMR Spectrum (in CDCl₃, 500 MHz)

19. NMR Spectra of Ethyl 2-(2-(isoquinolin-1-yl)-1*H*-indol-3-yl)acetate (4al)
a) ¹H NMR Spectrum (in CDCl₃, 500 MHz)

20. NMR Spectra of 2-(2-(Pyridin-2-yl)-1*H*-indol-3-yl)ethan-1-ol (8)
a) ¹H NMR Spectrum (in CDCl₃, 500 MHz)

21. NMR Spectra of 7,12-Dihydro-6*H*-indolo[2,3-*a*]quinolizin-5-ium Trifluoromethanesulfonate (10) a) ¹H NMR Spectrum (in DMSO-d₆, 500 MHz)

23. NMR Spectra of 1,4,6,7,12,12*b*-Hexahydroindolo[2,3-*a*]quinolizine (12)
a) ¹H NMR Spectrum (in CDCl₃, 500 MHz)

24. NMR Spectra of 2-(6-Bromo-2-(pyridin-2-yl)-1*H*-indol-3-yl)ethan-1-ol (**13**) a) ¹H NMR Spectrum (in CDCl₃, 500 MHz)

b) ¹³C NMR Spectrum (in CDCl₃, 125 MHz)

26. NMR Spectra of 10-Bromo-1,4,6,7,12,12*b*-hexahydroindolo[2,3-*a*]quinolizine (15)

27. NMR Spectra of Arborescidine A (6)a) ¹H NMR Spectrum (in CDCl₃, 500 MHz)

b) ¹³C NMR Spectrum (in CDCl₃, 125 MHz)

¹ H NMR	Ou	r work (500 M	Hz spectrometers)		Previous work (300 MHz spectrometers) ^a				
	chemical shift	multiplicity	coupling constant	integration	chemical shift	multiplicity	coupling constant	integration	
	7.72 ppm	br s		1H	7.75 ppm	s		1H	
	7.44 ppm	d	1.7 Hz	1H	7.42 ppm	d	1.5 Hz	1H	
	7.31 ppm	d	8.4 Hz	1H	7.30 ppm	d	8.4 Hz	1H	
	7.17 ppm	dd	8.4, 1.7 Hz	1H	7.16 ppm	dd	8.4, 1.5 Hz	1H	
	3.21 ppm	d	10.1 Hz	1H	3.19 ppm	d	8.8 Hz	1H	
	3.11 – 2.94 ppm	m		3H	3.09 – 2.92 ppm	m		3H	
	2.71 – 2.58 ppm	m		2H	2.69 – 2.57 ppm	m		2H	
	2.39 ppm	td	4.1, 11.1 Hz	1H	2.42 – 2.34 ppm	m		1H	
	2.05 ppm	dd	12.4, 2.8 Hz	1H	2.09 – 2.03 ppm	m		1H	
	1.91 ppm	d	13.0 Hz	1H	1.97 – 1.86 ppm	m		1H	
	1.82 – 1.72 ppm	m		2H	1.79 – 1.70 ppm	m		2H	
	1.64 – 1.54 ppm	m		1H	1.65 – 1.49 ppm	m		1H	
	1.49 ppm	d	12.7 Hz	1H	1.48 – 1.44 ppm	m		1H	
¹³ C NMR	136.9 ppm				136.7 ppm				
	135.9 ppm				135.8 ppm				
	126.5 ppm				126.4 ppm				
	122.7 ppm				122.7 ppm				
	119.4 ppm				119.3 ppm				
	114.7 ppm				114.5 ppm				
	113.8 ppm				113.7 ppm				
	108.4 ppm				108.3 ppm				
	60.2 ppm				60.0 ppm				
	55.8 ppm				55.7 ppm				
	53.5 ppm				53.4 ppm				
	30.0 ppm				29.9 ppm				
	25.8 ppm				25.7 ppm				
	24.4 ppm				24.3 ppm				
		21.6	ppm		21.4ppm				

c) Comparison Table of the NMR Data of Arborescidine A (6) with Previous Literature Data

^a Previous report: L. S. Santos, R. A. Pilli and V. H. Rawal, J. Org. Chem., 2004, 69, 1283.

28. NMR Spectra of 2-(2-(6-Methoxypyridin-2-yl)-1*H*-indol-3-yl)ethan-1-ol (16)
a) ¹H NMR Spectrum (in DMSO-d₆, 500 MHz)

29. NMR Spectra of 7,12-Dihydroindolo[2,3-*a*]quinolizin-4(6*H*)-one (17)
a) ¹H NMR Spectrum (in DMSO-d₆, 500 MHz)

30. NMR Spectra of 4-Oxo-4,6,7,12-tetrahydroindolo[2,3-a]quinolizine-1-carbaldehyde (18) a) ¹H NMR Spectrum (in CDCl₃, 500 MHz)

31. NMR Spectra of *tert*-Butyl 4-oxo-6,dihydroindolo[2,3-*a*]quinolizine-12(4*H*)-carboxylate (**19**) a) ¹H NMR Spectrum (in CDCl₃, 500 MHz)

32. NMR Spectra of *tert*-Butyl 3-bromo-4-oxo-6,dihydroindolo[2,3-*a*]quinolizine-12(4*H*)-carboxylate (**20**) a) ¹H NMR Spectrum (in CDCl₃, 500 MHz)

33. NMR Spectra of 4-Oxo-4,6,7,12-tetrahydroindolo[2,3-*a*]quinolizine-3-carbonitrile (21) a) ¹H NMR Spectrum (in DMSO-d₆, 500 MHz)

34. NMR Spectra of Nauclefidine (7)a) ¹H NMR Spectrum (in DMSO-d₆, 500 MHz)

b) ¹³C NMR Spectrum (in DMSO-d₆, 125 MHz)

	Our work (500 MHz spectrometers)				Previous work (200 MHz spectrometers) ^{a,b}				
¹ H NMR	chemical shift	multiplicity	coupling constant	integration	chemical shift	multiplicity	coupling constant	integration	
	11.96 ppm	S		1H	11.80 ppm	S		1H	
	10.13 ppm	S		1H	10.10 ppm	S		1H	
	8.05 ppm	d	7.6 Hz	1H	7.95 ppm	d	7.7 Hz	1H	
	7.68 ppm	d	7.9 Hz	1H	7.60 ppm	d	8.1 Hz	1H	
	7.47 ppm	d	8.2 Hz	1H	7.40 ppm	d	8.1 Hz	1H	
	7.32 ppm	t	7.6 Hz	1H	7.25 ppm	t	7.5 Hz	1H	
	7.13 ppm	t	7.4 Hz	1H	7.05 ppm	t	7.5 Hz	1H	
	6.86 ppm	d	7.6 Hz	1H	6.80 ppm	d	7.7 Hz	1H	
	4.40 ppm	t	7.2 Hz	2Н	4.35 ppm	t	7.2 Hz	2H	
	3.16 ppm	t	7.2 Hz	2H	3.10 ppm	t	7.2 Hz	2H	
¹³ C NMR	188.7 ppm				188.6 ppm				
	161.7 ppm				161.7 ppm				
	144.5 ppm				144.5 ppm				
	140.3 ppm				140.3 ppm				
	139.2 ppm				139.2 ppm				
	126.9 ppm				126.9 ppm				
	125.5 ppm				125.4 ppm				
	124.9 ppm				124.9 ppm				
	120.7 ppm				120.7 ppm				
	120.2 ppm				120.17 ppm				
	120.2 ppm				120.16 ppm				
	117.5 ppm				117.4 ppm				
	112.3 ppm				112.2 ppm				
	100.2 ppm				100.1 ppm				
		18.	8 ppm		18.8ppm				

c) Comparison Table of the NMR Data of Nauclefidine (7) with Previous Literature Data

Previous reports: ^{a 1}H NMR: R. K. Manna, P. Jaisankar and V. S. Giri, *Synth. Commun.*, 1998, **28**, 9.

^b ¹³C NMR: H. Takayama, R. Yamamoto, M. Kurihara, M. Kitajima, N. L. Mao and S.-I. Sakai, *Tetrahedron Lett.*, 1994, **35**, 8813.