Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Synthesis of Natural Products and Cyclic Peptides from Ligninderived Aromatics

O. Stephen Ojo^{a+}, Brunello Nardone^a, Stefania F. Musolino,^a Andrew R. Neal,^a Liam Wilson,^a Tomas Lebl^a, Alexandra M. Z. Slawin^a, David B. Cordes^a, James E. Taylor,^a James H. Naismith^{a,b}, Andrew D. Smith^a and Nicholas J. Westwood^{a*}

Pages S3-S5	General Information			
Pages S6-S 11	Experimental procedures for the synthesis of Branched Allylic Carbonates (\pm)- 14 and (\pm)- 14b and Linear Allylic Carbonates 15 and S5			
Pages S12-S18	Experimental procedures for the synthesis of anti-(\pm)-Descurainolide A ${f 3}$			
Pages S19-S24	Experimental procedures for the synthesis of syn -(±)-Descurainolide A 3			
Pages S25-S29	Experimental procedure for the Synthesis of Allylic Alcohols (±)- 2c-f			
Pages S30-S36	Experimental procedures for Isothiourea-catalysed Kinetic Resolution Reactions of Allylic Alcohols (±)- 2a-f			
Pages S36-S4 Pages S45-S46	Asymmetric Synthesis of <i>anti</i> -($2R$, $3R$)- and <i>anti</i> -($2S$, $3S$)-Descurainolide A 3 Summary of polarimetry and HPLC details for the asymmetric synthesis of Descurainolide A 3			
Pages S47-S57	Experimental Procedures for the Synthesis of S-Phenolic Lignin-Based Unnatural Amino Acid (±)-4			
Pages S58-S65	Experimental Procedures for the Synthesis of G-Phenolic Lignin-Based Unnatural Amino Acid (±)-4			
Page S66-S69	Peptide Synthesis			
Pages S70-S73	Analytic Data for Linear Peptides 42, 43, S15 and 45			
Pages S73-S105	Analytic Data for Cyclic Octapeptides 7, 8 and 44			
Pages S64-S104	¹ H and ¹³ C NMR Data			
Page S106	Bibliography			

General Information

<u>Chemicals</u>: Chemical reagents were purchased from Sigma Aldrich, Alfa Aesar, Fischer Scientific or Acros Organics and used without further purification. Unless otherwise stated, reactions were carried out in flame dried glassware under a slight positive pressure of N₂ gas.

Solvents: Unless otherwise stated, tetrahydrofuran (THF) and dichloromethane (DCM) were anhydrous and obtained from a solvent still (MBraun, SPS-800). Other anhydrous solvents were used as purchased from Fischer Scientific, Aldrich or Acros.

<u>Thin Layer Chromatography (TLC) and Purification Technique</u>: TLC analyses were carried out using glass-backed TLC plates. The plates were visualized under UV lamp (254/365 nm) followed by staining with aqueous potassium permanganate and dried using a heat gun. Column chromatography was carried out using silica gel (40–63 μ m, Silicycle) or aluminium oxide (50-200 μ m, Acros Organics) using a glass column with a tap.

<u>Melting Points (M.p.)</u>: Melting points were measured using capillary tubes on an Electrothermal 9100 melting point apparatus. Values are quoted in ranges and to 0.1 °C.

Infra-Red (IR): Infra-red spectra were recorded using a Shimadzu IRAffinity-1 spectrometer equipped with PIKE MIRacle[™] ATR (ZnSe-crystall) or Specac The Quest ATR (Diamond) and high pressure clamp to produce thin films. Only significant absorptions maxima (vmax) were quoted in wavenumbers (cm⁻¹).

Mass Spectrometer (MS): Mass spectrometric (m/z) data were delivered by EPSRC National Mass Spectrometry Service Centre in Swansea and University of St Andrews mass spectrometry service. Chemical ionisation techniques were applied and a Thermofischer LTQ Orbitrap XL spectrometer was used. Values are quoted as a ratio of mass to charge (m/z) in Das [Da]. Low-resolution mass spectra were obtained with an Agilent 6130 single quad apparatus equipped with an electrospray ionization source. High-resolution mass spectra (HRMS) were obtained with a Thermo Exactive Orbitrap mass spectrometer.

<u>Mass Spectrometer/Mass Spectrometer (MS/MS)</u>: MSMS data were acquired using a TripleTOF 5600+. The sample was subjected to chromatography on an Acclaim PepMap 100

C18 trap and an Acclaim PepMap RSLC C18 column (ThermoFisher Scientific), using a nano-LC Ultra 2D plus loading pump and autosampler (Eksigent). The MSMS fragmentation pattern was interrogated for diagnostic peaks.

Nuclear Magnetic Resonance (NMR): NMR spectra were recorded on either a Bruker Ultrashield 700 (¹H 700, ¹³C 175 MHz); Bruker Ascend 500 (¹H 500; ¹³C 125 MHz) or a Bruker Advance II 400 (¹H 400; ¹³C 101 MHz). ¹³C NMR spectra were taken with a DEPTQ pulse sequence. Spectra were recorded using the deuterated solvents. In ¹H NMR, multiplicities of signals are denoted as follows: br (broad), s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), dt (doublet of triplets), m (multiplet). Coupling constants (*J*) are quoted to the nearest 0.1 Hz. Chemical shifts (δ) are stated in ppm and referenced to residual solvent signals (CHCl₃ 7.250 ppm (s), 77.170 ppm (t); D₂O 4.790 ppm (s); (CD₃)₂SO 2.50 ppm (s) or 39.52 ppm (pentet)). Signals of protons and carbons were assigned, as far as possible, by using the following two dimensional NMR spectroscopy techniques: [¹H, ¹H] COSY (Correlation Spectroscopy), [¹H, ¹H] TOCSY (Total Correlation Spectroscopy) and long range [¹H, ¹³C] HMBC (Heteronuclear Multiple Bond Correlation). EXSY (Exchange Spectroscopy) experiment was used to identify equilibrium chemical exchange either at room temperature or with heating.

Optical rotation: Optical rotations were determined using a Perkin Elmer Model 341 Polarimeter with a Na/Hal lamp (Na D line, 589 nm). Calculations were done according to:

$$[\propto]_D^{20} = \frac{\alpha}{c \times l}$$

With a cell length ℓ = 1 dm, concentration c = 0.1 g/mL and optical rotation α obs.

High Performance Liquid Chromatography (HPLC): The HPLC grade acetonitrile (MeCN) was purchased from VWR Ltd. Aqueous buffers and aqueous mobile-phases for HPLC were prepared using water purified with an Elga[©] Purelab Milli-Q water purification system (purified to 18.2 M'Ω.cm). Analytical Reverse Phase-HPLC was performed on an Agilent infinity 1260 series equipped with a VWD detector and a single quadrupole MS using a Macherey-Nagel Nucleodur C18 column (10 µm × 4.6 × 250 mm). Several chromatographic systems were used; System A2: 1 ml/min flow rate with MeCN and 0.1% aqueous TFA [95% TFA (3 min),

linear gradient from 5 to 100% of MeCN (45 min)] and UV detection at 220 nm. System A3: 1 ml/min flow rate with MeCN and 0.1 % aqueous TFA [95% TFA (3 min), linear gradient from 5 to 95% of MeCN (85 min)] and UV detection at 220nm. Semi-preparative HPLC was performed on an Agilent Infinity preparative scale purification 1260 series equipped with a VWD detector using a a Macherey-Nagel Nucleodur C18 column (10 μ m × 16 × 250 mm). The chromatographic system used was System P1: 10 ml/min flow rate with MeCN and 0.1% aqueous TFA [95% TFA (5 min), linear gradient from 5 to 35% of MeCN (5 min), linear gradient from 5 to 37% of MeCN (20min)] and UV detection at 220 nm.

<u>Ultra Performance Liquid Chromatography (UPLC)</u>: Analytical RP-UPLC was performed on a Waters Acquity equipped with a VWD detector using a Waters C18 column ($1.7 \mu m \times 2.1 \times 50 mm$). The chromatographic system used was system A1: 0.6 ml/min flow rate with MeCN and 0.1% aqueous TFA [linear gradient from 10 to 95% of MeCN (5 min)] and UV detection at 220 nm.

Enzymatic Reactions: Reactions performed in the enzymatic media were monitored using Maldi-MS acquired using a 4800 MALDI TOF/TOF Analyser (ABSciex, Foster City, CA) equipped with a Nd:YAG 355 nm laser and calibrated using a mixture of peptides. The spot was analysed in positive MS mode between 800 and 4000 m/z, by averaging 1000 laser spots. The samples, diluted in water to reduce the buffer concentration, (0.5 ml) were applied to the MALDI target along with alpha-cyano-4-hydroxycinnamic acid matrix (0.5 ml, 10 mg/ml in 50:50 acetonitrile:0.1% TFA) and allowed to dry.

<u>Circular Dichromism</u>: Measurements were performed at room temperature in CHCl₃ in a 1mm path length cell with a Bio-Logic MOS-500 spectrometer.

S4

Experimental procedures for the synthesis of Branched Allylic Carbonates (±)-14a and (±)-14b and Linear Allylic Carbonates 15 and S5

Scheme S1 Synthetic route to (±)-14a, (±)-14b and S5. (a)(i) TBSCl, DMAP, Imidazole, DCM, rt, 1 h, 90%; (a)(ii) PivCl, DMAP, Imidazole, DCM, 1 h, 87%; (b) NaBH₄, CeCl₃.7H₂O, MeOH, 1 h, 95% for 2a, 91% for 2b; (c) Methyl chloroformate, LiHMDS, THF, 1 h, -10 °C, 15% for 14a, 89% for 14b, 48% (over 3 steps) for S5; (d) degraded during chromatography.

1-(4-((*tert*-butyldimethylsilyl)oxy)-3,5-dimethoxyphenyl)prop-2-en-1-one (S1)

A solution of enone **13** (0.30 g, 1.44 mmol, 1.0 eq) in DCM (4 mL) was added to a stirring solution of 4-DMAP (0.17 g, 1.44 mmol, 1.0 eq) and imidazole (0.19 g, 2.88 mmol, 2.0 eq) in DCM (10 mL), followed by the addition of TBSCI (0.25 g, 1.73 mmol, 1.2 eq). The resulting mixture

was left to stir at room temperature for 1 h (TLC analysis). Afterwards, the mixture was neutralised with saturated aqueous solution of NaHCO₃ (50 mL) and the aqueous layer was further extracted with DCM (50 mL). Combined organic layer were washed with water (50 mL), brine (60 mL), dried with MgSO₄, filtered and concentrated *in vacuo*. Purification by silica gel chromatography using 2-5% EtOAc in petroleum ether gave compound **S1** as light-yellow oil (0.42 g, 1.29 mmol, 90%).

IR (neat) v_{max}/cm^{-1} : 2929, 1664, 1577, 1506, 1462, 1332, 1128; **HRMS** (ESI) m/z [M+Na]⁺ calcd. For C₁₇H₂₆O₄SiNa⁺ 345.1493; found 345.1488; ¹H NMR (400 MHz, CDCl₃) δ 7.22 (s, 2H), 7.17 (dd, J = 17.0, 10.4 Hz, 1H), 6.43 (dd, J = 16.9, 1.7 Hz, 1H), 5.87 (dd, J = 10.5, 1.7 Hz, 1H), 3.86 (s, 6H), 1.01 (s, 9H), 0.15 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 189.5, 151.5, 139.8, 132.2, 129.9, 129.4, 106.3, 56.0, 25.8, 18.9, -4.4.

1-(4-((tert-butyldimethylsilyl)oxy)-3,5-dimethoxyphenyl)prop-2-en-1-ol ((±)-2a)

NaBH₄ (0.23 g, 6.21 mmol, 5.0 eq) was added, gradually, to a cooled stirring solution of $CeCl_3.7H_2O$ (0.55 g, 1.49 mmol, 1.2 eq) and compound **S1** (0.40 g, 1.24 mmol, 1.0 eq) in MeOH (12 mL). The resulting mixture was left to stir at 0 °C for 1 h. Afterwards, the mixture

was quenched with saturated aqueous solution of ammonium chloride (50 mL) and extracted with ethyl acetate twice (2 x 75 mL). The combined organic layer were washed with water (40 mL), brine (50 mL), dried with MgSO₄, filtered and concentrated *in vacuo*. Purification by silica gel chromatography using 10-20% EtOAc in petroleum ether gave allylic alcohol (±)-**2a** as white solid (0.42 g, 1.31 mmol, 95%).

¹**H NMR** (400 MHz, CDCl₃) δ 6.57 (s, 2H), 6.07 (ddd, *J* = 17.1, 10.3, 5.6 Hz, 1H), 5.36 (dt, *J* = 17.1, 1.5 Hz, 1H), 5.21 (dt, *J* = 10.3, 1.4 Hz, 1H), 5.13 (d, *J* = 5.6 Hz, 1H), 3.81 (s, 6H), 1.03 (s, 9H), 0.14 (s, 6H).

¹H NMR data was consistent with previously reported data.^{S1}

1-(4-((tert-butyldimethylsilyl)oxy)-3,5-dimethoxyphenyl)allyl methyl carbonate ((±)-14a)

LiHMDS (2.98 mL, 2.98 mmol, 1 M in THF, 1.2 eq) was added slowly to a cooled solution of solution of (\pm)-**2a** (0.80 g, 2.49 mmol, 1.0 eq) in THF (32 mL) at -10 °C, and left to stir at -10 °C for 30 min followed by the addition of methyl chloroformate (0.30 g, 0.25 mL, 3.23 mmol, 1.3 eq). After the reaction had reached completion (TLC

analysis), approx. 30 min, the mixture was quenched with water (40 mL). The organic layer was further washed with water (2 x 50 mL) and brine (50 mL) and dried with Na₂SO₄ and

concentrated *in vacuo*. Purification by silica gel column chromatography using 2-5% EtOAc in petroleum ether provided (\pm)-**14a** (0.17 g, 0.44 mmol, 15%) as a clear oil.

IR (neat) v_{max}: 2930, 2857, 1747, 1510 cm⁻¹; **HRMS** (ESI) *m/z* [M-C₂H₃O₃]⁺ calcd. for C₁₇H₂₇O₃Si⁺ 307.1724; found 307.1712; ¹H NMR (500 MHz, CDCl₃) δ 6.55 (s, 2H), 6.05 – 5.97 (m, 2H), 5.36 – 5.29 (m, 1H), 5.28 – 5.21 (m, 1H), 3.79 – 3.75 (m, 9H), 1.00 (s, 9H), 0.11 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 155.1, 151.6, 135.9, 134.5, 130.4, 117.1, 104.4, 80.4, 55.7, 54.8, 25.8, 18.7, -4.6.

(E)-3-(4-((tert-butyldimethylsilyl)oxy)-3,5-dimethoxyphenyl)allyl methyl carbonate (15)

Linear carbonate **15** (65 mg, 0.17 mmol) was isolated after slow column chromatography (silica) of branched carbonate (±)-**14a** (200 mg, 0.52 mmol) in petroleum ether/EtOAc (95:5). A number of additional degradation products were

visible by TLC but could not be isolated in sufficiently pure form to enable structural assignment.

HRMS (ESI) m/z [M+Na]⁺ calcd. for C₁₉H₃₀O₆SiNa⁺ 405.1704; found 405.1688; **IR** (neat) v_{max}: 2930, 2855, 1746, 1584, 1510 cm⁻¹; ¹H **NMR** (500 MHz, CDCl₃) δ 6.65 – 6.60 (m, 3H), 6.19 (dt, J = 15.8, 6.7 Hz, 1H), 4.80 (dd, J = 6.7, 1.3 Hz, 2H), 3.84 – 3.81 (m, 9H), 1.02 (s, 9H), 0.15 (s, 6H);¹³C **NMR** (126 MHz, CDCl₃) δ 155.7, 151.7, 135.5, 134.9, 128.7, 120.5, 103.9, 68.6, 55.7, 54.8, 25.7, 18.8, -4.6.

4-acryloyl-2,6-dimethoxyphenyl pivalate (S2)

Same experimental procedure was followed as described for the synthesis of compound **S1**. A solution of enone **13** (0.30 g, 1.44 mmol, 1.0 eq) in DCM (4 mL) was added to a stirring solution of 4-DMAP (0.17 g, 1.44 mmol, 1.0 eq) and Imidazole (0.19 g, 2.88 mmol, 2.0 eq) in DCM

(10 mL), followed by the addition of PivCl (0.20 g, 1.73 mmol, 1.2 eq). Purification by silica gel chromatography using 2-5% EtOAc in petroleum ether gave compound **S2** as a colourless oil (0.37 g, 1.26 mmol, 87%).

IR (neat) v_{max}/cm^{-1} : 2972, 1753, 1670, 1597, 1456, 1415, 1330, 1101; HRMS (ESI) m/z [M+Na]⁺ calcd. For C₁₆H₂₀O₅Na⁺ 315.1203; found 315.1196; ¹H NMR (500 MHz, CDCl₃) δ 7.19 (s, 2H), 7.12 (dd, J = 17.0, 10.5 Hz, 1H), 6.43 (dd, J = 17.0, 1.5 Hz, 1H), 5.91 (dd, J = 10.5, 1.5 Hz, 1H), 3.84 (s, 6H), 1.37 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 189.9, 175.9, 152.5, 135.0, 132.1, 130.3, 105.6, 56.4, 39.2, 27.3.

4-(1-hydroxyallyl)-2,6-dimethoxyphenyl pivalate ((±)-2b)

Same experimental procedure was followed as described for the synthesis of allylic alcohol (\pm)-**2a.** NaBH₄ (0.23 g, 6.30 mmol, 5.0 eq) was added, gradually, to a cooled stirring solution of CeCl₃.7H₂O (0.56 g, 1.52 mmol, 1.2 eq) and compound **S2** (0.37 g, 1.26 mmol, 1.0 eq) in

MeOH (12 mL). Purification by silica gel chromatography using 10-20% EtOAc in petroleum ether gave allylic alcohol (±)-2b as a light-yellow solid (0.27 g, 0.93 mmol, 91%).

M.p. 77–78 °C; **HRMS** (ESI) m/z [M+NH₄]⁺ calcd. For C₁₆H₂₆O₅N⁺ 312.1795; found 312.1807; **IR** (neat) v_{max}/cm⁻¹: 3509, 2974, 1722, 1606, 1506, 1456, 1233, 1121; ¹H NMR (400 MHz, CDCl₃) δ 6.63 (s, 2H), 6.04 (ddd, J = 17.1, 10.3, 6.0 Hz, 1H), 5.38 (dt, J = 17.1, 1.4 Hz, 1H), 5.23 (dt, J = 10.3, 1.4 Hz, 1H), 5.16 (d, J = 6.0 Hz, 1H), 3.81 (s, 6H), 1.40 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 176.5, 152.3, 140.7, 139.9, 128.4, 115.5, 103.0, 75.4, 56.2, 39.1, 27.3.

2,6-dimethoxy-4-(1-((methoxycarbonyl)oxy)allyl)phenyl pivalate ((±)-14b)

To a solution of (±)-**2b** (5.50 g, 18.7 mmol, 1.0 eq) in anhydrous THF (125 mL) under N₂ at -10 °C was added LiHMDS solution (1M in THF, 22.4 mL, 22.4 mmol, 1.2 eq) dropwise. The reaction was stirred for 15 min at -10 °C before warming to room temperature for 15 min, and cooling back to -10 °C. Methyl chloroformate (1.73 mL, 22.5

mmol, 1.5 eq) was added dropwise and the reaction was warmed to rt and stirred for 1 h, before quenching with brine (50 mL). The aqueous phase was extracted with EtOAc (30 mL x 3). The combined organic layers were dried over Na_2SO_4 and concentrated *in vacuo* to yield the crude product as yellow oil. Purification by silica chromatography eluting with 5–30% EtOAc in petroleum ether yield the desired product (±)-**14b** as an off white solid (5.87 g, 16.7 mmol, 89%).

M.p. 73–75 °C; **HRMS** (ESI) *m/z* [M + NH₄]⁺ calcd. For C₁₈H₂₈O₇N⁺ 370.1849; found 370.1853; **IR** (neat) ν_{max}/cm⁻¹: 2970, 1749, 1604, 1508, 1462, 1256, 1110; ¹H NMR (400 MHz, CDCl₃) δ 6.62 (s, 2H), 5.92–6.09 (m, 2 H), 5.19–5.45(m, 2 H), 3.78–3.84 (s, 9 H), 1.39 (s, 9 H); ¹³C NMR (101 MHz, CDCl₃) δ 176.3, 154.9, 152.4, 136.2, 135.5, 129.1, 117.5, 104.0, 80.1, 56.3, 54.9, 39.1, 27.2.

(E)-3-(4-(benzyloxy)-3,5-dimethoxyphenyl)allyl methyl carbonate (S5)

A solution of enone **13** (0.30 g, 1.44 mmol, 1.0 eq) in DCM (4 mL) was added to a stirring solution of 4-DMAP (0.17 g, 1.44 mmol, 1.0 eq) and imidazole (0.19 g, 2.88 mmol, 2.0 eq) in DCM (10 mL), followed by the addition of BnBr (0.29 g, 1.72

mmol, 1.2 eq). The crude material **S3** was used in the subsequent reaction without further purification.

NaBH₄ (0.25 g, 6.70 mmol, 5.0 eq) was added, gradually, to a cooled stirring solution of CeCl₃.7H₂O (0.59 g, 1.60 mmol, 1.2 eq) and crude **S3** (0.40 g, 1.34 mmol, 1.0 eq) in MeOH (12 mL). The crude material (±)-**S4** was used in the subsequent reaction without further purification.

LiHMDS (1.59 mL, 1.59 mmol, 1 M in THF, 1.2 eq) was added slowly to a cooled solution of solution of crude (\pm)-**S4** (0.40 g, 1.33 mmol, 1.0 eq) in THF (13 mL) at -10 °C, and left to stir at -10 °C for 30 min followed by the addition of methyl chloroformate (0.15 g, 1.59 mmol, 1.2 eq). Purification by silica gel column chromatography using 2-5% EtOAc in petroleum ether provided (\pm)-**S5** (0.25 g, 0.69 mmol, 48% over 3 steps) as light-yellow oil. No trace of the desired compound **S5'** (Scheme S1) was observed.

IR (neat) v_{max}/cm^{-1} : 2954, 1745, 1581, 1504, 1452, 1417, 1259, 1124, 1008; HRMS (ESI) m/z[M+Na]⁺ calcd. For C₂₀H₂₂O₆Na⁺ 381.1309; found 381.1301; ¹H NMR (400 MHz, CDCl₃) δ 7.45– 7.48 (m, 2H), 7.27–7.35 (m, 3H), 6.61 (dt, J = 15.8, 1.3 Hz, 1H), 6.60 (s, 2H), 6.20 (dt, J = 15.7, 6.4 Hz, 1H), 5.00 (s, 2H), 4.77 (dd, J = 6.5, 1.2 Hz, 2H), 3.82 (s, 6H), 3.80 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 155.7, 153.6, 137.7, 137.1, 134.9, 131.8, 128.5, 128.1, 127.8, 121.8, 103.8, 75.0, 68.3, 56.1, 54.8.

Experimental procedures for the synthesis of anti-(±)-Descurainolide A (anti-(±)-3)

Scheme S2 synthesis of *anti*-(±)-Descurainolide A 3. Reaction conditions: (a) NaH, Dimethyl malonate, RhCl(PPh₃)₃ (5 mol%), P(OMe)₃ (20 mol%), THF, 40 °C, 1 h, 87% (b) LiCl, H₂O, DMSO, 140 °C, 16 h, 76% (c) I₂, MeCN, 0 °C to rt, 48 h, 70% combined yield (d) Pd/C, H₂, NaOAc, MeOH, rt, 16 h, 86% (e) 2 M HCl/1,4-dioxane (1:1), 100 °C, 12 h, 70%. Thermal elipsoid plot of *anti*-(±)-**3** at 50% ellipsoid probability is also shown (CCDC number 1505597)^{S2}.

Dimethyl 2-(1-(3,5-dimethoxy-4-(pivaloyloxy)phenyl)allyl)malonate (±)-16

P(OMe)₃ (167 μ L, 1.42 mmol, 20 mol%) was added to a stirring burgundy-red solution of Rh(PPh₃)₃Cl (327 mg, 0.355 mmol, 5 mol%) in degassed anhydrous THF (30 mL) under N₂ atmosphere at 40 °C. The resulting light-yellow solution was stirred for 15 minutes at same temperature. In a separate flask, dimethyl malonate (973 μ L, 8.51

mmol, 1.2 eq) was added slowly to the slurry of NaH (60% wt. in mineral oil, 312 mg, 7.80 mmol, 1.1 eq) in degassed anhydrous THF (30 mL) under N₂ atmosphere and left to stir at room temperature for 15 mins and then transferred to the previously prepared the catalyst solution *via* a Teflon cannula. After 5 mins, allylic carbonate (±)-**14b** (2.50 g, 7.09 mmol, 1.0 eq) was added and the resulting mixture was heated to 40 °C for 3 hr. After the reaction had

reached completion (TLC analysis), the reaction mixture was diluted with EtOAc (70 mL) and washed with saturated aqueous solution of NH_4Cl (20 mL). The organic layer was washed with water (30 mL) and brine (20 mL). The organic layer was dried over Na_2SO_4 and concentrated *in vacuo*. Purification by silica chromatography using 5–30% EtOAc in petroleum ether gave (±)-**16** (2.53 g, 6.20 mmol, 87%) as a colourless oil.

HRMS (ESI) m/z [M + NH₄]⁺ calcd. For C₂₁H₃₂O₈N 426.2122; found 426.2116; **IR** (neat) v_{max}/cm^{-1} 2961, 2359, 1753, 1740, 1602, 1462, 1190, 1132; ¹H NMR (400 MHz, CDCl₃) δ 6.62 (s, 2H), 5.92–6.09 (m, 2 H), 5.19–5.45 (m, 2H), 3.78–3.84 (s, 9 H), 1.39 (s, 9 H); ¹³C NMR (101 MHz, CDCl₃) δ 176.3, 154.9, 152.4, 136.2, 135.5, 129.1, 117.5, 104.0, 80.1, 56.3, 54.9, 39.1, 27.2.

12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0

Figure S1 Crude ¹H NMR (spectrum **A**) of reaction to form (±)-**16** as a single regioisomer (as far as can be detected). Spectrum **B** is the ¹H NMR obtained for (±)-**16** after purification on silica and this was the only product recovered from the reaction.

Methyl 3-(3,5-dimethoxy-4-(pivaloyloxy)phenyl)pent-4-enoate ((±)-17)

To a solution of (±)-**16** (2.20 g, 5.39 mmol, 1.0 eq) in DMSO (20 mL) was added water (612 μ L, 34.0 mmol, 6.3 eq) and LiCl (1.17 g, 27.5 mmol, 5.1 eq). The resulting reaction mixture was heated to 140 °C for 16 hrs. Afterwards, thereaction was allowed to cool and then poured onto water (150 mL) and extracted with EtOAc (40 mL x 3).

The combined organic layers were washed with brine (25 mL), dried over Na_2SO_4 and concentrated *in vacuo*. Purification by silica chromatography using 0–30% EtOAc in petroleum ether gave (±)-**17** as an off-white solid (1.43 g, 4.09 mmol, 76%).

M.p. 82–84 °C; **HRMS** (ESI) *m/z* [M + NH₄]⁺ calcd. For C₁₉H₃₀O₆N⁺ 368.2068; found 368.2064; **IR** (neat) ν_{max}/cm⁻¹: 2970, 1749, 1605, 1508, 1462, 1256, 1109; ¹H NMR (400 MHz, CDCl₃) δ 6.46 (s, 2 H), 5.84–6.07 (m, 1 H), 4.95–5.19 (m, 2 H), 3.82–3.90 (m, 1 H), 3.80 (s, 6 H), 3.66 (s, 3 H), 2.66–2.82 (m, 2 H), 1.39 (s, 9 H); ¹³C NMR (101 MHz, CDCl₃) δ 176.5, 172.2, 152.2, 140.5, 139.8, 127.8, 115.0, 104.3, 56.2, 51.7, 45.8, 40.2, 39.1, 27.3.

2-(iodomethyl)-5-oxotetrahydrofuran-3-yl)-2,6-dimethoxyphenyl pivalate ((±)-18)

To a solution of ester (±)-**17** (896 mg, 2.56 mmol, 1.0 eq) in anhydrous MeCN (51 mL) under N₂ atmosphere at 0 °C was added I₂ (3.25 g, 12.8 mmol, 5.0 eq). The reaction mixture was allowed to warm to room temperature over *ca*. 2 hrs and stirred for 46 hrs at rt. The reaction mixture was washed thoroughly with saturated aqueous Na₂S₂O₃ (70

mL) and extracted with EtOAc (25 mL x 3). The combined organic layers were washed with brine (25 mL), dried over Na_2SO_4 and concentrated *in vacuo*. Purification by silica chromatography using 0–30% EtOAc in petroleum ether yielding the *anti*-(±)-**18** (827 mg, 1.79 mmol, 70%) as a pale yellow solid.

Figure S2 Crude ¹H NMR (Spectrum A) of the Iodolactonisation reaction. Based on this crude ¹H NMR, the formation of (±)-**18** was judged to be 19:1 *anti:syn*. Only *anti-*(±)-**18** was detected by ¹H NMR with reaction condition of I_2 /MeCN at 0 °C for 48 h (data not shown). The ¹H NMR (spectrum B) of the purified compound is also shown.

anti-(±)-18

(s, 9 H); ¹³**C NMR** (126 MHz, CDCl₃) δ 176.4, 174.3, 152.9, 136.7, 128.8, 103.7, 84.0, 56.4, 47.7, 39.2, 37.0, 27.2, 6.7.

Syn-(±)-18

M.p. 146–148 °C; **HRMS** (ESI) m/z [M + Na]⁺ calcd. For C₁₈H₂₃IO₆Na⁺ 485.0437; found 485.0420; **IR** (neat) v_{max}/cm^{-1} : 2968, 1778, 1748, 1601, 1513, 1462, 1119; ¹H NMR (400 MHz, CDCl₃) δ 6.46 (s, 2 H), 4.95 (dt, J = 8.2, 5.9 Hz, 1H), 3.87 (ddd, J = 8.6, 5.9, 3.0 Hz, 1H), 3.82 (s, 6 H), 3.20 (dd, J = 10.3, 5.9 Hz, 1H), 3.10 (dd, J = 17.6, 8.6 Hz, 1H), 2.88 (dd, J = 17.6, 3.0 Hz, 1H), 2.77 (dd, J = 10.3, 8.2 Hz, 1H), 1.39 (s, 9 H); ¹³C NMR (101 MHz, CDCl₃) δ 176.3, 175.7, 152.6, 136.7, 134.4, 103.8, 82.9, 56.3, 44.4, 39.1, 36.9, 27.2, 1.3.

Table S1: Optimisation of the Iodolactonisation of (±)-16 to (±)-18

Conditions	Molarity	Scale	anti:syn	Conversion
		(mg)		(Isolated yield)
MeCN/I ₂ (2 eq.)	0.1	20	4:1	72%
MeCN/I ₂ (5 eq.)	0.25	20	1:1.3	100%
MeCN/I ₂ (5 eq.)	0.1	20	4:1	100%
MeCN/I ₂ (5 eq.)	0.05	20	4.5:1	100%
MeCN/I ₂ (5 eq.)	0.05	896	19:1	100% (70%)

Reaction time: 48 h. Conversion determined by ¹H NMR of crude reaction mixture.

2,6-dimethoxy-4-((2,3-*trans*)-2-methyl-5-oxotetrahydrofuran-3-yl)phenyl pivalate (*anti*-(±)-19)

To a suspension of iodolactone *anti*-(\pm)-**18** (806 mg, 1.74 mmol, 1.0 eq) in MeOH (35 mL) under N₂ atmosphere was added NaOAc (658 mg, 8.02 mmol, 5.0 eq) followed by Pd/C (185 mg, 1.74 mmol, 1.0 eq, 10% by wt). The reaction mixture was stirred for 15 min then evacuated

with vacuum and placed under an atmosphere of H_2 (balloon) and stirred for 16 hrs at rt. The reaction mixture was filtered through celite (washing with MeOH (50 mL) and DCM (50 mL) and concentrated *in vacuo*. Purification by silica chromatography using 10–50% EtOAc in Petroleum ether gave *anti*-(±)-**19** (505 mg, 1.50 mmol, 86%) as an off-white solid.

M.p. 164–166 °C; **HRMS** (ESI) m/z [M + Na]⁺ calcd. For C₁₈H₂₄O₆Na⁺ 359.1471; found 359.1458; **IR** (neat) v_{max}/cm^{-1} : 2974, 1775, 1742, 1603, 1516, 1462, 1115; ¹H NMR (400 MHz, CDCl₃) δ 6.47 (s, 2 H), 4.58 (dd, J = 8.5, 6.1 Hz, 1H), 3.82 (s, 6 H), 3.21 (dt, J = 10.7, 8.5 Hz, 1H), 2.98 (dd, J = 17.7, 8.5 Hz, 1H), 2.78 (dd, J = 17.7, 10.7 Hz, 1H), 1.46 (d, J = 6.1 Hz, 3H), 1.39 (s, 9 H); ¹³C NMR (101 MHz, CDCl₃) δ 176.4, 175.3, 152.7, 136.6, 128.6, 103.9, 83.0, 56.3, 50.0, 39.1, 37.6, 19.5.

4-(4-hydroxy-3,5-dimethoxyphenyl)-5-methyldihydrofuran-2(3*H*)-one Descurainolide A (*anti*-(±)-3)

To a solution of lactone $anti-(\pm)$ -**19** (450 mg, 1.34 mmol) in 1,4-dioxane (27 mL) was added 1 M HCl solution (27 mL). The reaction was heated to reflux for 16 h before pouring onto brine (50 mL) and extracting with EtOAc (20

mL x 3). The combined organic layers were dried over Na_2SO_4 and concentrated *in vacuo*. Purification by silica chromatography using 0–70% EtOAc in petroleum ether to give *anti*-(±)-**3** as a light brown solid (236 mg, 0.936 mmol, 70%).

Further recrystallisation (1:1:8 EtOAc: acetone: hexane) afforded off-white needles of *anti*-(±)-**3** (142 mg, 0.563 mmol). Small molecule X-ray crystallographic analysis of *anti*-(±)-**3** was

carried out (CCDC number 1505597)^{S2} and confirmed the assigned structure. The liquor was concentrated and filtered to yield a light brown solid *anti*-(\pm)-**3** (58 mg, 0.230 mmol).

M.p. 126–127 °C (lit. 117-118 °C); **HRMS** (ESI) m/z [M + Na] calcd. For C₁₃H₁₆O₅Na⁺ 275.0895; found 275.0884; **IR** (neat) v_{max}/cm⁻¹ 3391, 2934, 1780, 1610, 1522, 1456, 1204, 1111; ¹H NMR (500 MHz, DMSO- d_6) δ 8.29 (s, 1 H), 6.67 (s, 2 H), 4.52 (dq, J = 9.3, 6.1 Hz, 1H), 3.76 (s, 6 H), 3.18 (dt, J = 11.7, 8.7 Hz, 1H), 2.93 (dd, J = 17.2, 11.7 Hz, 1H), 2.77 (dd, J = 17.1, 8.4 Hz, 1H), 1.28 (d, J = 6.1 Hz, 3H); ¹³C NMR (126 MHz, DMSO- d_6) δ 176.1, 148.5, 135.1, 129.0, 105.5, 82.9, 56.5, 49.5, 37.7, 19.0.

Experimental procedures for the synthesis of syn-(±)-3

Scheme S3: Synthetic route to Syn-(\pm)-3. Reaction and conditions: (a) 4 M NaOH, THF/MeOH (1:1), 100 °C, 92% for (\pm)-17 and 90% for (\pm)-22 (b) NaH, MeI, DMF, rt, 1 h, 95% (c) NaH, BnBr, DMF, rt, 1 h, 83% (d) I₂, NaHCO₃ (aq), DCM, rt, 12 h, 85% combined yield (e) Pd/C, H₂, NaOAc, MeOH, rt, 16 h, 62% for syn-(\pm)-3.

3-(4-hydroxy-3,5-dimethoxyphenyl)pent-4-enoic acid ((±)-20)

A solution of compound (±)-**17** (0.80 g, 2.28 mmol) in THF/MeOH/4 M NaOH (1:1:1) (30 mL) was heated to 100 °C for 12 hrs. After the reaction had reached completion (TLC analysis), 2 M HCl (20 mL) was added to the mixture until pH = 1 and then extracted with ethyl acetate (3 x 50 mL). The combined organic layers were washed with

brine (50 mL), dried with MgSO₄, filtered and concentrated *in vacuo*. Purification by silica gel chromatography using 2-5% MeOH in DCM afforded acid (\pm)-**20** (0.53 g, 2.10 mmol, 92%) as a white solid.

M.p. 105–114 °C **IR** (neat) v_{max} 3423, 2933, 1687, 1612, 1519, 1427, 1215, 1112; **HRMS** (ESI) m/z [M+Na]⁺ calcd. For $C_{13}H_{16}O_5Na^+$ 275.0895; found 275.0886; ¹H NMR (500 MHz, CDCl₃) δ 6.43 (s, 2H), 5.93 – 6.01 (m, 1H), 5.11 (d, J = 1.3 Hz, 1H), 5.08 (dt, J = 7.2, 1.3 Hz, 1H), 3.86 (s, 6H), 3.75 – 3.81 (m, 1H), 2.78 (dd, J = 15.5, 8.0 Hz, 1H), 2.70 (dd, J = 15.5, 7.2 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 178.1, 147.1, 140.0, 133.6, 133.3, 115.0, 104.2, 56.4, 45.3, 40.2.

Methyl 3-(4-hydroxy-3,5-dimethoxyphenyl)pent-4-enoate ((±)-S6)

A solution of compound (±)-**20** (0.50 g, 1.98 mmol, 1.0 eq) in DMF (10 mL) was added slowly to a slurry of NaH (60% in mineral oil, 87.2 mg, 2.18 mmol, 1.1 eq) in DMF (9 mL) at room temperature and left to stir for 30 min. Afterwards, MeI (0.31 g, 2.18 mmol, 1.1 eq) was added and the resulting mixture was left to stir for a further 1 hr at room

temperature. After the reaction had reached completion, it was quenched with saturated aqueous solution of NH₄Cl (100 mL), and extracted with EtOAc (2 x 50 mL). The combined organic layers were washed with brine (50 mL), dried with MgSO₄, filtered, and concentrated *in vacuo*. Purification by silica gel chromatography using 20–30% EtOAc in petroleum ether gave (±)-**S6** (0.50 g, 1.88 mmol, 95%) as a light-yellow oil.

IR (neat) v_{max} 3439, 2951, 1730, 1612, 1517, 1450, 1353, 1209, 1109; HRMS (ESI) m/z [M+Na]⁺ calcd. For C₁₄H₁₈O₅Na⁺ 289.1052; found 289.1046; ¹H NMR (500 MHz, CDCl₃) δ 6.40 (s, 2H), 5.94 (ddd, J = 17.1, 10.1, 6.8 Hz, 1H), 5.50 (s, 1H), 5.02 – 5.08 (m, 2H), 3.83 (s, 6H), 3.74 – 3.80 (m, 1H), 3.60 (s, 3H), 2.72 (dd, J = 15.1, 8.0 Hz, 1H), 2.65 (dd, J = 15.1, 7.4 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 172.4, 147.0, 140.2, 133.5, 133.4, 114.7, 104.1, 56.3, 51.7, 45.5, 40.3.

Methyl 3-(4-(benzyloxy)-3,5-dimethoxyphenyl)pent-4-enoate ((±)-21)

A solution of compound (±)-**S6** (1.25 g, 4.73 mmol, 1.0 eq) in DMF (15 mL) was added slowly to a slurry of NaH (60% in mineral oil, 0.21 g, 5.19 mmol, 1.1 eq) in DMF (20 mL) at room temperature and left to stir for 30 min at room temperature. Afterwards, benzyl bromide (0.89 g, 5.19 mmol, 1.1 eq) was added and the resulting mixture was

left to stir for a further 1 hr at room temperature. After the reaction had reached completion, it was quenched with saturated aqueous solution of NH_4Cl (100 mL), and extracted with EtOAc (2 x 150 mL). The combined organic layers were washed with brine (100 mL), dried with MgSO₄, filtered, and concentrated *in vacuo*. Purification by silica gel chromatography using 5–10% EtOAc in petroleum ether gave (±)-**21** (1.40 g, 3.91 mmol, 83%) as a colourless oil.

IR (neat) v_{max} 1735, 1589, 1508, 1460, 1332, 1257, 1242, 1130, 1014; **HRMS** (ESI) *m/z* [M+Na]⁺ calcd. For C₂₁H₂₄O₅Na⁺ 379.1521; found 379.1513; ¹H NMR (500 MHz, CDCl₃) δ 7.47–7.51 (m, 2H), 7.32 – 7.37 (m, 2H), 7.27 – 7.31 (m, 1H), 6.42 (s, 2H), 5.95–6.02 (m, 1H), 5.08–5.12 (m, 2H), 4.98 (s, 2H), 3.81 (s, 6H), 3.64 (s, 3H), 2.66–2.79 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 172.4, 153.6, 140.0, 138.3, 138.0, 135.7, 128.5, 128.2, 127.8, 115.0, 104.6, 75.1, 56.2, 51.7, 45.8, 40.3.

Note: The exposure of (±)-**21** to the reaction condition of $I_2/NaHCO_{3(aq)}$ in DCM at room temperature gave (±)-**23**; anti:syn 1:1

3-(4-(benzyloxy)-3,5-dimethoxyphenyl)pent-4-enoic acid ((±)-22)

A solution of compound (±)-**21** (0.30 g, 0.84 mmol) in THF/MeOH/4 M NaOH (1:1:1) (12 mL) was heated to 100 °C for 3 hrs. After the reaction had reached completion (TLC analysis), 2 M HCl (120 mL) was added to the mixture until pH = 1 and then extracted with ethyl acetate (3 x 150 mL). The combined organic layers were washed with

brine (50 mL), dried with MgSO₄, filtered and concentrated *in vacuo*. Purification by silica gel chromatography using 2-5% MeOH in DCM afforded acid (\pm)-**22** (0.26 g, 0.76 mmol, 90%) as a white solid.

M.p. 90–94 °C ; **IR** (neat) v_{max} 3001, 1693, 1589, 1421, 1126; **HRMS** (ESI) *m/z* [M+Na]⁺ calcd. For C₂₃H₂₂O₅Na⁺ 365.1365; found 365.1357; ¹H NMR (500 MHz, CDCl₃) δ δ 7.47–7.50 (m, 2H), 7.32–7.36 (m, 2H), 7.27–7.31 (m, 1H), 6.42 (s, 2H), 5.94–6.03 (m, 1H), 5.13–5.14 (m, 1H), 5.09– 5.12 (m, 1H), 3.81 (s, 6H), 2.69–2.83 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 178.1, 153.6, 139.8, 138.05, 137.99, 135.8, 128.5, 128.2, 127.9, 115.2, 104.6, 75.1), 56.2, 45.5, 40.2.

4-(4-(benzyloxy)-3,5-dimethoxyphenyl)-5-(iodomethyl)dihydrofuran-2(3H)-one ((±)-23)

To a white suspension of compound (±)-**22** (0.87 g, 2.53 mmol, 1.0 eq) in DCM/NaHCO₃ (1:1) (26 mL) was added a solution of I_2 (0.71 g, 5.56 mmol, 2.2 eq) in DCM (4 mL) at room temperature. The resulting pink-white suspension, which later turned to a red solution, was stirred at

room temperature for 12 hrs. After the reaction had reached completion (TLC analysis), the reaction mixture was diluted with DCM and washed with saturated aqueous solutions of NH4Cl (40 mL) and Na₂S₂O₃ (40 mL). The combined organic layers were washed with brine (50 mL), dried with MgSO₄, filtered and concentrated *in vacuo*. Purification by silica gel chromatography using 20-30% EtOAc in petroleum ether furnished (±)-**23** (*syn:anti* = 3:1) as colourless oil (1.01 g, 2.16 mmol, 85% combined yield).

IR (neat) v_{max} 1778, 1585, 1508, 1458, 1323, 1238, 1122; HRMS (ESI) m/z [M+Na]⁺ calcd. For $C_{20}H_{21}IO_5Na^+$ 491.0331; found 491.0312; ¹H NMR (500 MHz, CDCl₃) δ 7.45 – 7.48 (m, 2H), 7.33–7.37 (m, 2H), 7.29–7.33 (m, 1H), 6.39 (s, 2H), 5.04 (s, 2H), 4.90–4.95 (m, 1H), 3.83 (s, 6H), 3.04–3.16 (m, 2H), 2.85 (dd, J = 17.6, 2.8 Hz, 1H), 2.71 (dd, J = 10.3, 7.9 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 175.9, 153.8, 137.5, 136.5, 132.1, 128.7, 128.2, 128.0, 105.2, 83.1, 75.0, 56.3, 44.3, 36.9, 1.5.

Figure S3 Crude ¹H NMR of the Iodolactonisation reaction for the formation of (±)-**23**. Ratio of *anti:syn* (1:3) was determined by the integration of the C2-H's in both *anti:syn* (±)-**23**. In a reaction using THF as solvent, *anti:syn* ratio is 1:2 was obtained (data not shown).

4-(4-hydroxy-3,5-dimethoxyphenyl)-5-methyldihydrofuran-2(3H)-one (syn-(±)-3)

A solution of *syn*-(±)-**23** (0.95 g, 2.03 mmol, 1.0 eq) in EtOAc (5 mL) was added to a stirring black suspension of Pd/C (10% wt, 0.22 g, 2.03 mmol, 1.0 eq) and NaOAc (0.18 g, 2.23 mmol, 1.1 eq) in MeOH (15 mL). The reaction vessel was evacuated and backfilled with H_2 gas thrice. The

reaction mixture was left to stir at room temperature for 12 h under H₂ atmosphere. After the reaction had reached completion (TLC analysis), it was filtered through celite and concentrated *in vacuo*. Purification by silica gel chromatography using 30-40% EtOAc in petroleum ether furnished *syn*-(\pm)-**3** (0.32 g, 1.25 mmol, 62%) as a light yellow oil.

IR (neat) v_{max} 3400, 2939, 1766, 1610, 1519, 1460, 1323, 1219, 1112; HRMS (ESI) m/z [M+Na]⁺ calcd. For C₁₃H₁₆O₅Na⁺ 275.0895 found 275.0885; ¹H NMR (500 MHz, DMSO- d_6) δ 8.30 (s, 1H), 6.47 (s, 2H), 4.93 – 4.85 (m, 1H), 3.79 – 3.71 (m, 7H), 2.93 (dd, J = 17.2, 8.3 Hz, 1H), 2.81 (dd, J = 17.2, 8.4 Hz, 1H), 0.90 (d, J = 6.5 Hz, 3H); ¹³C NMR (126 MHz, DMSO- d_6) δ 176.7, 147.9, 134.6, 127.7, 105.5, 79.4, 56.1, 43.7, 33.1, 16.3.

Table S2 Comparison of the ¹H and ¹³C NMR of experimental and literature Descurainolide A.^{S3}

	¹ H NMR (ppm, DMSO-d ₆)						
	Experimental (anti-)-3	Literature (anti-)-3	Experimental (syn-)-3				
1	-	-	-				
ОН	8.29 (1H, s)	8.26 (1H, s)	8.30 (1H, s)				
2	-	-	-				
OMe	3.76 (6H, s)	3.75 (6H, s)	3.79 – 3.71 (7H, m)- overlaps				
			with 5				
3	6.67 (2H, s)	6.66 (2H, s)	6.47 (2H, s)				
4	-	-	-				
5	3.18 (1H, m)	3.17 (1H, m)	3.79 – 3.71 (7H, m) – overlaps				
			with OMe				
6	2.93 (1H, dd, J = 17.2, 11.7 Hz)	2.92 (1H, dd, <i>J</i> = 17.1, 11.4 Hz)	2.93 (1H, dd, J = 17.2, 8.3 Hz)				
	2.77 (1H, dd, <i>J</i> = 17.1, 8.4 Hz)	2.76 (1H, dd, <i>J</i> = 17.1, 8.4 Hz)	2.81 (1H, dd, J = 17.2, 8.4 Hz)				
7	-	-	-				
8	4.52 (1H, m)	4.51 (1H, m)	4.93 – 4.85 (1H, m)				
Me	1.28 (3H, d, <i>J</i> = 6.1 Hz)	1.28 (3H, d, <i>J</i> = 6.1 Hz)	0.90 (3H, d, <i>J</i> = 6.5 Hz)				
	¹³ C (ppm, DMSO- <i>d</i> ₆)						
	Experimental (anti-)	Literature (anti-)	Experimental (syn-)				
1	135.1	134.8	134.6				
ОН	-	-	-				
2	148.5	148.1	147.9				
OMe	56.5	56.1	56.1				
3	105.5	105.3	105.5				
4	129.0	128.6	127.7				
5	49.6	49.0	43.7				
6	37.7	37.1	33.1				
7	176.1	175.6	176.7				
8	82.9	82.4	79.4				
Me	19.0	18.6	16.3				

1-(4-((*tert*-butyldimethylsilyl)oxy)-3,5-dimethoxyphenyl)prop-2-en-1-one (S8)

Same experimental procedure was followed as described for the synthesis of enone **S1** but starting from enone **S7**. Purification by silica gel chromatography using 2-5% EtOAc in

petroleum ether gave compound **S8** as colourless oil (0.40 g, 1.36 mmol, 81%).

IR (neat) v_{max} 2929, 1666, 1589, 1508, 1417, 1276, 1168; HRMS (ESI) m/z [M+Na]⁺ calcd. For $C_{16}H_{24}O_3SiNa^+$ 315.1392; found 315.1382; ¹H NMR (500 MHz, CDCl₃) δ 7.54 (d, J = 2.0 Hz, 1H), 7.48 (dd, J = 8.1, 2.0 Hz, 1H), 7.17 (dd, J = 16.9, 10.4 Hz, 1H), 6.88 (d, J = 8.2 Hz, 1H), 6.41 (dd, J = 17.0, 1.8 Hz, 1H), 5.83 (dd, J = 10.5, 1.8 Hz, 1H), 3.85 (s, 3H), 0.98 (s, 9H), 0.17 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 189.2, 151.3, 150.2, 132.0, 131.3, 128.9, 123.1, 120.3, 111.7, 55.5, 25.7, 18.5, -4.5.

1-(4-((*tert*-butyldimethylsilyl)oxy)-3,5-dimethoxyphenyl)prop-2-en-1-ol ((±)-2c)

Same experimental procedure was followed as described for the synthesis of (\pm)-**2a**. NaBH₄ (0.26 g, 6.80 mmol, 5.0 eq) was added, gradually, to a cooled stirring solution of CeCl₃.7H₂O (0.61 g, 1.63 mmol, 1.2 eq) and compound **S8** (0.40 g, 1.36 mmol, 1.0 eq) in MeOH

(12 mL). The resulting mixture was left to stir at 0 °C for 1 h. Purification by silica gel chromatography using 10-20% EtOAc in petroleum ether gave allylic alcohol (\pm)-**2c** as light yellow oil (0.36 g, 1.22 mmol, 90%).

¹**H NMR** (500 MHz, CDCl₃) δ 6.87 (d, J = 1.7 Hz, 1H), 6.78–6.80 (m, 2H), 6.03 (ddd, J = 16.2, 10.3, 5.7 Hz, 1H), 5.31 (dt, J = 17.1, 1.2 Hz, 1H), 5.17 (dt, J = 10.3, 1.2 Hz, 1H), 5.11 (d, J = 5.7 Hz, 1H), 3.79 (s, 3H), 2.12 (s, 1H), 0.98 (s, 9H), 0.14 (s, 6H).

¹H NMR Spectroscopic data was consistent with previously reported data.^{S4}

1-(4-((*tert*-butyldimethylsilyl)oxy)-3,5-dimethoxyphenyl)prop-2-en-1-one (S9)

Same experimental procedure was followed as described for the synthesis of enone **S1** but starting from **S7**. Purification by silica gel chromatography using 2-5% EtOAc in petroleum ether gave compound **S9** as colourless oil (0.40 g, 1.52 mmol, 90%).

IR (neat) v_{max} 2972, 1755, 1670, 1597, 1506, 1413, 1274, 1101; HRMS (ESI) m/z [M+Na]⁺ calcd. For C₁₅H₁₈O₄Na⁺ 285.1103; found 285.1092; ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 1.8 Hz, 1H), 7.53 (dd, J = 8.0, 1.8 Hz, 1H), 7.14 (dd, J = 17.0, 10.5 Hz, 1H), 7.09 (d, J = 8.2 Hz, 1H), 6.43 (dd, J = 17.0, 1.7 Hz, 1H), 5.91 (dd, J = 10.5, 1.6 Hz, 1H), 3.86 (s, 3H), 1.36 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 189.8, 176.3, 151.7, 144.5, 135.8, 132.1, 130.3, 122.8, 122.1, 112.2, 56.1, 39.4, 27.2.

1-(4-((tert-butyldimethylsilyl)oxy)-3,5-dimethoxyphenyl)prop-2-en-1-ol ((±)-2d)

Same experimental procedure was followed as described for the synthesis of (±)-**2a**. NaBH₄ (0.28 g, 6.80 mmol, 5.0 eq) was added, gradually, to a cooled stirring solution of CeCl₃.7H₂O (0.67 g, 1.63 mmol, 1.2 eq) and compound **S9** (0.40 g, 1.52 mmol, 1.0 eq) in MeOH

(15 mL). The resulting mixture was left to stir at 0 °C for 1 h. Purification by silica gel chromatography using 10-20% EtOAc in petroleum ether gave allylic alcohol (±)-**2d** as light yellow oil (0.28 g, 1.06 mmol, 69%).

IR (neat) v_{max} 3527, 2972, 11728, 1604, 1506, 1421, 1282, 1112, 1028; HRMS (ESI) m/z [M+Na]⁺ calcd. for C₁₅H₂₀O₄Na⁺ 287.1254; found 287.1250; ¹H NMR (400 MHz, CDCl₃) δ 6.91– 6.93 (m, 2H), 6.85 (ddd, J = 8.1, 1.9, 0.6 Hz, 1H), 5.27 (dt, J = 17.0, 1.4 Hz, 1H), 5.13 (dt, J = 10.3, 1.2 Hz, 1H), 5.05 (d, J = 5.9 Hz, 1H), 3.74 (s, 3H), 2.85 (s, 1H), 1.35 (s, 9H) ¹³C NMR (101 MHz, CDCl₃) δ 176.8, 151.1, 141.4, 140.1, 139.4, 122.4, 118.5, 115.1, 110.4, 74.8, 55.8, 39.0, 27.2.

1-(4-((*tert*-butyldimethylsilyl)oxy)-3,5-dimethoxyphenyl)prop-2-en-1-one (S10)

Tosyl chloride (0.27 g, 1.44 mmol, 1.0 eq) was added to a stirring solution of enone **8** (0.30 g, 1.44 mmol, 1.0 eq) and potassium carbonate (0.37 g, 2.71 mmol, 1.88 eq) in THF/H₂O (1:1) (14 mL) at room temperature. The resulting mixture was left to stir for 3 h. After the

reaction reached completion (TLC analysis), the mixture was neutralised with saturated aqueous solution of NH₄Cl (25 mL) and extracted with EtOAc (2 x 30 mL). Combined organic layers were washed with water (25 mL), brine (25 mL), dried with MgSO₄, filtered and concentrated *in vacuo*. Purification by silica gel chromatography using 5-10% EtOAc in petroleum ether gave **S10** (0.45 g, 1.24 mmol, 86%) as a colourless oil.

IR (neat) v_{max} 1670, 1595, 1460, 1416, 1371, 1334, 1238, 1149, 1128, 1089; HRMS (ESI) m/z[M+Na]⁺ calcd. for C₁₈H₁₈O₆SNa⁺ 385.0716 found 385.0710; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 8.4 Hz, 2H), 7.33 (d, J = 7.9 Hz, 2H), 7.13 (s, 2H), 7.08 (dd, J = 17.1, 10.5 Hz, 1H), 6.44 (dd, J = 17.0, 1.5 Hz, 1H), 5.94 (dd, J = 10.5, 1.5 Hz, 1H), 3.73 (s, 6H), 2.45 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 189.8, 153.6, 144.9, 136.1, 134.8, 132.0, 130.9, 129.3, 128.4, 105.6, 56.3, 21.8.

1-(4-((*tert*-butyldimethylsilyl)oxy)-3,5-dimethoxyphenyl)prop-2-en-1-ol ((±)-2e)

The same experimental procedure was followed as described for the synthesis of (\pm)-**2a**. NaBH₄ (0.23 g, 6.20 mmol, 5.0 eq) was added, gradually, to a cooled stirring solution of CeCl₃.7H₂O (0.55 g, 1.48 mmol, 1.2 eq) and compound **S10** (0.45 g, 1.24 mmol, 1.0 eq) in MeOH

(15 mL). The resulting mixture was left to stir at 0 °C for 1 h. Purification by silica gel chromatography using 10-20% EtOAc in petroleum ether gave allylic alcohol (±)-**2e** as light yellow oil (0.35 g, 0.96 mmol, 77%).

IR (neat) v_{max} 3498, 2978, 1597, 1500, 1465, 1417, 1363, 1172, 1124, 1089, 1002; HRMS (ESI) m/z [M+Na]⁺ calcd. for C₁₈H₂₀O₆SNa⁺ 387.0878; found 387.0866; ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 8.3 Hz, 2H), 7.28 (d, J = 8.3 Hz, 2H), 6.53 (s, 2H), 5.92 (ddd, J = 16.4, 10.3, 6.1 Hz, 1H), 5.29 (dt, J = 17.0, 1.3 Hz, 1H), 5.14 (dt, J = 10.2, 1.3 Hz, 1H), 5.04 (d, J = 6.0 Hz, 1H), 3.59 (s, 6H), 2.65 (s, 1H), 2.40 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 153.1, 144.5, 142.5, 139.7, 134.7, 129.1, 128.2, 127.0, 115.5, 102.7, 74.9, 55.8, 21.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -73.8.

1-(4-((*tert*-butyldimethylsilyl)oxy)-3,5-dimethoxyphenyl)prop-2-en-1-one (S11)

Triflic anhydride (0.44 g, 1.58 mmol, 1.1 eq) was added to a stirring solution of enone 8 (0.30 g, 1.44 mmol, 1.0 eq) and pyridine (0.22 g, 0.23 mL, 2.88 mmol, 2.0 eq) in DCM (14 mL) at 0 °C. The resulting mixture was allowed to warm up to room temperature and left to stir for 1 h. After the reaction reached completion (TLC analysis), the mixture was neutralised using 1 M HCl (25 mL) and extracted with EtOAc (2 x 30 mL). Combined organic layers were

washed with water (25 mL), brine (25 mL), dried with MgSO₄, filtered and concentrated in vacuo. Purification by silica gel chromatography using 5-10% EtOAc in petroleum ether gave **S11** (0.42 g, 1.23 mmol, 85%) as a colourless oil.

IR (neat) v_{max} 2924, 1668, 1604, 1465, 1413, 1338, 1238, 1220, 1205, 1130; HRMS (NSI) m/z [M+Na]⁺ calcd. for C₁₂H₁₂F₃O₆S⁺ 341.0301; found 341.0304; ¹H NMR (500 MHz, CDCl₃) δ 7.18 (s, 2H), 7.09 (dd, J = 17.0, 10.6 Hz, 1H), 6.46 (dd, J = 17.0, 1.5 Hz, 1H), 5.99 (dd, J = 10.6, 1.3 Hz, 1H), 3.95 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 189.6, 152.6, 137.2, 131.8, 131.4, 119.9, 117.4, 105.4, 56.6; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -73.6.

1-(4-((tert-butyldimethylsilyl)oxy)-3,5-dimethoxyphenyl)prop-2-en-1-ol ((±)-2f)

The same experimental procedure was followed as described for the synthesis of (\pm)-**2a**. NaBH₄ (0.23 g, 6.15 mmol, 5.0 eq) was added, gradually, to a cooled stirring solution of CeCl₃.7H₂O (0.54 g, 1.47 mmol, 1.2 eq) and compound **S11** (0.40 g, 1.23 mmol, 1.0 eq) in MeOH

(15 mL). The resulting mixture was left to stir at 0 °C for 1 h. Purification by silica gel chromatography using 10-20% EtOAc in petroleum ether gave allylic alcohol (\pm)-**2f** as light yellow oil (0.30 g, 0.87 mmol, 71%).

IR (neat) v_{max} 3338, 1610, 1500, 1465, 1417, 1340, 1224, 1136; **HRMS** (ESI) *m/z* [M+Na]⁺ calcd. for C₁₂H₁₃F₃O₆SNa⁺ 365.0283; found 365.0271; ¹H NMR (500 MHz, CDCl₃) δ 6.63 (s, 2H), 5.94 (ddd, *J* = 16.8, 10.3, 6.5 Hz, 1H), 5.35 (dt, *J* = 17.0, 1.2 Hz, 1H), 5.21 (dt, *J* = 10.2, 1.2 Hz, 1H), 5.10 (d, *J* = 6.2 Hz, 1H), 3.85 (s, 6H), 2.39 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 152.4, 143.7, 139.5, 120.0, 117.4, 116.2, 102.7, 75.1, 56.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -73.8.

Experimental procedure for Isothiourea-catalysed Kinetic Resolution Reactions of Allylic Alcohols (±)-2a-f

General Procedure – Kinetic Resolution with HyperBTM:

(2*S*,3*R*)-HyperBTM **24** (1 mol %, from catalyst stock solution (see below for preparation)), ${}^{i}Pr_{2}NEt$ (0.60 eq) and propionic anhydride (0.50–0.70 eq) were added sequentially to a cooled stirring solution of the appropriate alcohol (1.0 eq) in PhMe (0.35 M) at –78 °C. The resulting mixture was stirred for 16 h. Afterwards, it was quenched with 1 M HCl. The solution was then diluted with EtOAc and washed with NaHCO₃ (2 x 10 mL) and brine. The organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The alcohol and ester were purified by column chromatography and analysed by chiral HPLC.

Note: (2*S*,3*R*)-HyperBTM enantiomer **24** was used in all the kinetic reactions, unless otherwise stated.

Preparation of catalyst stock solution^{S5}

HyperBTM (50 mg) and toluene (3 mL) were placed in a 5 mL volumetric flask. Once the mixture was homogeneous toluene was added until the total volume of the mixture had reached 5 mL. The concentration of the solution was 0.032 M.

(S)-1-(4-((tert-butyldimethylsilyl)oxy)-3,5-dimethoxyphenyl)prop-2-en-1-ol ((S)-2a)

Following the general procedure, the alcohol (±)-**2a** (408 mg, 1.26 mmol), HyperBTM (3.9 mg, 13 μ mol, 1 mol %), ^{*i*}Pr₂NEt (132 μ L, 0.76 mmol) and isobutyric anhydride (133 μ L, 0.82 mmol) were reacted in

PhMe (15 mL) for 16 h to give the crude product. Purification by silica gel column chromatography using 20% EtOAc in petroleum ether gave resolved alcohol (*S*)-**2a** (180 mg, 0.55 mmol, 44%) and ester (*R*)-**25a** (250 mg, 0.63 mmol, 50%). X-ray crystallographic analysis confirmed the absolute configuration of (*S*)-**2a** (CCDC number 1505596)^{S2}

Figure S4 Thermal ellipsoid plot of (*S*)-**2a** at 50 % ellipsoid probability.^{S2} The minor component of disorder has been omitted for clarity.

¹H NMR analysis was consistent with (±)-**2a** reported above.

Alcohol (*S*)-**2a: Specific Rotation** $\left[\begin{array}{c} \propto \end{array} \right]_{D}^{20}$ = +4.5 (*c* = 2.0, CHCl₃); **Chiral HPLC analysis**: Chiralpak AD-H (99:1 Hexane:IPA, flow rate 1.0 mL min⁻¹, 35 °C) t_R (*S*-enantiomer): 21.5 min, t_R (*R*-enantiomer): 31.1 min, >99% *ee*.

Ester (*R*)-**25a: Specific Rotation** $[\alpha]^{20}$ +19.2 (*c* = 0.5, CHCl₃); **Chiral HPLC analysis**: Chiralpak IA (99.8:0.2 Hexane:IPA, flow rate 1.0 mL min⁻¹, 30 °C) t_R (*R*-enantiomer): 5.2 min, t_R (*S*-enantiomer): 5.9 min, 78% *ee*.

(S)-4-(1-hydroxyallyl)-2,6-dimethoxyphenyl pivalate ((S)-2b)

Following the general procedure, the alcohol (±)-**2b** (101 mg, 0.344 mmol), HyperBTM (108 μ L from stock solution, 3 μ mol, 1 mol %), ^{*i*}Pr₂NEt (42 μ L, 0.24 mmol) and isobutyric anhydride (38 μ L, 0.23 mmol) were reacted in PhMe (1.2 mL) for 16 h to give the crude product. Purification

by silica gel column chromatography using 20% EtOAc in petroleum ether gave resolved alcohol (*S*)-**2b** (27 mg, 0.09 mmol, 30%) and ester (*R*)-**25b** (53 mg, 0.14 mmol, 52%).

¹H NMR analysis was consistent with (±)-**2b** reported above.

Alcohol (S)-2b: Specific Rotation $[\propto]_D^{20} = +8.0$ (c = 0.2, CHCl₃); Chiral HPLC analysis: Chiralcel OJ-H (99:1 Hexane:IPA, flow rate 1.0 mL min⁻¹, 30 °C) t_R (S-enantiomer): 42.2 min, t_R (*R*-enantiomer): 49.8 min, >99% *ee*.

Ester (*R*)-25b: Specific Rotation $\left[\propto \right]_{D}^{20} = +30.5$ (*c* = 1.0, CHCl₃), Chiral HPLC analysis Chiralcel OJ-H (99:1 Hexane:IPA, flow rate 1.0 mL min⁻¹, 30 °C) t_R (*R*-enantiomer): 6.2 min, t_R (*S*-enantiomer): 8.7 min, 75% *ee*.

Hydrolysis of 25b – to obtain (R)-2b

To a solution of ester **25b** (925 mg, 2.43 mmol, 76% *ee*) in MeOH (10 mL) was added dropwise a solution of KOH (134 mg, 2.38 mmol) in MeOH/H₂O (7 mL, 5:2) at room temperature and the reaction mixture was stirred for 16 h. After, H₂O was added and the mixture was extracted with CH_2Cl_2 . The organic layer was dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure to produce a white solid (744 mg, 99%, 76% *ee*) without any further purification.

¹H NMR analysis was consistent with (±)-**2b** reported above.

Alternatively, (R)-**2b** could be obtained in high *ee* by using (2*R*,3*S*)-HyperBTM.

(R)-4-(1-hydroxyallyl)-2,6-dimethoxyphenyl pivalate ((R)-2b)

gel column chromatography using 20% EtOAc in petroleum ether gave resolved alcohol (*R*)-**2b** (548 mg, 1.86 mmol, 75%) and ester (*S*)-**25b'** (85 mg, 0.23 mmol, 9%).

Alcohol (*R*)-2b: Specific Rotation $[\propto]_D^{20} = -15.3$ (*c* = 0.1, CHCl₃); Chiral HPLC analysis: Chiralcel OJ-H (99:1 Hexane:IPA, flow rate 1.0 mL min⁻¹, 30 °C) t_R (*S*-enantiomer): 42.2 min, t_R (*R*-enantiomer): 49.8 min, 92% *ee*.

Ester (S)-25b': Specific Rotation $\left[\propto \right]_{D}^{20} = -16.6$ (c = 1.0, CHCl₃), Chiral HPLC analysis Chiralcel OJ-H (99:1 Hexane:IPA, flow rate 1.0 mL min⁻¹, 30 °C) t_R (*R*-enantiomer): 6.2 min, t_R (*S*-enantiomer): 8.7 min, 52% *ee*.

(S)-1-(4-((tert-butyldimethylsilyl)oxy)-3,5-dimethoxyphenyl)prop-2-en-1-ol ((S)-2c)

Following the general procedure, the alcohol (±)-2c (85 mg, 0.29 mmol), HyperBTM (90 μ L from stock solution, 3 μ mol, 1 mol %), ^{*i*}Pr₂NEt (30 μ L, 0.17 mmol) and isobutyric anhydride (30 μ L, 0.19 mmol) were reacted in toluene (0.8 mL) for 16 h to give the crude product.

Purification by silica gel column chromatography using 20% EtOAc in petroleum ether gave resolved alcohol (*S*)-**2c** (33 mg, 0.11 mmol, 39%) and ester (*R*)-**25d** (44 mg, 0.12 mmol, 43%).

Alcohol (*S*)-2c: Specific Rotation $[\alpha]_{D}^{20}$ –3.2 (*c* 0.5, CHCl₃); Chiral HPLC analysis: Chiral HPLC analysis Chiralpak AD-H (99.5:0.5 hexane : IPA, flow rate 1.0 mL min⁻¹, 220 nm, 30 °C) t_R (*S*-enantiomer): 23.7 min, t_R (*R*-enantiomer): 29.1 min, 89% *ee*.

Ester (*R*)-25c: Specific Rotation $[\alpha]_{D}^{20}$ +23.4 (*c* 1.0, CHCl₃); Chiral HPLC analysis: Chiralpak IA (99.8:0.2 hexane : IPA, flow rate 1.0 mL min⁻¹, 211 nm, 30 °C) t_R (*R*-enantiomer): 5.2 min, t_R (*S*-enantiomer): 5.8 min, 81% *ee*.

(S)-1-(4-((tert-butyldimethylsilyl)oxy)-3,5-dimethoxyphenyl)prop-2-en-1-ol ((S)-2d)

Following the general procedure, the alcohol (±)-2d (95 mg, 0.36 mmol), HyperBTM (112 μ L from stock solution, 4 μ mol, 1 mol %), ^{*i*}Pr₂NEt (37 μ L, 0.21 mmol) and isobutyric anhydride (38 μ L, 0.23 mmol) were reacted in toluene (1.0 mL) for 16 h to give the crude product. Purification by

silica gel column chromatography using 20% EtOAc in petroleum ether gave resolved alcohol (*S*)-**2d** (36 mg, 0.14 mmol, 39%) and ester (*R*)-**25d** (56 mg, 0.17 mmol, 47%).

Alcohol (*S*)-2d: Specific Rotation $[\alpha]_{D}^{20}$ = +8.2 (*c* = 1.0, CHCl₃); Chiral HPLC analysis: Chiralpak AD-H (95:5 Hexane: IPA, flow rate 1.0 mL min⁻¹, 30 °C) t_R (*S*-enantiomer): 11.4 min, t_R (*R*-enantiomer): 15.7 min, 97% *ee*.

¹H NMR analysis was consistent with (±)-**2d** reported above.

Ester (*R*)-25d: Specific Rotation $[\alpha]^{20}_{D}$ = +30.5 (*c* = 2.0, CHCl₃); Chiral HPLC analysis: Chiralpak AD-H (99:1 Hexane:IPA, flow rate 1.0 mL min⁻¹, 30 °C) t_R (*R*-enantiomer): 12.3 min, t_R (*S*-enantiomer): 14.7 min, 85% *ee*.

(S)-1-(4-((tert-butyldimethylsilyl)oxy)-3,5-dimethoxyphenyl)prop-2-en-1-ol ((S)-2e)

Following the general procedure, the alcohol (±)-**2e** (55 mg, 0.15 mmol), HyperBTM (47 μ L from stock solution, 1 μ mol, 1 mol %), ^{*i*}Pr₂NEt (16 μ L, 0.09 mmol) and isobutyric anhydride (15 μ L, 0.09 mmol) were reacted in THF (0.8 mL) for 16 h to give the crude product. Purification by silica

gel column chromatography using 30% EtOAc in petroleum ether furnished resolved alcohol (*S*)-**2e** (20 mg, 0.05 mmol, 36%) and ester (*R*)-**25e** (27 mg, 0.06 mmol, 41%).

Alcohol (*S*)-2e: Specific Rotation $[\alpha]_{D}^{20}$ = +10.7 (*c* = 1.0, CHCl₃); Chiral HPLC analysis: Chiralpak IB (92:8 Hexane:IPA, flow rate 1.0 mL min⁻¹, 30 °C) t_R (*S*-enantiomer): 35.7 min, t_R (*R*-enantiomer): 39.9 min, 93% *ee*.

¹H NMR analysis was consistent with (±)-**2e** reported above.

Ester (*R*)-25e: Specific Rotation $[\alpha]^{20}_{D}$ = +22.4 (*c* = 1.2, CHCl₃); Chiral HPLC analysis: Chiralpak IB (92:8 Hexane:IPA, flow rate 1.0 mL min⁻¹, 30 °C) t_R (*R*-enantiomer): 10.5 min, t_R (*S*-enantiomer): 11.7 min, 72% *ee*.

(S)-1-(4-((tert-butyldimethylsilyl)oxy)-3,5-dimethoxyphenyl)prop-2-en-1-ol ((S)-2f)

Following the general procedure, the alcohol (±)-**2f** (120 mg, 0.35 mmol), HyperBTM (109 μ L from stock solution, 3 μ mol, 1 mol %), ^{*i*}Pr₂NEt (36 μ L, 0.21 mmol) and isobutyric anhydride (31 μ L, 0.19 mmol) were reacted in toluene (1.2 mL) for 16 h to give the crude product.

Purification by silica gel column chromatography using 20% EtOAc in petroleum ether furnished resolved alcohol (*S*)-**2f** (58 mg, 0.17 mmol, 48%) and ester (*R*)-**20f** (50 mg, 0.12 mmol, 35%).

¹H NMR analysis was consistent with (±)-**2f** reported above.

Alcohol (*S*)-**2f: Specific Rotation** $[\alpha]_{D}^{20}$ = +9.6 (*c* = 1.5, CHCl₃); **Chiral HPLC analysis**: Chiralpak AD-H (95:5 Hexane:IPA, flow rate 1.0 mL min⁻¹, 30 °C) t_R (*S*-enantiomer): 10.7 min, t_R (*R*-enantiomer): 13.3 min, 55% *ee*.

Ester (*R*)-25f: Specific Rotation $[\alpha]_{D}^{20}$ = +20.9 (*c* = 2.0, CHCl₃); Chiral HPLC analysis: Chiralpak AD-H (99:1 Hexane:IPA, flow rate 1.0 mL min⁻¹, 30 °C) t_R (*R*-enantiomer): 10.3 min, t_R (*S*-enantiomer): 14.4 min, 85% *ee*.

Asymmetric Synthesis of anti-(2R,3R)- and anti-(2S,3S)-Descurainolide A

Scheme S4 Asymmetric Synthesis of anti-(2R,3R) and anti-(2S,3S)-Descurainolide A

(S)-2,6-dimethoxy-4-(1-((methoxycarbonyl)oxy)allyl)phenyl pivalate ((S)-14b)

Same experimental procedure was followed as described for the synthesis of (±)-**14b**. LiHMDS (1.0 M in THF, 1.01 mL, 1.01 mmol, 1.2 eq) was added to a cooled solution of (*S*)-**2b** (0.25 g, 0.84 mmol, 1.0 eq, 99% *ee*) in THF (8 mL) at -10 °C. The resulting mixture was stirred at the same temperature for 15 min and then methyl chloroformate

(95.6 mg, 1.01 mmol, 1.2 eq) was added. Purification by silica gel chromatography using 2-5% EtOAc in petroleum ether afforded (*S*)-**14b** (0.22 g, 0.62 mmol, 74% yield, 99% *ee*) as a colourless oil. X-ray crystallographic analysis confirmed the absolute configuration of (*S*)-**14b** (CCDC number 1505598).^{S2}

Figure S5 Thermal ellipsoid plot of (S)-14b at 50% ellipsoid probability.^{S2}

¹H NMR analysis was consistent with (±)-**14b** reported above.

Specific Rotation $\left[\begin{array}{c} \propto \end{array} \right]_{D}^{20}$ = -36.3 (*c* = 1.0, CHCl₃); Chiral HPLC analysis: Chiralcel OJ-H (99.5:0.5) Hexane: IPA, flow rate 1.0 mL min⁻¹, 30 °C) t_R (*R*-enantiomer) = 16.4 min, t_R (*S*-enantiomer) = 19.0 min.

(R)-2,6-dimethoxy-4-(1-((methoxycarbonyl)oxy)allyl)phenyl pivalate ((R)-14b)

Same experimental procedure was followed as described for the synthesis of (±)-**14b**. LiHMDS (1.0 M in THF, 1.01 mL, 1.01 mmol, 1.2 eq) was added to a cooled solution of (R)-**2b** (0.24 g, 0.84 mmol, 1.0 eq, 92% *ee*) in THF (8 mL) at -10 °C. The resulting mixture was stirred at the same temperature for 15 min and then methyl chloroformate

(95.6 mg, 1.01 mmol, 1.2 eq) was added. Purification by silica gel chromatography using 2-5% EtOAc in petroleum ether afforded (*R*)-**14b** (0.28 g, 0.79 mmol, 95% yield, 93% *ee*) as a light-yellow oil.

¹H NMR analysis was consistent with (±)-**14b** reported above.

Specific Rotation $\left[\propto \right]_{D}^{20} = +33.7$ (c = 0.4, CHCl₃); **Chiral HPLC analysis**: Chiralcel OJ-H (99.5:0.5) Hexane: IPA, flow rate 1.0 mL min⁻¹, 30 °C) t_R (*R*-enantiomer) = 15.8 min, t_R (*S*-enantiomer) = 20.3 min.

Dimethyl (R)-2-(1-(3,5-dimethoxy-4-(pivaloyloxy)phenyl)allyl)malonate ((R)-16)

Same experimental procedure was followed as described for the synthesis of (\pm) -**16**. P(OMe)₃ (14.1 mg, 0.11 mmol, 20 mol%) was added to a burgundy-red solution of Rh(PPh₃)Cl (26.4 mg, 0.03 mmol, 5 mol%) in THF (10 mL) at 40 °C. The resulting light-yellow solution was stirred at 40 °C for 30 min and then allowed to cool to

room temperature. In a separate vessel, dimethyl malonate (0.15 g, 1.14 mmol, 2.0 eq) was added to the slurry of NaH (60% in mineral oil, 45.6 mg, 1.14 mmol, 2.0 eq) in THF (10 mL) at room temperature, after 30 min it was transferred *via* Teflon cannula to the vessel containing the catalyst solution at *room temperature*. A solution of allylic carbonate (*S*)-**14b** (0.20 g, 0.57 mmol, 1.0 eq, 99% *ee*) in THF (5 mL) was added to the mixture at room temperature. The resulting mixture was stirred at room temperature for 12 h. Purification by silica gel chromatography using 10-20% EtOAc in petroleum ether furnished (*R*)-**16** (0.20 g, 0.49 mmol, 85% yield, 98% *ee*).

¹H NMR analysis was consistent with (±)-**16** reported above.

Specific Rotation $\left[\propto \right]_{D}^{20} = +12.5$ (c = 0.8, CHCl₃); Chiral HPLC analysis: Chiralcel OJ-H (97:3 Hexane:IPA, flow rate 0.5 mL min⁻¹, 40 °C) t_R (R-enantiomer) = 20.6 min, t_R (S-enantiomer) = 23.7 min.
Dimethyl (S)-2-(1-(3,5-dimethoxy-4-(pivaloyloxy)phenyl)allyl)malonate ((S)-16)

Same experimental procedure was followed as described for the synthesis of (\pm) -**16**. P(OMe)₃ (17.6 mg, 0.14 mmol, 20 mol%) was added to a burgundy-red solution of Rh(PPh₃)Cl (32.8 mg, 0.04 mmol, 5 mol%) in THF (5 mL) at 40 °C. The resulting light-yellow solution was stirred at 40 °C for 30 min and then allowed to cool to

room temperature. In a separate vessel, dimethyl malonate (0.18 g, 1.42 mmol, 2.0 eq) was added to the slurry of NaH (60% in mineral oil, 56.8 mg, 1.42 mmol, 2.0 eq) in THF (10 mL) at room temperature, after 30 min it was transferred *via* Teflon cannula to the vessel containing the catalyst solution at *room temperature*. A solution of allylic carbonate (*R*)-**14b** (0.25 g, 0.71 mmol, 1.0 eq, 93% *ee*) in THF (5 mL) was added to the mixture at room temperature. The resulting mixture was allowed to stir at room temperature for 12 h.

Purification by silica gel chromatography using 10-20% EtOAc in petroleum ether furnished (*S*)-**11** (0.23 g, 0.56 mmol, 79% yield, 93% *ee*).

¹H NMR analysis was consistent with (±)-**16** reported above.

Specific Rotation $\left[\begin{array}{c} \propto \end{array} \right]_{D}^{20} = -7.1$ (*c* = 0.8, CHCl₃); **Chiral HPLC analysis**: Chiralcel OJ-H (97:3 Hexane:IPA, flow rate 0.5 mL min⁻¹, 40 °C) t_R (*R*-enantiomer) = 20.9 min, t_R (*S*-enantiomer) = 23.0 min.

Methyl (S)-3-(3,5-dimethoxy-4-(pivaloyloxy)phenyl)pent-4-enoate ((S)-17)

Same experimental procedure was followed as described for the synthesis of (±)-**17**. LiCl (0.12 g, 2.94 mmol, 6.0 eq) and H₂O (45 mg, 2.49 mmol, 5.1 eq) were added to a stirring solution of (R)-**16** (0.20 g, 0.49 mmol, 1.0 eq) in DMSO (14 mL). The resulting mixture was heated to 140 °C for 12 h. Purification by silica gel chromatography

using 10-20% EtOAc in petroleum ether gave (S)-**17** (95 mg, 0.27 mmol, 55% yield, 99% *ee*) as a colourless oil.

¹H NMR analysis was consistent with (±)-**17** reported above.

Specific Rotation $\left[\propto \right]_{D}^{20} = -13.5$ (c = 0.4, CHCl₃); **Chiral HPLC analysis**: Chiralcel OJ-H (97:3 Hexane:IPA, flow rate 1 mL min⁻¹, 30 °C) t_R (*S*-enantiomer) = 11.4 min, t_R (*R*-enantiomer) = 13.7 min.

Methyl (*R*)-3-(3,5-dimethoxy-4-(pivaloyloxy)phenyl)pent-4-enoate ((*R*)-17)

Same experimental procedure was followed as described for the synthesis of (±)-**17**. LiCl (0.19 g, 4.49 mmol, 6.0 eq) and H_2O (68 mg, 3.77 mmol, 5.1 eq) were added to a stirring solution of (*S*)-**16** (0.30 g, 0.74 mmol, 1.0 eq) in DMSO (20 mL). The resulting mixture was

heated to 140 °C for 12 h. Purification by silica gel chromatography using 10-20% EtOAc in petroleum ether gave (R)-17 (0.12 g, 0.35 mmol, 47% yield, 90% *ee*) as a colourless oil.

¹H NMR analysis was consistent with (±)-**17** reported above.

Specific Rotation $\left[\begin{array}{c} \propto \end{array} \right]_{D}^{20}$ = +14.2 (*c* = 0.4, CHCl₃); **Chiral HPLC analysis**: Chiralcel OJ-H (97:3 Hexane:IPA, flow rate 1 mL min⁻¹, 30 °C) t_R (*S*-enantiomer) = 11.7 min, t_R (*R*-enantiomer) = 13.7 min.

4-((2*S*,3*R*)-2-(iodomethyl)-5-oxotetrahydrofuran-3-yl)-2,6-dimethoxyphenyl pivalate ((*anti-*(2*S*,3*R*)-18))

Same experimental procedure was followed as described for the synthesis of *anti*-(\pm)-**18**. A solution of I₂ (0.18 g, 1.43 mmol, 5.0 eq) in MeCN (3 mL) was added to a stirring solution of *anti*-(*S*)-**17** (0.10 g, 0.29 mmol, 1.0 eq) in MeCN (2 mL) at 0 °C. The resulting red solution was

allowed to warm up to room temperature and left to stir for 12 h. The two diastereoisomers (10:1) were carefully separated by silica gel chromatography using 10-20% EtOAc in

petroleum ether. The desired major diastereoisomer *anti*-(2*S*,3*R*)-**18** (65 mg, 0.14 mmol, 48%, 99% *ee*) was obtained as a colourless oil. The remaining fractions were obtained as a mixture of diastereoisomers (25 mg, 0.05 mmol, 18%).

¹H NMR analysis was consistent with *anti*-(±)-**18** reported above.

Specific Rotation $\left[\propto \right]_{D}^{20} = +17.2$ (c = 1.3, CHCl₃); **Chiral HPLC analysis**: Chiralpak AD-H, 95:5 IPA Hexane: IPA, flow rate 1.5 mL min⁻¹, 30 °C) t_R (2*S*,3*R*-enantiomer) = 17.5 min, t_R (2*R*,3*S*-enantiomer) = 20.0 min.

4-((2*R*,3*S*)-2-(iodomethyl)-5-oxotetrahydrofuran-3-yl)-2,6-dimethoxyphenyl pivalate (*anti-*(2*R*,3*S*)-18)

allowed to warm up to room temperature and left to stir for 12 h. The two diastereoisomers (10:1) were carefully separated by silica gel chromatography using 10-20% EtOAc in petroleum ether. The desired major diastereoisomer *anti*-(2*R*,3*S*)-**18** (76 mg, 0.16 mmol, 45%, 90% *ee*) was obtained as a colourless oil. The remaining fractions were obtained as a mixture of diastereoisomers (34 mg, 0.07 mmol, 21%).

¹H NMR analysis was consistent with *anti*-(±)-**18** reported above.

Specific Rotation $\left[\begin{array}{c} \\ \\ \\ \end{array} \right]_{D}^{20} = -31.5$ (*c* = 0.4, CHCl₃); **Chiral HPLC analysis**: Chiralpak AD-H, 95:5 IPA Hexane: IPA, flow rate 1.5 mL min⁻¹, 30 °C) t_R (2*S*,3*R*-enantiomer) = 17.4 min, t_R (2*R*,3*S*-enantiomer) = 20.1 min.

2,6-diemthoxy-4-((2*R*,3*R*)-2-methyl-5-oxotetrahydrofuran-3-yl)phenyl pivalate ((*anti*-(2*R*, 3*R*)-19)

Same experimental procedure was followed as described for the synthesis of *anti*-(\pm)-**19**. A solution of *anti*-(2*R*,3*S*)-**18** (62 mg, 0.13 mmol, 1.0 eq) in MeOH (1 mL) was added to a black suspension of NaOAc (42.7 mg, 0.52 mmol, 4.0 eq) and Pd/C (10% wt, 14.3 mg, 0.13

mmol, 1.0 eq) in MeOH (2 mL) at room temperature. The vessel was evacuated and backfilled with H_2 gas and then left to stir at room temperature under the atmosphere of H_2 for 16 h. Purification by silica gel chromatography using 20-30% EtOAc in petroleum ether furnished *anti*-(2*R*,3*R*)-**19** (22.6 mg, 0.07 mmol, 52%, 99% *ee*) as a white solid.

¹H NMR analysis was consistent with *anti*-(±)-**19** reported above.

Specific Rotation $\left[\propto \right]_{D}^{20} = +3.9$ (c = 0.3, CHCl₃); **Chiral HPLC analysis**: Chiralpak AD-H 97:3 Hexane: IPA, flow rate 1.0 mL min⁻¹, 30 °C) t_R (2*R*,3*R*-enantiomer) = 28.6 min, t_R (2*S*,3*S*-enantiomer) = 39.4 min

2,6-diemthoxy-4-((2*S*,3*S*)-2-methyl-5-oxotetrahydrofuran-3-yl)phenyl pivalate (*anti-* (2*S*,3*S*)-19)

Same experimental procedure was followed as described for the synthesis of *anti*-(\pm)-**19**. A solution of *anti*-(2*S*,3*R*)-**18** (76.4 mg, 0.17 mmol, 1.0 eq) in MeOH (5 mL) was added to a black suspension of NaOAc (15.3 mg, 0.19 mmol, 1.1 eq) and Pd/C (10% wt, 17.6 mg, 0.17 mmol, 1.0 eq) in MeOH (5 mL) at room temperature. The vessel was

evacuated and backfilled with H_2 gas and then left to stir at room temperature under the atmosphere of H_2 for 16 h. Purification by silica gel chromatography using 20-30% EtOAc in petroleum ether furnished *anti*-(2*S*,3*S*)-**19** (33.5 mg, 0.09 mmol, 59%, 91% *ee*) as a white solid.

¹H NMR analysis was consistent with *anti*-(±)-**19** reported above.

Specific Rotation $\left[\propto \right]_{D}^{20} = -5$ (c = 0.3, CHCl₃); **Chiral HPLC analysis**: Chiralpak AD-H 97:3 Hexane: IPA, flow rate 1.0 mL min⁻¹, 30 °C) t_R (2*R*,3*R*-enantiomer) = 28.6 min, t_R (2*S*,3*S*-enantiomer) = 39.4 min.

(2*R*,3*R*)-4-(4-hydroxy-3,5-dimethoxyphenyl)-5-methyldihydrofuran-2(3*H*)-one (*anti*-(2*R*,3*R*)-3)

Same experimental procedure was followed as described for the synthesis of *anti*-(\pm)-**3**. 1 M HCl (2 mL) was added to a solution of *anti*-(2*R*,3*R*)-**19** (22.6 mg, 0.07 mmol, 1.0 eq) in 1,4-dioxane (2 mL). The resulting mixture was heated to 100 °C for 12 h. Purification using 30-50% EtOAc in petroleum ether furnished *anti*-(2*R*,3*R*)-**3** (10.7 mg, 0.04

mmol, 61% yield, 98% *ee*). X-ray crystallographic analysis of a sample recrystallised from EtOAc: acetone: hexane (1:1:8) confirmed the absolute configuration of *anti*-(2*R*,3*R*)-**3** (CCDC number 1510492).

Figure S6 Thermal ellipsoid plot of anti-(2R,3R)-3 at 50% elipsoid probability.⁵²

¹H NMR analysis was consistent with *anti*-(±)-**3** reported above.

Specific Rotation $\left[\propto \right]_{D}^{20} = +5.7 \ (c = 0.19, CHCl_3); on other occasions when the specific rotation was measured, this value was found to vary.$ **Chiral HPLC analysis**: Chiralcel OD-H (85:15 Hexane: IPA, flow rate 1.0 mL min⁻¹, 30 °C) t_R (2*R*,3*R*-enantiomer) = 40.1 min, t_R (2*S*,3*S*-enantiomer) = 52.0 min.

(2*S*,3*S*)-4-(4-hydroxy-3,5-dimethoxyphenyl)-5-methyldihydrofuran-2(3*H*)-one (*anti*-(2*S*,3*S*)-3)

Same experimental procedure was followed as described for the synthesis of *anti*-(\pm)-**3**. 1 M HCl (2 mL) was added to a solution of *anti*-(2*S*,3*S*)-**19** (22.6 mg, 0.07 mmol, 1.0 eq) in 1,4-dioxane (2 mL). The resulting mixture was heated to 100 °C for 12 h. Purification using 30-

50% EtOAc in petroleum ether furnished *anti*-(2*S*,2*S*)-**3** (10.6 mg, 0.04 mmol, 42% yield, 91% *ee*).

¹H NMR analysis was consistent with *anti*-(±)-**3** reported above.

Specific Rotation $\left[\propto \right]_{D}^{20} = -5.0 \ (c = 0.7, CHCl_3);$ on other occasions when the specific rotation was measured, this value was found to vary. **Chiral HPLC analysis**: Chiralcel OD-H (85:15 Hexane: IPA, flow rate 1.0 mL min⁻¹, 30 °C) t_R (2*R*,3*R*-enantiomer) = 41.9 min, t_R (2*S*,3*S*-enantiomer) = 50.2 min.

Figure S7 CD data (Millidegrees v.s. Wavelength in nm) for *anti-*(2*R*,3*R*)-**3** (green line) and *anti-*(2*S*,3*S*)-**3** (red line) between 200 – 300 nm. A spectrum for *anti-*(±)-**3** was also obtained (blue line).

Summary of polarimetry and HPLC details for the asymmetric synthesis of Descurainolide A 3

Compound	Specific Rotation	Enantiomeric Excess
	$([\propto]_D^{20})$	(ee)
MeO PivO (S)-2b OMe	+8.0 (<i>c</i> = 0.2, CHCl ₃)	>99%
MeO PivO (R)-2b OMe	-15.3 (<i>c</i> = 0.1, CHCl₃)	92%
MeO PivO (S)-9b OMe	-36.3 (<i>c</i> = 1.00, CHCl ₃)	99%
MeO PivO (R)-9b OMe	+33.7 (<i>c</i> = 0.4, CHCl ₃)	93%
MeO MeO PivO OMe (R)-11 OMe	+12.5 (<i>c</i> = 0.8, CHCl ₃)	98%
MeO PivO (S)-11 O MeO (S)-11 O MeO (S)-11 O MeO (S)-11	-7.1 (<i>c</i> = 0.8, CHCl ₃)	93%

Table S3 Polarimetry and HPLC details for the asymmetric synthesis of Descurainolide A.

MeO PivO (S)-12 OMe	-13.5 (<i>c</i> = 0.4, CHCl ₃)	>99%
MeO PivO (<i>R</i>)-12 OMe	+14.2 (<i>c</i> = 0.4, CHCl ₃)	90%
MeO PivO PivO OMe	-31.5 (<i>c</i> = 0.4, CHCl ₃)	90%
MeO PivO PivO MeO (R) (S) (S) (S) (S) (S) (S) (S) (S) (S) (S	+17.2 (<i>c</i> = 1.3, CHCl ₃)	99%
MeO PivO PivO Me Me Me Me Me	-5 (<i>c</i> = 0.3, CHCl ₃)	91%
MeO PivO PivO Me Me Me Me Me	+3.9 (<i>c</i> = 0.3, CHCl ₃)	99%
MeO HO HO MeO HO Me Me Me	+5.7 (<i>c</i> = 0.19, CHCl ₃)	98%
MeO HO HO HO Me Me Me Me	-5.0 (<i>c</i> = 0.7, CHCl ₃)	91%

Experimental Procedures for the Synthesis of S-Phenolic Lignin-Based Unnatural Amino Acid (±)-4

Scheme S5: "S-Phenolic" is a term used to describe lignin aromatic system which contains two methoxy groups at the 3- and 5-position. Lignin extraction and depolymerisation which led to the isolation of **1** and subsequent conversion to its corresponding enone (not drawn) have been described in reference S6.

Reaction conditions for the synthesis of (±)-**30**: (a) NBu₄I, PPh₃, DDQ, DBU, DCM (see reference S1 for procedure) (b) TBSCI, DMAP, Imidazole, DCM, rt, 1 h (c) NaBH₄, CeCl₃.7H₂O, MeOH, rt, 1 h (d) OsO₄, NMO, THF/H₂O, rt, 12 h (e) K₂CO₃, BnBr, DMF, rt, 1 h (f) 2,2-dimethoxypropane, *p*TSA.H₂O (*catalytic amount*), DCM, 91% yield over 2 steps (g) Pd/C, H₂, NaOAc, MeOH, rt, 12 h (h) Dess-Martin Periodinane, DCM, rt, 2 h (i) NaClO₂, NaH₂PO₄, 2-methyl-2-butene, ^tBuOH/H₂O (j) SOCl₂, DCM then EtOH, 78% over four-steps

1-(4-((*tert*-butyldimethylsilyl)oxy)-3,5-dimethoxyphenyl)prop-2-en-1-one (S1)

This batch of **S1** was prepared in an analogous manner to that reported above. A solution of the enone (0.30 g, 1.44 mmol, 1.0 eq.) in DCM (4 mL) was added to a stirring solution of 4-DMAP (0.17 g, 1.44 mmol, 1.0 eq.) and Imidazole (0.19 g, 2.88 mmol, 2.0 eq.) in DCM (10 mL),

followed by the addition of TBSCI (0.25 g, 1.73 mmol, 1.2 eq.). The resulting mixture was left to stir at room temperature for 1 h (T.L.C control). Afterwards, the mixture was neutralised with saturated aqueous solution of NH₄Cl (20 mL) and the aqueous layer was further extracted with DCM (20 mL). Combined organic layer were washed with water (15 mL), brine (10 mL), dried with MgSO₄, filtered and concentrated *in vacuo*. Purification by silica gel

chromatography using 2-5% EtOAc in Petroleum ether gave compound **S1** as light-yellow oil (0.42 g, 1.29 mmol, 90%).

IR (neat) v_{max}/cm^{-1} : 2929, 1664, 1577, 1506, 1462, 1332, 1128; HRMS (ESI) m/z [M+Na]⁺ calcd. For C₁₇H₂₆O₄SiNa⁺ 345.1600; found 345.1488; ¹H NMR (400 MHz, CDCl₃) δ 7.22 (s, 2H), 7.17 (dd, J = 17.0, 10.4 Hz, 1H), 6.43 (dd, J = 16.9, 1.7 Hz, 1H), 5.87 (dd, J = 10.5, 1.7 Hz, 1H), 3.86 (s, 6H), 1.01 (s, 9H), 0.15 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 189.5, 151.5, 139.8, 132.2, 129.9, 129.4, 106.3, 56.0, 25.8, 18.9, -4.4.

1-(4-((tert-butyldimethylsilyl)oxy)-3,5-dimethoxyphenyl)prop-2-en-1-ol (±)-2a

This batch of **2a** was prepared in an analogous manner to that reported above. NaBH₄ (0.23 g, 6.21 mmol, 5.0 eq) was added, gradually, to a cooled stirring solution of CeCl₃.7H₂O (0.55 g, 1.49 mmol, 1.2 eq) and compound **S1** (0.40 g, 1.24 mmol, 1.0 eq) in MeOH

(12 mL). The resulting mixture was left to stir at 0 °C for 1 h. Afterwards, the mixture was quenched with saturated aqueous solution of ammonium chloride (25 mL) and extracted with ethyl acetate twice (2 x 25 mL). The combined organic layer were washed with water (20 mL), brine (20 mL), dried with MgSO₄, filtered and concentrated *in vacuo*. Purification by silica gel chromatography using 10-20% EtOAc in Petroleum Ether gave allylic alcohol (±)-**2a** as a white solid (0.42 g, 1.31 mmol, 95%).

M.p. 94–96 °C; **HRMS** (ESI) m/z [M+Na]⁺ calcd. for C₁₇H₂₈O₄SiNa⁺ 347.1655; found 347.1647; **IR** (neat) v_{max}/cm⁻¹: 3491, 2928, 1591, 1506, 1119; ¹H NMR (400 MHz, CDCl₃) δ 6.57 (s, 2H), 6.07 (ddd, J = 17.1, 10.3, 5.6 Hz, 1H), 5.36 (dt, J = 17.1, 1.5 Hz, 1H), 5.21 (dt, J = 10.3, 1.4 Hz, 1H), 5.13 (d, J = 5.6 Hz, 1H), 3.81 (s, 6H), 1.03 (s, 9H), 0.14 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 151.6, 140.2, 135.1, 133.8, 115.0, 103.4, 75.5, 55.8, 25.8, 18.7, -4.6.

1-(4-((tert-butyldimethylsilyl)oxy)-3,5-dimethoxyphenyl)propane-1,2,3-triol (±)-26

To a solution of (±)-**2a** (0.63 g, 1.94 mmol, 1 eq.) in THF/H₂O (8 mL/2 mL) was added NMO (0.38 g, 3.30 mmol, 1.7 eq.), followed by the addition of OsO_4 (2.5% wt in ^tBuOH, 0.19 g, 0.019 mmol, 0.01 eq.) at room temperature. The resulting mixture was left to stir at the

same temperature for 12 h. After the reaction had reached completion (T.L.C control), the mixture was diluted with EtOAc (35 mL) and washed successively with NaHCO₃ (25 mL) and Na₂S₂O₃ (25 mL). The combined aqueous layers were further extracted with EtOAc (2 x 20 mL). The combined organic layers were washed with water (25 mL), brine (25 mL), dried with MgSO₄, filtered and concentrated *in vacuo*. Purification by silica gel chromatography using 5-10% MeOH in DCM afforded (±)-**26** (0.51 g, 1.43 mmol, 74%) as a mixture of diastereoisomers (3:1, as deduced by relative ratio between the peaks at 4.74 ppm and 4.57 ppm in the ¹H NMR).

IR (neat) v_{max}/cm^{-1} : 3363, 2929, 1589, 1508; HRMS (ESI) m/z [M+NH₄⁺] calcd. for C₁₇H₃₄O₅NSi⁺ 376.2150; found 376.2148; ¹H NMR (400 MHz, CDCl₃) δ 6.55–6.53 (m, 2H), 4.74 (d, J = 5.3 Hz, 0.77H), 4.57 (d, J = 7.0 Hz, 0.23H), 3.77 (d, J = 2.5 Hz, 6.77H), 3.74–3.69 (m, 1H), 3.68–3.63 (m, 0.77H), 3.59–3.54 (m, 0.23H), 3.49–3.44 (m, 0.23H), 1.00–0.98 (m, 9H), 0.12–0.10 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 134.2, 134.0, 133.0, 132.9, 103.6, 103.2, 76.0, 75.4, 74.8, 63.4, 63.2, 55.9, 25.9, 18.8, -4.5.

These spectroscopic data are consistent with previously reported data (see reference S1)

(4-(5-((benzyloxy)methyl)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,6-dimethoxyphenoxy)(*tert*-butyl)dimethylsilane (±)-28

 K_2CO_3 (0.38 g, 2.78 mmol, 2.0 eq.) was added to a stirring solution of triol (±)-**26** (0.54 g, 1.40 mmol, 1.0 eq., dr = 3:1) in DMF (15 mL) at room temperature. After all the solids had dissolved, BnBr (0.31 g, 1.81 mmol, 1.3 eq.) was added, and the resulting mixture was

left to stir for 3 h at room temperature. Afterwards, the mixture was diluted with EtOAc (30 mL) and was washed with saturated aqueous solution of NaHCO₃ (35 mL). The organic layer

was washed with water (30 mL), brine (30 mL), dried with MgSO₄, filtered and concentrated *in vacuo*.

The resulting residue was then dissolved in DCM (10 mL), followed by the additions of 2,2dimethoxypropane (0.66 g, 6.35 mmol, 5.0 eq.) and *p*TSA.H₂O (13.2 mg, 0.06 mmol, 0.05 eq.). The mixture was left to stir for a further 1 h at room temperature. After full consumption of the starting material (*ca.* 1 h), the mixture was diluted with DCM (20 mL) and neutralised with saturated aqueous solution of NaHCO₃ (10 mL). The organic layer was washed with water (20 mL), brine (15 mL), dried with MgSO₄, filtered and concentrated *in vacuo*. Purification by silica gel chromatography using 2-5% EtOAc in Petroleum ether furnished (±)-**28** (0.62 g, 1.26 mmol, 91% over two steps, *dr* = 3:1) as a colourless oil. The major diastereoisomer (currently unassigned stereochemistry) was separated and after further purification was taken forward to the next reaction.

IR (neat) v_{max}/cm^{-1} 2929, 1593, 1458, 1373, 1232, 1128; **HRMS** (ESI) m/z [M+Na]⁺ calcd. for $C_{27}H_{40}O_6SiNa 511.2594$, found 511.2580; ¹**H NMR** (500 MHz, CDCl₃) δ 7.46–7.48 (m, 2H), 7.30–7.34 (m, 2H), 7.27–7.29 (m, 1H), 6.52 (s, 2H), 5.17 (d, J = 6.9 Hz, 1H), 4.97 (s, 2H), 4.39 (dt, J = 6.9, 6.0 Hz, 1H), 3.80 (s, 6H), 3.38 (dd, J = 10.7, 6.2 Hz, 1H), 3.25 (dd, J = 10.6, 5.7 Hz, 1H), 1.62 (s, 3H), 1.45 (s, 3H), 0.78 (s, 9H), -0.09 (s, 3H), -0.14 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 153.4, 137.9, 136.4, 133.2, 128.7, 128.2, 127.9, 108.5, 104.2, 79.9, 79.2, 75.1, 63.1, 56.2, 27.4, 26.0, 24.9, 18.4, -5.36.

ethyl 5-(4-((*tert*-butyldimethylsilyl)oxy)-3,5-dimethoxyphenyl)-2,2-dimethyl-1,3dioxolane-4-carboxylate (±)-30

A solution of the major diastereoisomer of compound (\pm) -**28** (0.50 g, 1.02 mmol, 1.0 eq.) in MeOH (5 mL) was added to a black suspension of Pd/C (10% wt, 0.10 g, 1.02 mmol, 1.0 eq.) and NaOAc (91.9 mg, 1.12 mmol, 1.11 eq.) in MeOH (5 mL). The reaction vessel

was evacuated with vacuum and backfilled with H_2 gas. The mixture was left to stir under the atmosphere of H_2 for 12 h. The mixture was then filtered through celite and the filtrate was concentrated *in vacuo*.

The residue was dissolved in DCM (12 mL) in a reaction vessel and Dess-Martin Periodinane (0.52 g, 1.22 mmol, 1.2 eq.) was added. The resulting mixture was allowed to stir at room temperature for 2 h, and then washed with saturated aqueous solution of NaHCO₃ (15 mL). The aqueous layer was extracted with DCM (2 x 25 mL) twice. The combined organic layers were washed with water (20 mL), brine (25 mL), dried with MgSO₄, filtered and concentrated *in vacuo*.

The crude mixture was dissolved in ${}^{t}BuOH/H_{2}O$ (10 mL/2 mL), followed by the addition of NaClO₂ (0.11 g, 1.22 mmol, 1.2 eq.), NaH₂PO₄ (0.15 g, 1.22 mmol, 1.2 eq.) and a drop of 2methyl-2-butene. The resulting mixture was left to stir at room temperature for 12 h and then washed with 1 M HCl (15 mL). The aqueous layer was extracted with DCM (2 x 25 mL). The combined organic layers were washed with brine (35 mL), dried with MgSO₄, filtered and concentrated *in vacuo*.

The crude material was dissolved in DCM (12 mL), followed by the dropwise addition of SOCl₂ (0.14 g, 1.22 mmol, 1.2 eq.) at room temperature. After 45 mins, EtOH (56 mg, 72 μ l, 1.22 mmol, 1.2 eq.) was added. The reaction was then left to stir for 1.5 h and washed with a saturated aqueous solution of NaHCO₃ (20 mL). The aqueous layer was extracted with DCM (2 x 25 mL). The combined organic layers were washed with water (30 mL), brine (35 mL), dried with MgSO₄, filtered and concentrated *in vacuo*. Purification by silica gel chromatography using 2-10% EtOAc in Petroleum ether furnished (±)-**30** (0.35 g, 0.79 mmol, 78% over four steps, single unassigned diastereomer) as a colourless oil.

IR (neat) v_{max}/cm^{-1} 2929, 2358, 1755, 1591, 1512, 1462, 1421, 1375, 1332, 1246, 1128, 1101; **HRMS** (ESI) m/z [M+Na]⁺ calcd. for C₂₂H₃₆O₇SiNa 463.2230, found 463.2219; ¹H NMR (500 MHz, CDCl₃) δ 6.60 (s, 2H), 5.07 (d, J = 7.5 Hz, 1H), 4.32 (d, J = 7.4 Hz, 1H), 4.20–4.27 (m, 2H), 3.78 (s, 6H), 1.60 (s, 3H), 1.54 (s, 3H), 1.26 (t, J = 7.1 Hz, 3H), 0.99 (s, 9H), 0.11 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 170.6, 151.8, 134.5, 130.1, 111.5, 103.6, 81.3, 81.1, 61.5, 55.8, 27.1, 25.9, 25.8, 18.8, 14.3, -4.49.

S50

Scheme S6: Synthesis of (±)-**5**. Reaction conditions (a) pTSA.H₂O, DCM, rt, 1 h, 77% (b) Et₃SiH, BF₃.OEt₂, DCM, - 78 °C, 2 h, 56% (c) LiHMDS, TsCl, THF, rt, 1 h, 75% (d) NaN₃, DMF, rt, 3 h, 88% (e) Pd/C (10% wt), H₂, EtOAc, 1 h and then FmocCl, THF, 1 h, 93% (f) 2 M HCl/1,4-dioxane (1:1), 100 °C, 12 h, 72%

ethyl 3-(4-((*tert*-butyldimethylsilyl)oxy)-3,5-dimethoxyphenyl)-2,3-dihydroxypropanoate (±)-32

*p*TSA.H₂O (21.6 mg, 0.11 mmol, 0.10 eq.) was added to a stirring solution of the single unassigned diastereomer (\pm)-**30** (0.50 g, 1.14 mmol, 1.0 eq.) in DCM (10 mL) at room temperature and then left to stir for 1 h. After full consumption of the starting

material (T.L.C control), the mixture was diluted with DCM (20 mL) and neutralised with a saturated aqueous solution of NaHCO₃ (20 mL). The organic layer was washed with water (35 mL), brine (20 mL), dried with MgSO₄, filtered and concentrated *in vacuo*. Purification by silica gel chromatography using 10-30% EtOAc in Petroleum ether furnished a single unassigned diastereomer (\pm)-**32** (0.35 g, 0.87 mmol, 77%) as a white solid.

M.p. 80–84 °C; **IR** (neat) v_{max}/cm^{-1} 3516, 2929, 1761, 1722, 1591, 1512, 1462, 1334, 1244, 1120; **HRMS** (ESI) m/z [M+Na]⁺ calcd. for $C_{19}H_{32}O_7SiNa$ 423.1917; found 423.1801; ¹H **NMR** (500 MHz, CDCl₃) δ 6.57 (s, 2H), 4.86 (d, J = 3.2 Hz, 1H), 4.31 (d, J = 3.0 Hz, 1H), 4.23 (m, 2H), 3.78 (s, 6H), 3.11 (br s, 1H), 2.78 (br s, 1H), 1.25 (t, J = 7.0 Hz, 3H), 0.99 (s, 9H), 0.10 (s, 6H); ¹³C **NMR** (125 MHz, CDCl₃) δ 172.9, 151.6, 134.2, 132.4, 103.5, 74.9 (x2), 62.2, 55.9, 25.9, 18.8, 14.2, -4.4.

ethyl 3-(4-((*tert*-butyldimethylsilyl)oxy)-3,5-dimethoxyphenyl)-2-hydroxypropanoate (±)-34

A solution of the single unassigned diastereomer (±)-**32** (1.70 g, OEt 4.25 mmol, 1.0 eq.) in DCM (30 mL) was cooled to -78 °C, after 5 min, BF₃.OEt₂ (1.21 g, 8.50 mmol, 2.0 eq.) was added, followed by the addition of Et₃SiH (0.98 g, 8.50 mmol, 2.0 eq.) at -78 °C. The

resulting mixture was left to stir at -78 °C for 2 h and then MeOH was added at -78 °C. After 10 min, the cooling bath was removed. The mixture was allowed to warm up to room temperature, diluted with EtOAc (35 mL) and then quenched with a saturated aqueous solution of NH₄Cl (30 mL). The aqueous layer was further extracted with EtOAc (2 x 30 mL). The combined organic layers were washed with water (30 mL), brine (35 mL), dried with MgSO₄, filtered, and concentrated *in vacuo*. Purification by silica gel chromatography using 10-30% EtOAc in Petroleum ether furnished (\pm)-**34** (0.92 g, 2.38 mmol, 56%) as a colourless oil.

IR (neat) $v_{max}/cm^{-1}3468$, 2927, 1716, 1589, 1508, 1463, 1344, 1278, 1242, 1126, 1103; HRMS (ESI) m/z [M+Na]⁺ calcd. for C₁₉H₃₂O₆SiNa 407.1968; found 407.1853; ¹H NMR (500 MHz, CDCl₃) δ 6.39 (s, 2H), 4.40 (dd, J = 6.3, 4.6 Hz, 1H), 4.19 (qd, J = 7.1, 1.7 Hz, 2H), 3.75 (s, 6H), 3.02 (dd, J = 14.0, 4.4 Hz, 1H), 2.89 (dd, J = 14.0, 6.5 Hz, 1H), 2.72 (br s, 1H), 1.26 (t, J = 7.1 Hz, 3H), 0.99 (s, 9H), 0.10 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 174.1, 151.5, 133.4, 128.7, 106.6, 71.4, 61.7, 55.8, 40.9, 25.9, 18.8, 14.3, -4.90.

ethyl 3-(4-((*tert*-butyldimethylsilyl)oxy)-3,5-dimethoxyphenyl)-2-(tosyloxy)propanoate (±)-S12

LiHMDS (1.0 M in THF, 2.86 mmol, 2.86 mL) was added to a stirring solution of (±)-**34** (0.92 g, 2.38 mmol, 1.0 eq.) in THF (18 mL) at room temperature. After 10 min, TsCl (0.54 g, 2.86 mmol, 1.2 eq.) was added. The resulting mixture was left to stir for a

further 1 h, diluted with EtOAc (35 mL) and then washed with a saturated aqueous solution of NH₄Cl (35 mL). The organic layer was washed with water (30 mL), brine (35 mL), dried with

MgSO₄, filtered, and concentrated *in vacuo*. Purification by silica gel chromatography using 5-10% EtOAc in Petroleum ether furnished (±)-**S12** (0.96 g, 1.78 mmol, 75%) as a white solid.

M.p. 92–96 °C; **IR** (neat) v_{max}/cm^{-1} 2954, 1759, 1743, 1589, 1512, 1460, 1367, 1346, 1244, 1174, 1126, 1029; **HRMS** (ESI) m/z [M+Na]⁺ calcd. for C₂₆H₃₈O₈SSiNa 561.2057; found 561.1936; ¹H **NMR** (500 MHz, CDCl₃) δ 7.46 (d, J = 8.2 Hz, 2H), 7.15 (d, J = 8.0 Hz, 2H), 6.16 (s, 2H), 4.81 (dd, J = 9.4, 3.9 Hz, 1H), 4.17 (q, J = 7.1 Hz, 2H), 3.65 (s, 6H), 3.04 (dd, J = 14.2, 4.0 Hz, 1H), 2.99 (dd, J = 14.2, 9.6 Hz, 1H), 2.39 (s, 3H), 1.23 (t, J = 7.1 Hz, 3H), 1.00 (s, 9H), 0.10 (s, 3H), 0.09 (s, 3H); ¹³C **NMR** (125 MHz, CDCl₃) δ 168.7, 151.4, 145.0, 133.5, 132.7, 129.6, 127.8, 126.9, 106.0, 78.8, 62.1, 55.5, 38.7, 25.9, 21.7, 18.8, 14.1, -4.47.

ethyl 2-azido-3-(4-((tert-butyldimethylsilyl)oxy)-3,5-dimethoxyphenyl)propanoate (±)-36

 NaN_3 (0.58 g, 8.90 mmol, 5.0 eq.) solid was added all at once to a stirring solution of compound (±)-**S12** (0.96 g, 1.78 mmol, 1.0 eq.) in DMF (17 mL) and then left to stir at room temperature for 3 h. Afterwards, the reaction mixture was diluted with EtOAc (40 mL)

and washed with a saturated aqueous solution of NH_4Cl (30 mL). The organic layer was washed with water (30 mL), brine (35 mL), dried with MgSO₄, filtered, and concentrated *in vacuo*. Purification by silica gel chromatography using 5-10% EtOAc in Petroleum ether furnished (±)-**36** (0.64 g, 1.57 mmol, 88%) as a colourless oil.

IR (neat) $v_{max}/cm^{-1}2929$, 2102, 1739, 1589, 1512, 1460, 1421, 1242, 1186, 1128, 1031; HRMS (ESI) m/z [M+Na]⁺ calcd. for C₁₉H₃₁N₃O₅SiNa 432.2033; found 432.1914; ¹H NMR (500 MHz, CDCl₃) δ 6.40 (s, 2H), 4.20 (dq, J = 7.0, 2.5 Hz, 2H), 3.98 (dd, J = 8.6, 5.7 Hz, 1H), 3.77 (s, 6H), 3.08 (dd, J = 13.8, 5.5 Hz, 1H), 2.93 (dd, J = 13.8, 8.4 Hz, 1H), 1.26 (t, J = 7.0 Hz, 3H), 0.99 (s, 9H), 0.10 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 170.1, 151.7, 133.6, 128.3, 106.3, 63.5, 61.9, 55.9, 38.2, 25.9, 18.8, 14.3, -4.52.

ethyl 2-((((9*H*-fluoren-9-yl)methoxy)carbonyl)amino)-3-(4-((*tert*-butyldimethylsilyl)oxy)-3,5-dimethoxyphenyl)propanoate (±)-38

 H_2 gas three times and then left to stir at room temperature for 1 h. Afterwards, the mixture was filtered through celite, and the filtrate was concentrated *in vacuo*.

The crude mixture was dissolved in THF (10 mL) in a reaction vessel, followed by the addition of Fmoc-Cl (0.45 g, 1.73 mmol, 1.1 eq.). The resulting mixture was left to stir at room temperature for 1 h, diluted with EtOAc (30 mL) and washed with a saturated aqueous solution of NaHCO₃ (20 mL). The organic layer was washed with water (25 mL), brine (25 mL), dried with MgSO₄, filtered and concentrated *in vacuo*. Purification by silica gel chromatography using 5-10% EtOAc in Petroleum ether furnished (±)-**36** (0.89 g, 1.47 mmol, 93%) as a white solid.

M.p. 105–110 °C; **IR** (neat) v_{max}/cm^{-1} 3284, 2956, 1753, 1676, 1552, 1510, 1452, 1344, 1249, 1213, 1124, 1049; **HRMS** (ESI) *m/z* [M+Na]⁺ calcd. C₃₄H₄₃NO₇SiNa 628.2809; found 628.2685; ¹H NMR (500 MHz, CDCl₃) δ 7.75 (d, *J* = 7.6 Hz, 2H), 7.54–7.57 (m, 2H), 7.39 (d, *J* = 7.4 Hz, 2H), 7.29 (td, *J* = 7.2, 1.0 Hz, 2H), 6.31 (s, 2H), 5.26 (d, *J* = 8.7 Hz, 1H), 4.60–4.64 (m, 1H), 4.40 (dd, *J* = 10.6, 7.1 Hz, 1H), 4.34 (dd, *J* = 10.6, 7.2 Hz, 1H), 4.11–4.22 (m, 3H), 3.73 (s, 6H), 3.00–3.06 (m, 2H), 1.24 (t, *J* = 7.1 Hz, 3H), 1.00 (s, 9H), 0.11 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 171.1, 155.7, 151.6, 144.0, 143.8, 141.4, 128.2, 127.8, 127.2, 125.2, 125.1, 120.1, 106.3, 67.2, 61.6, 55.8, 54.9, 47.2, 38.7, 25.9, 18.8, 14.3, -4.49.

2-((((9*H*-fluoren-9-yl)methoxy)carbonyl)amino)-3-(4-hydroxy-3,5dimethoxyphenyl)propanoic acid (±)-5

room temperature, diluted with EtOAc (15 mL) and washed with brine (20 mL). The aqueous layer was washed further with EtOAc (2 x 15 mL). The combined organic layers were dried with MgSO₄, filtered and concentrated *in vacuo*. The crude material was recrystallised in Petroleum ether/EtOAc, and the residue was collected by filtration to afford (\pm)-**5** (0.49 g, 1.06 mmol, 72%) as a white crystalline solid.

M.p. 195–202 °C; **IR** (neat) v_{max}/cm^{-1} : 3502, 3331, 1718, 1689, 1616, 1537, 1244, 1111; **HRMS** (ESI) m/z [M+Na]⁺ calcd. for C₂₆H₂₅NO₇Na 486.1631; found 486.1519; ¹H NMR (500 MHz, DMSO- d_6) δ 7.88 (d, J = 7.5 Hz, 2H), 7.66 (d, J = 7.5 Hz, 2H), 7.39–7.43 (m, 2H), 7.28–7.31 (m, 2H), 6.58 (s, 2H), 4.11–4.24 (m, 4H), 3.72 (s, 6H), 3.00 (dd, J = 13.8, 4.1 Hz, 1H), 2.76 (dd, J = 13.4, 10.6 Hz, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 173.5, 155.9, 155.8, 147.6, 143.8, 140.6, 133.9, 127.9, 127.6, 127.0 (x2), 125.3, 120.1, 106.5, 65.6, 55.9, 55.8, 46.9, 36.6.

During the synthesis of (\pm) -**38**, a solution of the crude amine (\pm) -**40** was hydrolysed using LiOH to give a TBS-protected amino acid (\pm) -**41**. (\pm) -**41** was recrystallized to provide crystals suitable for X-ray crystallographic analysis (Figure S8).

Figure S8. Synthesis and thermal ellipsoid plot (50% probability) of TBS-protected amino acid (±)-**41.^{s2}**

2-amino-3-(4-((tert-butyldimethylsilyl)oxy)-3,5-dimethoxyphenol)propanoic acid (±)-41

LiOH (19.2 mg, 0.81 mmol, 5.0 eq.) was added to a stirring solution of crude (\pm)-**40** (60 mg, 0.16 mmol, 1.0 eq.) (which was obtained from the hydrogenation of (\pm)-**36**) in THF:H₂O (1 mL:1 mL) at room temperature. The resulting mixture was left to stir for 2 h,

neutralised with 2 M HCl (10 mL) and then extracted with EtOAc (3 x 20 mL). The combined organic layers were washed with brine (15 mL), dried with MgSO₄, filtered and concentrated *in vacuo* produced amino-acid (\pm)-**41** (50 mg, 0.14 mmol, 88% crude yield) as a white powder.

Small molecule X-ray crystallographic analysis of (±)-**41** was carried out (**CCDC 1506889**) and confirmed the assigned structure.^{S2}

M.p. 216–220 °C; **IR** (neat) v_{max}/cm^{-1} 2927, 1624, 1589, 1510, 1460, 1328, 1244, 1126; **HRMS** (ESI) m/z [M+Na]⁺ calcd. for $C_{17}H_{29}NO_5SiNa$ 378.1815; found 378.1703; ¹**H** NMR (500 MHz, DMSO- d_6) δ 6.54 (s, 2H), 3.71 (s, 6H), 3.32 (m, 1H), 3.11 (dd, J = 14.5, 3.4 Hz, 1H), 2.68 (dd, J = 13.8, 9.6 Hz, 1H), 0.95 (s, 9H), 0.06 (s, 6H).

Experimental Procedures for the Synthesis of G-Phenolic Lignin-Based

Unnatural Amino Acid (±)-6

Scheme S7: "G-Phenolic" is a term used to describe lignin aromatic system which contains one methoxy group at the 5-position. Lignin extraction and depolymerisation which led to the isolation of **2** have been described previously in reference S6.

Reaction conditions for the synthesis of (\pm) -**31**: (a) NBu₄I, PPh₃, DDQ, DBU, DCM (b) TBSCI, DMAP, Imidazole, DCM, rt, 1 h (c) NaBH₄, CeCl₃.7H₂O, MeOH, rt, 1 h (d) OsO₄, NMO, THF/H₂O, rt, 12 h (e) K₂CO₃, BnBr, DMF, rt, 1 h (f) 2,2-dimethoxypropane, *p*TSA.H₂O (*catalytic amount*), DCM (g) Pd/C, H₂, NaOAc, MeOH, rt, 12 h (h) Dess-Martin Periodinane, DCM, rt, 2 h (i) NaClO₂, NaH₂PO₄, 2-methyl-2-butene, ^tBuOH/H₂O (j) SOCl₂, DCM then EtOH, 68% over 4-steps

1-(4-((*tert*-butyldimethylsilyl)oxy)-3,5-dimethoxyphenyl)prop-2-en-1-one (S8)

This batch of **S8** was prepared in an analogous manner to that reported above. PPh_3 (1.18 g, 4.48 mmol, 2.2 eq.) and DDQ (0.92 g, 4.08 mmol, 2.0 eq.) were dissolved in DCM (12 mL) and then NBu_4I (1.31 g, 4.08 mmol, 2.0 eq.) was added. The resulting solution was

stirred at room temperature for 5 min followed by the addition of a solution of G-phenolic monomer **4** (0.40 g, 2.04 mmol, 1.0 eq.) in DCM (4 mL) at room temperature. The resulting mixture was stirred at room temperature for 4 h, and then DBU (1.24 g, 8.16 mmol, 4.0 eq.)

was added. After 2 h, the mixture was diluted with ethyl acetate (35 mL) and washed with a saturated solution of NH_4Cl (35 mL). The organic layer was washed with water (20 mL), brine (20 mL), dried with MgSO₄, filtered and concentrated *in vacuo*.

A solution of the crude enone in DCM (6 mL) was added to a stirring solution of 4-DMAP (0.25 g, 2.04 mmol, 1.0 eq.) and Imidazole (0.27 g, 4.08 mmol, 2.0 eq.) in DCM (15 mL), followed by the addition of TBSCI (0.37 g, 2.44 mmol, 1.2 eq.). After 1 h, the mixture was diluted with ethyl acetate (30 mL) and washed with saturated solution of NH₄Cl (30 mL). The organic layer was washed with water (20 mL), brine (20 mL), dried with MgSO₄, filtered and concentrated *in vacuo*. Purification by silica gel chromatography using 2-5% EtOAc in Petroleum Ether gave compound **S8** as a colourless oil (0.45 g, 1.54 mmol, 76%).

IR (neat) v_{max} 2929, 1666, 1589, 1508, 1417, 1276, 1168; HRMS (ESI) m/z [M+Na]⁺ calcd. for $C_{16}H_{24}O_3SiNa$ 315.1495; found 315.1382; ¹H NMR (500 MHz, CDCl₃) δ 7.54 (d, J = 2.0 Hz, 1H), 7.48 (dd, J = 8.1, 2.0 Hz, 1H), 7.17 (dd, J = 16.9, 10.4 Hz, 1H), 6.88 (d, J = 8.2 Hz, 1H), 6.41 (dd, J = 17.0, 1.8 Hz, 1H), 5.83 (dd, J = 10.5, 1.8 Hz, 1H), 3.85 (s, 3H), 0.98 (s, 9H), 0.17 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 189.2, 151.3, 150.2, 132.0, 131.3, 128.9, 123.1, 120.3, 111.7, 55.5, 25.7, 18.5, -4.5.

1-(4-((tert-butyldimethylsilyl)oxy)-3,5-dimethoxyphenyl)prop-2-en-1-ol (±)-2c

This batch of (±)-2c was prepared in an analogous manner to that reported above. NaBH₄ (0.26 g, 6.84 mmol, 5.0 eq.) was added, gradually, to a cooled stirring solution of CeCl₃.7H₂O (0.61 g, 1.63 mmol, 1.2 eq.) and compound **S8** (0.40 g, 1.36 mmol, 1.0 eq.) in MeOH

(12 mL). The resulting mixture was left to stir at 0 °C for 1 h. Purification by silica gel chromatography using 10-20% EtOAc in Petroleum Ether gave allylic alcohol (±)-**2c** as a light yellow oil (0.36 g, 1.22 mmol, 90%).

¹**H NMR** (500 MHz, CDCl₃) δ 6.87 (d, J = 1.7 Hz, 1H), 6.78–6.80 (m, 2H), 6.03 (ddd, J = 16.2, 10.3, 5.7 Hz, 1H), 5.31 (dt, J = 17.1, 1.2 Hz, 1H), 5.17 (dt, J = 10.3, 1.2 Hz, 1H), 5.11 (d, J = 5.7 Hz, 1H), 3.79 (s, 3H), 2.12 (s, 1H), 0.98 (s, 9H), 0.14 (s, 6H).

¹H NMR Spectroscopic data was consistent with the previously reported data (see reference S1)

1-(4-((tert-butyldimethylsilyl)oxy)-3-methoxyphenyl)propane-1,2,3-triol (±)-27

afforded (±)-**27** (0.34 g, 1.05 mmol, 94%) as a mixture of diastereoisomers (3:1) as deduced by relative ratio between the peaks at 4.77 ppm and 4.61 ppm in the ¹H NMR.

IR (neat) v_{max} : 3342, 2929, 1508, 1278; HRMS (ESI) m/z [M+Na]⁺ calcd. for C₁₆H₂₈O₅SiNa 351.1598; found 351.1593; ¹H NMR (500 MHz, CDCl₃) 6.90–6.87 (m, 1H), 6.85–6.82 (m, 1H), 6.81–6.78 (m, 1H), 4.77 (d, J = 5.5 Hz, 0.96H), 4.61 (d, J = 7.1 Hz, 0.32H), 3.80–3.78 (m, 3H), 3.77–3.70 (m, 1.68H), 3.68–3.65 (m, 0.96H), 3.59–3.55 (m, 0.32H), 3.49–3.45 (m, 0.32H), 0.99–0.98 (m, 9H), 0.15–0.13 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 151.3, 145.0, 133.9, 133.8, 121.0, 119.2, 118.8, 110.4, 110.1, 76.1, 75.8, 75.1, 74.8, 63.4, 63.2, 55.6, 25.8, 18.6, -4.5.

These spectroscopic data are consistent with previously reported data (see reference S1)

(4-(5-((benzyloxy)methyl)-2,2-dimethyl-1,3-dioxolan-4-yl)-2-methoxyphenoxy)(*tert*butyl)dimethylsilane (±)-29

The same experimental procedure was followed as described for the synthesis of (±)-**28**. K_2CO_3 (0.34 g, 2.44 mmol, 2.0 eq.), triol (±)-**27** (mixture of diastereomers, 0.40 g, 1.22 mmol, 1.0 eq., dr = 3:1) in DMF (15 mL) at room temperature, and BnBr (0.27 g, 1.59 mmol,

1.3 eq.) were used. 2,2-dimethoxypropane (0.64 g, 6.10 mmol, 5.0 eq.) and pTSA.H₂O (11.6 mg, 0.06 mmol, 0.05 eq.) was used. Purification by silica gel chromatography using 2-5% EtOAc in Petroleum ether furnished (±)-**29** (0.50 g, 1.09 mmol, 89% over two steps, dr = 3:1) as a colourless oil. The major diastereoisomer was separated, after further purification, and taken forward to the next reaction.

IR (neat) v_{max}/cm^{-1} 2927, 1514, 1456, 1373, 1255, 1213, 1165, 1134, 1076, 1026; HRMS (ESI) m/z [M+Na]⁺ calcd. for C₂₆H₃₈O₅SiNa 481.2489, found 481.2300; ¹H NMR (500 MHz, CDCl₃) δ 7.42 (m, 2H), 7.34 (m, 2H), 7.28 (m, 1H), 6.87 (d, J = 1.7 Hz, 1H), 6.81 (d, J = 8.1 Hz, 1H), 6.77 (dd, J = 8.3, 1.7 Hz, 1H), 5.18 (d, J = 7.0 Hz, 1H), 5.14 (s, 2H), 4.38 (q, J = 6.0 Hz, 1H), 3.87 (s, 3H), 3.36 (ddd, J = 10.6, 6.1 Hz, 1H), 3.20 (dd, J = 10.6, 5.7 Hz, 1H), 1.61 (s, 3H), 1.45 (s, 3H), 0.77 (s, 9H), -0.11 (s, 3H), -0.17 (s, 3H); ¹³**C** NMR (125 MHz, CDCl₃) δ 149.4, 147.7, 137.2, 130.6, 128.6, 127.9, 127.3, 119.5, 113.8, 110.8, 108.4, 79.4, 78.9, 71.1, 63.1, 56.0, 27.4, 25.9, 24.8, 18.3, -5.42.

ethyl 5-(4-((*tert*-butyldimethylsilyl)oxy)-3-methoxyphenyl)-2,2-dimethyl-1,3-dioxolane-4carboxylate (±)-31

The same experimental procedure was followed as described for the synthesis of (\pm) -**30**. Using (\pm) -**29** (single, unassigned diastereomer, 0.30 g, 0.65 mmol, 1.0 eq.), MeOH (7 mL), Pd/C (10% wt, 69.0 mg, 0.65 mmol, 1.0 eq.) and NaOAc (59.2 mg, 0.72 mmol,

1.11 eq.) for the first step under the atmosphere of H₂. Dess-Martin Periodinane (0.33 g, 0.78 mmol, 1.2 eq.) and DCM (8 mL) were used for the second step. ^tBuOH/H₂O (5 mL/1 mL), NaClO₂ (70.5 mg, 0.78 mmol, 1.2 eq.), NaH₂PO₄ (93.5 mg, 0.78 mmol, 1.2 eq.) and a drop of 2-methyl-2-butene were used for the third step. Finally, DCM (8 mL), SOCl₂ (92.8 g, 0.78 mmol, 1.2 eq.) and EtOH (35.9 mg, 46 μ l, 0.78 mmol, 1.2 eq.) were used. Purification by silica gel chromatography using 5-10% EtOAc in Petroleum ether furnished (±)-**31** (single, unassigned diastereomer, 0.18 g, 0.44 mmol, 68% over four steps) as a colourless oil.

IR (neat) v_{max}/cm^{-1} 2929, 2856, 1751, 1516, 1456, 1375, 1280, 1257, 1163, 1099; HRMS (ESI) m/z [M+Na]⁺ calcd. for C₂₁H₃₄O₆SiNa 433.2125, found 433.2120; ¹H NMR (500 MHz, CDCl₃) δ 6.90 (d, J = 1.8 Hz, 1H), 6.85 (dd, J = 8.2, 1.8 Hz, 1H), 6.82 (d, J = 8.1 Hz, 1H), 5.06 (d, J = 7.5 Hz, 1H), 4.30 (d, J = 7.6 Hz, 1H), 4.16–4.26 (m, 2H), 3.79 (s, 3H), 1.59 (s, 3H), 1.53 (s, 3H), 1.24 (t, J = 7.0 Hz, 3H), 0.97 (s, 9H), 0.13 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 170.4, 151.1, 145.3, 130.9, 120.9, 119.3, 111.4, 110.3, 81.3, 80.8, 61.4, 55.5, 27.0, 25.8 (x2), 18.5, 14.2, -4.55.

Scheme S8: Synthesis of (±)-6. Reaction conditions (a) *p*TSA.H₂O, 69% (b) Et₃SiH, BF₃.OEt₂, DCM, -78 °C, 2 h, 66% (c) LiHMDS, TsCl, THF, rt, 1 h, 60% (d) NaN₃, DMF, rt, 3 h, 78% (e) Pd/C (10% wt), H₂, EtOAc, 1 h and then FmocCl, THF, 1 h, 98% (f) 2 M HCl/1,4-dioxane (1:1), 100 °C, 12 h, 76%

ethyl 3-(4-((*tert*-butyldimethylsilyl)oxy)-3-methoxyphenyl)-2,3-dihydroxypropanoate (±)-33

The same experimental procedure was followed as described for the synthesis of (\pm) -**32**. *p*TSA.H₂O (18.5 mg, 0.09 mmol, 0.10 eq.) was added to a stirring solution of (\pm) -**31** (single, unassigned diastereomer, 0.40 g, 0.98 mmol, 1.0 eq.) in DCM (10 mL) at room

temperature and then left to stir for 1 h. Purification by silica gel chromatography using 10-30% EtOAc in Petroleum ether furnished (±)-**33** single, unassigned diastereomer, 0.25 g, 0.67 mmol, 69%) as a colourless oil.

IR (neat) v_{max}/cm^{-1} 3400, 2929, 1732, 1514, 1463, 1282, 1251, 1155, 1033; HRMS (ESI) m/z[M+Na]⁺ calcd. for C₁₈H₃₀O₆SiNa 393.1812, found 393.1819; ¹H NMR (500 MHz, CDCl₃) δ 6.91 (s, 1H), 6.79 (s, 2H), 4.85 (dd, J = 6.3, 3.6 Hz, 1H), 4.28 (dd, J = 6.3, 3.5 Hz, 1H), 4.16–4.22 (m, 2H), 3.78 (s, 3H), 3.33 (dd, J = 6.3 Hz, 1H), 3.02 (dd, J = 6.3 Hz, 1H), 1.22 (dd, J = 7.1 Hz, 3H), 0.97 (s, 9H), 0.13 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 172.9, 150.9, 144.9, 133.4, 120.7, 118.9, 110.5, 74.9, 74.7, 62.1, 55.5, 25.8, 18.5, 14.2, -4.52.

ethyl 3-(4-((tert-butyldimethylsilyl)oxy)-3-methoxyphenyl)-2-hydroxypropanoate (±)-35

The same experimental procedure was followed as described for OEt the synthesis of (±)-**34**. A solution of (±)-**33** (single, unassigned diastereomer, 2.03 g, 5.48 mmol, 1.0 eq.) in DCM (35 mL) was cooled to –78 °C, after 5 min, BF₃.OEt₂ (1.56 g, 10.97 mmol, 2.0

eq.) was added, followed by the addition of Et_3SiH (1.28 g, 10.97 mmol, 2.0 eq.) at -78 °C. The resulting mixture was left to stir at -78 °C for 2 h and then MeOH was added at -78 °C. Purification by silica gel chromatography using 10-30% EtOAc in Petroleum ether furnished (±)-**35** (1.27 g, 3.59 mmol, 66%) as a colourless oil.

IR (neat) $v_{max}/cm^{-1}3464$, 1732, 1512, 1463, 1278, 1157, 1091, 1035; **HRMS** (ESI) m/z [M+Na]⁺ calcd. for C₁₈H₃₀O₅SiNa 377.1863, found 377.1860; ¹H NMR (500 MHz, CDCl₃) δ 6.75 (d, J = 7.9 Hz, 1H), 6.71 (d, J = 2.0 Hz, 1H), 6.64 (d, J = 8.0, 2.0 Hz, 1H), 4.39 (dd, J = 6.4, 4.5 Hz, 1H), 4.18 (q, J = 7.0 Hz, 2H), 3.77 (s, 3H), 3.03 (dd, J = 14.0, 4.5 Hz, 1H), 2.90 (dd, J = 14.1, 6.5 Hz, 1H), 1.25 (t, J = 7.1 Hz, 3H), 0.97 (s, 9H), 0.12 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 174.2, 150.8, 144.0, 129.7, 121.8, 120.8, 113.6, 71.4, 61.7, 55.4, 40.3, 25.8, 18.5, 14.3, -4.52.

ethyl 3-(4-((tert-butyldimethylsilyl)oxy)-3-methoxyphenyl)-2-(tosyloxy)propanoate (±)-S13

The same experimental procedure was followed as described for the synthesis of (\pm)-**S12**. LiHMDS (1.0 M in THF, 4.31 mmol, 4.31 mL) was added to a stirring solution of (\pm)-**35** (1.27 g, 3.59 mmol, 1.0 eq.) in THF (25 mL) at room temperature. After 10 min, TsCl

(0.82 g, 4.31 mmol, 1.2 eq.) was added. The resulting mixture was left to stir for a further 1 h. Purification by silica gel chromatography using 5-10% EtOAc in Petroleum ether furnished (±)-**S13** (1.10 g, 2.16 mmol, 60%) as a colourless oil.

IR (neat) v_{max}/cm^{-1} 2929, 1759, 1739, 1598, 1514, 1463, 1369, 1278, 1176, 1035; HRMS (ESI) m/z [M+Na]⁺ calcd. for C₂₅H₃₆O₇SSiNa 531.1951, found 531.1949; ¹H NMR (500 MHz, CDCl₃) δ 7.50 (d, J = 8.3 Hz, 2H), 7.16 (d, J = 8.0 Hz, 2H), 6.62 (d, J = 7.9 Hz, 1H), 6.49 (dd, J = 8.0, 2.1 Hz, 1H), 6.46 (d, J = 1.9 Hz, 1H), 4.82 (dd, J = 9.0, 4.4 Hz, 1H), 4.13 (q, J = 7.2 Hz, 2H), 3.65 (s, 3H), 3.04 (dd, J = 14.3, 4.5 Hz, 1H), 2.94 (dd, J = 14.2, 9.1 Hz, 1H), 2.39 (s, 3H), 1.20 (t, J = 7.1 Hz, 3H), 0.98 (s, 9H), 0.12 (s, 3H), 0.11 (s, 3H); ¹³**C NMR** (125 MHz, CDCl₃) δ 168.6, 150.7, 144.9, 144.3, 132.8, 129.6, 127.9, 127.8, 121.6, 120.7, 112.8, 78.7, 61.9, 55.2, 38.1, 25.8, 21.7, 18.5, 14.1, -4.55.

ethyl 2-azido-3-(4-((tert-butyldimethylsilyl)oxy)-3-methoxyphenyl)propanoate (±)-37

The same experimental procedure was followed as described for OEt the synthesis of (±)-**36**. NaN₃ (0.70 g, 10.8 mmol, 5.0 eq.) solid was added all at once to a stirring solution of (±)-**S14** (1.10 g, 2.16 mmol, 1.0 eq.) in DMF (20 mL) and then left to stir at room

temperature for 3 h. Purification by silica gel chromatography using 5-10% EtOAc in Petroleum ether furnished (±)-**37** (0.64 g, 1.69 mmol, 78%) as a colourless oil.

IR (neat) v_{max}/cm^{-1} 2929, 2104, 1739, 1514, 1463, 1280, 1159, 1126, 1037; HRMS (ESI) m/z[M+Na]⁺ calcd. for $C_{18}H_{29}N_3O_4SiNa$ 402.1927, found 402.1907; ¹H NMR (500 MHz, CDCl₃) δ 6.77 (d, J = 8.0 Hz, 1H), 6.71 (d, J = 1.8 Hz, 1H), 6.67 (dd, J = 7.8, 1.9 Hz, 1H), 4.20 (q, J = 7.0 Hz, 2H), 3.98 (dd, J = 8.3, 5.7 Hz, 1H), 3.78 (s, 3H), 3.09 (dd, J = 13.9, 5.6 Hz, 1H), 2.94 (dd, J = 14.0, 8.4 Hz, 1H), 1.25 (t, J = 7.1 Hz, 3H), 0.98 (s, 9H), 0.13 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 170.1, 151.0, 144.3, 129.3, 121.5, 121.0, 113.2, 63.4, 61.8, 55.5, 37.5, 25.8, 18.5, 14.2, -4.98.

ethyl 2-((((9*H*-fluoren-9-yl)methoxy)carbonyl)amino)-3-(4-((*tert*-butyldimethylsilyl)oxy)-3methoxyphenyl)propanoate (±)-39

The same experimental procedure was followed as described for the synthesis of (\pm) -**38**. A solution of (\pm) -**37** (0.64 g, 1.69 mmol, 1.0 eq.) in EtOAc (5 mL) was added to a stirring black suspension of Pd/C (10% wt, 0.18 g, 1.69 mmol, 1.0 eq.) in EtOAc (10 mL). The

crude mixture was dissolved in THF (10 mL) in a reaction vessel, followed by the addition of Fmoc-Cl (0.52 g, 2.02 mmol, 1.2 eq.). Purification by silica gel chromatography using 5-20% EtOAc in Petroleum ether furnished (±)-**39** (0.95 g, 1.65 mmol, 98%) as a colourless oil.

IR (neat) $v_{max}/cm^{-1} 3325$, 2929, 1716, 1512, 1448, 1280, 1201, 1035; HRMS (ESI) m/z [M+Na]⁺ calcd. for C₃₃H₄₁NO₆SiNa 598.2703, found 598.2699; ¹H NMR (500 MHz, CDCl₃) δ 7.76 (d, J = 7.5 Hz, 2H), 7.57 (d, J = 7.3 Hz, 2H), 7.40 (d, J = 7.4 Hz, 2H), 7.31 (d, J = 7.4 Hz, 2H), 6.77 (d, J = 8.0 Hz, 1H), 6.64 (d, J = 1.5 Hz, 1H), 6.57 (dd, J = 7.8, 1.3 Hz, 1H), 5.31 (d, J = 8.4 Hz, 1H), 4.63 (dt, J = 14.1, 6.1 Hz, 1H), 4.38 (d, J = 7.1 Hz, 2H), 4.12–4.23 (m, 3H), 3.75 (s, 3H), 3.06 (d, J = 5.9 Hz, 2H), 1.24 (t, J = 7.1 Hz, 3H), 1.00 (s, 9H), 0.15 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 171.7, 155.7, 150.9, 144.2, 143.9, 143.8, 141.3, 129.2, 127.8, 127.1, 125.1, 121.7, 120.9, 120.0, 113.1, 67.1, 61.5, 55.5, 54.9, 47.2, 38.1, 25.8, 18.5, 14.2, -4.53.

2-((((9*H*-fluoren-9-yl)methoxy)carbonyl)amino)-3-(4-hydroxy-3-methoxyphenyl)propanoic acid (±)-6

The same experimental procedure was followed as described for the synthesis of (\pm)-5. 2 M HCl (10 mL) was added to a solution of compound (\pm)-39 (0.99 g, 1.72 mmol, 1.0 eq.) in 1,4-dioxane (10 mL). Crude material was recrystallised in Petroleum ether and EtOAc.

Compound (±)-6 (0.57 g, 1.31 mmol, 76%) was obtained a white solid.

M.p. 150–155 °C; **IR** (neat) v_{max}/cm^{-1} 3332, 2949, 1693, 1591, 1514, 1448, 1336, 1259, 1151, 1031; **HRMS** (ESI) m/z [M+Na]⁺ calcd. for $C_{25}H_{23}NO_6Na$ 456.1525, found 456.1520; ¹H NMR (400 MHz, DMSO- d_6) δ 8.67 (br s, 1H), 7.88 (d, J = 7.4 Hz, 2H), 7.63 (d, J = 7.3 Hz, 2H), 7.40 (t, J = 7.5 Hz, 2H), 7.30 (q, J = 7.3 Hz, 2H), 6.77 (s, 1H), 6.54–6.61 (m, 2H), 4.11–4.23 (m, 3H), 3.87 (br s, 1H), 3.66 (s, 3H), 2.99 (dd, J = 13.8, 4.1 Hz, 1H), 2.77 (dd, J = 13.7, 8.2 Hz, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 173.8, 155.9, 147.2, 144.9, 143.9, 143.8, 140.7, 129.1, 127.7, 127.1, 125.3, 121.5, 120.2, 115.1, 113.4, 65.6, 56.3, 55.5, 46.6, 36.4.

Peptide Synthesis

Cloning, Expression and Purification of Enzyme PatGmac

PatG_{mac} was cloned from genomic DNA (*Prochlon sp.*) into the pHISTEV vector (a kind gift from Dr Haunting Liu) by Dr Jesko Koehnke. The enzyme was expressed in *Eschericia coli* BL21 (DE3) cells grown in auto-induction media as previously described.^{S7} Enzyme purification was done as follows: Cell pellets were re-suspended in lysis buffer (20 mM Tris pH 8.0, 500 mM NaCl, 20 mM Imidazole, 3 mM BME), supplemented with 0.4 mg DNAse (SIGMA) per gram of wet cell pellets and EDTA-free protease inhibitor tablets (Roche; 1 per 50 mL re-suspension). The cells were lysed *via* passage through a cell disruptor at 207 MPA (Constant Systems) and clarified by centrifugation (40, 000 *g*, 4 °C, 20 min). The supernatant was passed through a Ni-NTA-sepharose 6 Fast Flow column (GE Healthcare) equilibrated in lysis buffer. The bound proteins were washed with lysis buffer and eluted with elution buffer (20 mM Tris pH 8.0, 500 mM NaCl, 250 mM Imidazole, 3 mM BME). The eluted proteins were dialysed (3 x 300 mL, 4 °C) into storage buffer (10 mM Bicine pH 8.5, 150 mM NaCl, 1 mM TCEP).

Experimental Procedure for the Synthesis of Linear Peptides 42 (AXIGFPVG), 43 (AX'IGFPVG), and S14 (AYIGFPVG)*

*Amino acid sequence in brackets; A = Alanine, X = Unnatural Amino Acid derived from (±)-5, X' = Unnatural Amino Acid derived from (±)-6, Y = L-Tyrosine, I = Isoleucine, G = Glycine, F = Phenylalanine, P = Proline, V = Valine.

The solid-phase synthesis of 42, 43 and S14 was carried out on preloaded Gly-2-chlorotrityl chloride resin (0.75 mmol/g) purchased from Bachem. The synthesis was performed on an automatic peptide synthesiser (Biotage Syrowave) on a 0.15 mmol scale. Amino acids were double coupled using a 4-fold excess of amino acid (0.60 mmol) for 20 mins at 75 °C making use of DIC (0.60 mmol, 9.2 µL, 0.5 M in DMF), Oxyma (0.60 mmol, 8.5 mg, 1 M in DMF) and HBTU (0.60 mmol, 23 mg, 0.5 M in DMF), DIEA (0.60 mmol, 10 µL, 2 M in DMF) coupling protocols. Unnatural amino acids (±)-5, (±)-6 were single coupled for 30 mins at 75 °C with DIC (0.60 mmol, 9.2 µL, 0.5 M in DMF), Oxyma (0.60 mmol, 8.5 mg, 1 M in DMF). Prior to adding the next amino acid, the peptide-bound resin was Fmoc deprotected with 20% piperidine/DMF (v/v, 1 mL) for 10 mins. The first Fmoc deprotection was carried out with 50% piperidine/DMF for 3 mins in order to prevent aspartimide formation. After coupling, the resin was washed with DMF (6×2 mL). The final peptide-bound resin was dried under vacuum and the peptide was cleaved from the resin with a cocktail of reagents: 20% HFIP (hexafluoro isopropanol) in DCM (v/v) (2 mL) for 30 mins for 42 and 43; 94% trifluoroacetic acid (TFA), 4% H₂O, 2% triisopropylsilane (TIS) 2 mL) for 2 hrs for **S14**. The resin was filtered away and the filtrate was concentrated in vacuo to afford a white powder (yield = 52% (42), 45% (43), 48% (S14)).

Experimental Procedure for the Synthesis of Linear Peptide 45 (VGAXIGFPAYD)

The solid-phase synthesis of **45** was carried out on rink amide chemmatrix resin (0.47 mmol/g) purchased from Iris Biotech. The synthesis was performed on an automatic peptide synthesiser (Biotage Syrowave) on a 0.047 mmol scale. Amino acids were double coupled using a 4-fold excess of amino acid (0.19 mmol) for 20 mins at 75 °C making use of DIC (0.19 mmol, 2.9 μ L, 0.5 M in DMF), Oxyma (0.60 mmol, 2.7 mg, 1 M in DMF) and HBTU (0.19 mmol, 7.2 mg, 0.5 M in DMF), DIEA (0.19 mmol, 3.1 μ L, 2 M in NMP) coupling protocols. Unnatural amino acid (±)-**5** was single coupled for 30 mins at 75 °C with DIC (0.19 mmol, 2.9 μ L, 0.5 M in

DMF), Oxyma (0.19 mmol, 2.7 mg, 1 M in DMF). Prior to adding the next amino acid, the peptide-bound resin was Fmoc deprotected with 20% piperidine/DMF (v/v, 1 mL) for 10 mins. After coupling, the resin was washed with DMF (6×2 mL). The final peptide-bound resin was dried under vacuum and the peptide was cleaved from the resin with a cocktail of reagents: 920% HFIP (hexafluoro isopropanol) in DCM (v/v) (2 mL) for 30 mins; 94% trifluoroacetic acid (TFA), 4% H₂O, 2% triisopropylsilane (TIS) 2 mL) for 2 hrs. The resin was filtered away and the filtrate was concentrated *in vacuo* to afford **45** as a white powder (yield = 63%).

Experimental Procedure for the Synthesis of 2(*S*)-7, 2(*R*)-7, 2(*S*)-8, 2(*R*)-8 and 2(*S*)-44: Chemical Macrocyclisation of 42, 43, and S14

To a stirred solution of PyBOP (57 mg, 0.11 mmol), DIEA (45 μ l, 0.26 mmol) in dry DMF (14 ml) at RT, a solution of the linear peptide (**42**, **43**, **S14**) (0.051 mmol) in dry DMF (3 ml) was added by syringe pump over 2 hrs. After 24 hrs the resulting mixture was concentrated *in vacuo*, diluted with DCM (20 ml) and washed with 1 M HCl (7×2 ml). The mixture was extracted with DCM (10×2 ml) and the combined organic phases were washed three times with water (10 ml), dried MgSO₄ and concentrated *in vacuo*. The crude residue was purified by RP-HPLC to give (8.5 mg (2(*S*)-**7**), 8.3 mg (2(*R*)-**7**), total yield = 30%; 8.4 mg (2(*S*)-**8**), 8.2 mg (2(*R*)-**8**), total yield = 41%; 15 mg (**44**), yield = 31%).

Experimental Procedure for the Chemical Macrocyclisation of 42: Small scale

To a stirred solution of PyBOP (1.6 mg, 0.003 mmol), DIEA (5 μ l, 0.03 mmol) in dry DMF (2 ml) at RT, a solution of the linear peptide (**42**) (0.006 mmol) in dry DMF (1 ml) was added by syringe pump over 2 hrs. After 24 hrs the resulting mixture was concentrated *in vacuo* and freeze-dried after solubilization in H₂O/ACN 1/1 0.1% TFA. The crude was analysed by UPLC (system A1) together with a sample of authentic **42** and 2(*S*)-**7** as references.

Experimental Procedure for the Enzymatic Macrocyclisation of Linear Peptide 45 using *PatG*_{mac}

The reactions were conducted in 20 mM bicine buffer, 500 mM NaCl, and 5% DMSO solution, pH = 8.1 and incubated at 37 °C (without shaking) until full consumption of the starting peptide (MALDI monitoring) had occurred. The reaction set-up was prepared in the following order; final concentrations:

- 1- A solution of the linear peptide 45 (12 mg, 0.0098 mol) in DMSO; 100 μ M
- 2- DMSO; 5%
- 3- 20 mM Bicine, 150 mM NaCl, pH = 8.1 buffer
- 4- 5 M NaCl; final concentration 500 mM
- **5** PatG_{mac} enzyme; 60 μ M

The reaction mixture was extracted three times with ⁿBuOH. In more detail, ⁿBuOH (1/1, v/v) was then added to the aqueous reaction, vigorously mixed, and then centrifuged for 10 mins at high speed to help separate the two phases. The combined ⁿBuOH fractions were evaporated under reduced pressure to dryness. The crude was solubilized in a minimum

volume of $H_2O/MeOH$ for RP-HPLC purification giving samples of pure (2(S)-7) and (2(R)-7) (total yield = 24%).

Analytical Data for Linear peptides 42, 43, S14 and 45

42 (AXIGFPVG)

The m/z analysis was performed by ESI during LC-MS analysis. Observed mass (AXIGFPVG + H^+) = 883.4 Da, theoretical mass (AXIGFPVG + H^+) = 883.4 Da.

Figure S9: (A) HPLC trace (System A2) at 220 nm of **42** (dr = 1:1). (B) MS trace at the desired molecular weight (Single Ion Monitoring SIM mode) of **42** (dr = 1:1).

Figure S10: MS-MS fragmentation data of **42** after selection of ion with m/z = 883.4 Da. The selected fragments and their theoretical masses are ______ shown.

AX'IGFPVG (43)

The m/z analysis was performed by ESI during LC-MS analysis. Observed mass (AX'IGFPVG + H^+) = 853.4 Da, theoretical mass (AX'IGFPVG + H^+) = 853.4 Da.

Figure S11: (A) HPLC trace (System A2) at 220 nm of **43** (dr = 1:1). B) MS trace at the desired molecular weight (Single Ion Monitoring SIM mode) of **43** (dr = 1:1).

The m/z analysis was performed by ESI during LC-MS analysis. Observed mass (AYIGFPVG + H^+) = 823.4 Da, theoretical mass (AYIGFPVG + H^+) = 823.4 Da.

Figure S12: A) HPLC trace (System A2) at 220 nm of S14. B) MS trace at the desired molecular weight (Single Ion Monitoring SIM mode) of S14.

The m/z analysis was performed by ESI during LC-MS analysis. Observed mass (AXIGFPVG + H^+) = 1231.6 Da, theoretical mass (AXIGFPVG + H^+) = 1231.6 Da.

Figure S13: A) HPLC trace (System A4) at 220 nm of **45** (dr = 1:1). B) MS trace at the desired molecular weight (Single Ion Monitoring SIM mode) of **45** (dr = 1:1).

Analytical Data for Cyclic Octapeptides 7, 8, and 44

• Cyclooctapeptide (-AXIG_aFPVG_b-) 2(*S*)-7 2:1 (conformers)

Yield = 15%, 8.5 mg (chemical cyclisation); Yield = 19%, 1.4 mg (enzyme-mediated cyclisation); purity = 96%; rt = 34.2 mins.

The m/z analysis was performed by HR-ESI. Observed mass (cyclo 2(*S*)-**7**) + H⁺) = 865.4445 Da, theoretical mass ((cyclo 2(*S*)-**7**) + H⁺) = 865.4460 Da. Observed mass ((cyclo 2(*S*)-**7**) + Na⁺) = 887.4260 Da, theoretical mass ((cyclo 2(*S*)-**7**) + Na⁺) = 887.4279 Da.

Melting point: 170-175 °C

Specific Rotation $\begin{bmatrix} \alpha \end{bmatrix}_{D}^{20} = -55$ (CHCl₃, c = 1)

IR (neat) cm⁻¹ = 3290, 2964, 2351, 1749, 1635, 1516, 1031.
Amino acid	Atom	¹ H chemical shift	¹³ C chemical shift
Ala	NH	8.60-8.58 <i>,</i> m	_
	αCH	3.83-3.79 <i>,</i> m	51.0
	β CH₃	1.10, d, <i>J</i> = 7.7	17.3
	СО	-	172.8
Х	NH	8.07-8.05 <i>,</i> m	-
	αCH	4.29-4.22 <i>,</i> m	56.4
	β CH₂	2.97-2.95 <i>,</i> m	36.9
	γC	-	128.1
	o-Ar	6.43, s	106.5
	m-Ar	-	147.7
	p-Ar	-	134.1
	OMe	3.72, s	56.3
	CO	-	170.4
lle	NH	7.44, d, J = 7.4	-
	αCH	3.98-3.96, m	58.5
	β СН	1.65-1.62, m	36.9
	ν CH ₂	1.60-1.57, m; 1.19-1.16, m	25.5
	ν CH ₃	0.85-0.81, m	15.2
	δ CH ₃	0.85-0.81. m	11.1
	CO	_	171.1
Glv (a)	NH	7.49-7.47. m	_
, ()	α CH ₂	4.29-4.22, m; 3.46-3.43, m	41.6
	co	- , , , ,	171.8
Phe	NH	8.67, br	-
	αCH	4.45-4.42. m	53.6
	β CH ₂	2.97-2.95, m; 2.85-2.82, m	37.1
	v-C	-	136.1
	o-Ar	7.31-7.22 (Ar)	129.1
	m-Ar	7.31-7.22 (Ar)	129.9
	p-Ar	7.31-7.22 (Ar)	129.0
	co	-	170.8
Pro	αCH	overlapped with OMe	60.8
	β CH₂	1.92-1.88, m: 0.88-0.81. m	29.8
	v CH ₂	1.59-1.56. m: 1.30-1.26. m	21.5
	δCH ₂	3.31-3.26, m: 3.19-3.16, m	46.1
	CO		171.2
Val	NH	8.30. d. <i>J</i> = 9.0	
	αCH	3.76-3.74. m	61.8
	б.СН	2.00-1.97. m	29.7
	ν CH ₂	0.85-0.81 m	19 5
	r 0.13	-	171 <i>Δ</i>

Table S4: Assignment of ¹H and ¹³C NMR (700 MHz, DMSO- d_6) 2(*S*)-**7.** Extensive 2D NMR work was carried out to achieve this assignment. NMR data for the major conformer.

Gly (b)	NH	overlapped with Ar signals	-	
	αCH_2	4.14-4.10, m; overlapped	42.8	
		with OMe		Tabl
	CO	-	170.0	۵ ۶5۰
				e

Assignment of ¹H and ¹³C NMR (700 MHz, DMSO- d_6) 2(*S*)-**7.** Extensive 2D NMR work was carried out to achieve this assignment. NMR data for the minor conformer.

Amino acid	Atom	¹ H chemical shift	¹³ C chemical shift
Ala	NH	7.96, d, J = 8.6	-
	αCH	4.06-4.02, m	49.0
	β CH₃	1.16, d, <i>J</i> = 7.3	17.3
	CO	-	171.5
Х	NH	overlapped with Ar	-
	αCH	4.66-4.63 <i>,</i> m	56.4
	β CH₂	2.90-2.87, m; 2.62-2.59, m	36.9
	γC	-	128.1
	o-Ar	6.44, s	106.5
	m-Ar	7.31-7.22 (Ar)	147.7
	p-Ar	7.31-7.22 (Ar)	134.1
	OMe	3.71, s	56.3
	СО	-	ND
lle	NH	8.15, br	-
	α CH	3.91-3.89 <i>,</i> m	59.1
	βСН	1.71-1.68 <i>,</i> m	36.1
	γ CH ₂	1.59-1.56, m; 1.13-1.11, m	25.5
	γ CH ₃	0.85-0.81 <i>,</i> m	15.2
	δCH_3	0.85-0.81 <i>,</i> m	11.1
	CO	-	171.9
Gly (a)	NH	8.60-8.58, m	-
	αCH_2	4.00-3.97, m; 3.31-3.26, m	42.4
	СО		170.3
Phe	NH	7.75, d, <i>J</i> = 8.9	-
	αCH	4.75-4.72 <i>,</i> m	53.6
	βCH_2	2.97-2.95 <i>,</i> m	37.1
	γ-C	-	136.1
	o-Ar	7.31-7.22 (Ar)	127.3
	m-Ar	7.31-7.22 (Ar)	129.9
	p-Ar	7.31-7.22 (Ar)	128.5
	СО	-	ND
Pro	αCH	4.29-4.22 <i>,</i> m	61.7
	βCH_2	2.03-2.01, m; 1.92-1.88, m	28.7
	γCH_2	1.92-1.88 <i>,</i> m	25.0
	δCH_2	3.62-3.60 <i>,</i> m	47.3
	СО	-	ND
Val	NH	7.56, d, <i>J</i> = 7.5	_
	αCH	4.06-4.02 <i>,</i> m	58.5

Figure S14: ¹H NMR spectrum (700 MHz, DMSO- d_6) of cycle 2(*S*)-**7** from the chemical macrocyclisation. Subscripts b, s are respectively referred to the major and minor conformation. ACN = acetonitrile. b = big; s = small.

Figure S15: HSQC ¹³C-¹H NMR spectrum (700 MHz, DMSO-*d*₆) of 2(*S*)-**7** from the chemical macrocyclisation.

Figure S16: HSQC ¹⁵N-¹H NMR spectrum (700 MHz, DMSO-*d*₆) of 2(*S*)-**7** from the chemical macrocyclisation.

Figure S17: EXSY NMR spectrum of 2(*S*)-**7** at 35 °C. α -CH signal of Phe in the major conformation was irradiated.

Figure S18: ¹H NMR spectrum (700 MHz, DMSO- d_6) of cycle 2(*S*)-**7** from the enzyme-mediated macrocyclisation.

Figure S19: A) HPLC trace (System A3) at 220 nm of 2(S)-**7** from enzyme-mediated synthesis B) MS trace at the desired molecular weight (Single Ion Monitoring SIM mode) of 2(*S*)-**7**.

Figure S20: MS-MS fragmentation data of cycle 2(S)-7 after selection of ion with m/Z = 865.4 Da. The selected fragments and their theoretical masses are shown. Fragments containing the PV bond are particularly relevant as this implies that this bond has formed as required for macrocylisation to have occurred.

Figure S21: UPLC traces (System A1) at 220 nm of the crude sample of **7** prepared by enzyme-mediated cyclisation of **42**; the starting linear peptide **42** and authentic product 2(S)-**7**. This data shows that even when the enzyme-mediated reaction has not gone to completion, the approximate ratio of 2(S)-**7** and 2(R)-**7** (assigned as second peak adjacent to 2(S)-**7** peak) was approximately 1: 1 and that therefore there is no major difference in the rate of the enzyme-mediated formation of the two diasteromeric cyclic peptides.

Figure S22: ¹H NMR spectrum (700 MHz, DMSO- d_6) of the crude mixture of 2(*S*)-**7**, 2(*R*)-**7** from the enzymatic macrocyclisation overlaid with spectra of purified 2(*S*)-**7**, 2(*R*)-**7** including an expansion of the spectrum for the crude enzyme-mediated reaction mixture.

Cyclooctapeptide (-AXIG_aFPVG_b-) 2(*R*)-7 7:1 (conformers)

Yield = 15%, 8.3 mg (chemical cyclisation); Yield = 21%, 0.4 mg (enzymatic cyclisation); purity = 96%; rt = 34.2 mins.

The m/z analysis was performed by HR-ESI. Observed mass (cyclo 2(S)-**7**) + H⁺) = 865.4451 Da, theoretical mass (cyclo 2(S)-**7**) + H⁺) = 865.4460 Da. Observed mass (cyclo 2(S)-**7**) + Na⁺) = 887.4265 Da, theoretical mass (cyclo 2(S)-**7**) + Na⁺) = 887.4279 Da.

Melting point: 170–175 °C

Specific Rotation $\left[\propto \right]_{D}^{20} = -78 \circ (CHCl_{3}, c = 1)$

IR: (neat) cm⁻¹ = 3290, 2964, 2351, 1749, 1635, 1516, 1031.

Amino acid	Atom	¹ H chemical shift	¹³ C chemical shift
Ala	NH	8.33, d, <i>J</i> = 6.5	-
	αCH	4.34-4.31, m	48.1
	β CH ₃	1.16, d <i>, J</i> = 8.0	18.0
	СО	-	173.7
Х	NH	8.07, br	-
	αCH	4.55-4.52 <i>,</i> m	55.0
	βCH_2	3.23-3.20, m; 2.91-2.86, m	37.7
	γC	-	127.3
	o-Ar	6.48, s	106.8
	m-Ar	-	148.1
	p-Ar	-	133.9
	OMe	3.72, s	56.3
	CO	-	169.1
lle	NH	8.15-8.13, m	-
	αCH	3.90-3.88 <i>,</i> m	59.1
	β СН	1.72-1.69, m	35.7
	γCH_2	1.61-1.59, m; 1.35-1.32, m	21.6
	γCH_3	0.78-0.76 <i>,</i> m	15.7
	δ CH ₃	0.78-0.76 <i>,</i> m	11.5
	CO	-	170.8
Gly (a)	NH	7.97, t <i>, J</i> = 6.5	-
	αCH_2	overlapped with OMe -	41.4
	CO		173.1
Phe	NH	8.59, d, <i>J</i> = 6.1	-
	αCH	4.55-4.52, m	54.9
	βCH_2	2.91-2.86, m; 2.77-2.74, m	36.4
	γ-C	-	136.7
	o-Ar	7.37-7.26 (Ar)	127.3
	m-Ar	7.37-7.26 (Ar)	129.7
	p-Ar	7.37-7.26 (Ar)	129.1
	СО	-	171.1
Pro	αCH	3.47-3.45, m	60.4
	βCH_2	1.83-1.80, m; 0.88-0.85, m	30.4
	γCH_2	1.31-1.27, m; overlapped	24.6
	6.011	with β CH ₃ (Ala)	46.4
	0 CH2	3.32-3.29, m; 3.23-3.20, m	46.4
		-	169.0
val	NH	8.15-8.13, m	-
	αCH	3.84-3.81, m	61.8
	βСН	2.01-1.97, m	29.7
	γСΗ3	0.81-0.76, m; 0.72, d, J =	19.5
		7.1	

Table S6: Assignment of ¹H and ¹³C NMR (700 MHz, DMSO- d_6) 2(*R*)-**7**. Extensive 2D NMR work was carried out to achieve this assignment. NMR data for the major conformer.

	CO	-	170.7	
Gly (b)	NH	7.15, t, J = 4.9	-	Tabl
	αCH_2	overlapped with OMe	41.4	o 67.
	СО		170.6	e 57.
				Assi

gnment of ¹H and ¹³C NMR (700 MHz, DMSO- d_6) 2(*R*)-**7**. Extensive 2D NMR work was carried out to achieve this assignment. NMR data for the minor conformer.

Amino acid	Atom	¹ H chemical shift	¹³ C chemical shift
Ala	NH	7.73, d, <i>J</i> = 7.6	-
	α CH	4.34-4.31 <i>,</i> m	48.1
	β CH₃	1.16, d, <i>J</i> = 8.0	18.9
	CO	-	ND
Х	NH	8.31, d, <i>J</i> = 8.5	_
	αCH	4.55-4.52, m	55.0
	βCH_2	3.03-3.00, m; 2.77-2.74, m	37.7
	γC	-	127.3
	o-Ar	6.48, s	106.8
	m-Ar	-	148.1
	p-Ar	-	133.9
	OMe	3.73, s	56.3
	CO	-	168.2
lle	NH	8.38, d, <i>J</i> = 9.1	_
	α CH	4.34-4.31 <i>,</i> m	59.1
	β СН	1.72-1.69 <i>,</i> m	35.7
	γCH_2	overlapped with β CH ₃ (Ala);	19.1
		1.09-1.04 <i>,</i> m	
	γCH_3	0.78-0.76 <i>,</i> m	15.7
	δCH_3	0.78-0.76 <i>,</i> m	11.5
	СО	-	ND
Gly (a)	NH	8.53, t <i>, J</i> = 4.7	-
	αCH_2	4.17-4.14, m; 3.23-3.20, m	41.4
	CO		ND
Phe	NH	8.15-8.13, m	-
	αCH	4.71-4.69 <i>,</i> m	54.9
	βCH_2	2.91-2.86, m; 2.60-2.57, m	36.4
	γ-C	-	136.7
	o-Ar	7.37-7.26 (Ar)	127.3
	m-Ar	7.37-7.26 (Ar)	129.7
	p-Ar	7.37-7.26 (Ar)	129.1
	CO	-	ND
Pro	αCH	3.47-3.45 <i>,</i> m	60.4
	βCH_2	1.24-1.22, m	29.2
	γCH_2	1.83-1.80, m; 1.41-1.39, m	24.9
	δCH_2	3.53-3.51, m; 3.47-3.45, m	47.1
	CO	-	169.0

Figure S25: ¹H-¹⁵N HSQC NMR spectrum (700 MHz, DMSO-*d*₆) of 2(R)-7 from the chemical macrocyclisation.

Figure S26: EXSY NMR spectrum of cycle 2(R)-**7** at 35 °C. α -CH signal of Phe in the major conformation was irradiated.

Figure S27: ¹H NMR spectrum (700 MHz, DMSO- d_6) of cycle 2(*R*)-**7** from the enzyme-mediated macrocyclisation.

Figure S29: MS-MS fragmentation data of cycle 2(R)-**7** after selection of ion with m/z = 865.4 Da. The selected fragments and their theoretical masses are shown. The fragments containing the VP unit are important as they provide evidence that this bond, and hence the macrocycle, was formed.

Cyclooctapeptide (-AX'IG_aFPVG_b-) 2(S)-8 2:1 (conformers)

В

Yield = 15%, 8.4 mg (chemical cyclisation; purity = 96%; rt = 34.2 mins.

The m/z analysis was performed by HR-ESI.

Observed mass (cyclo 2(S)-8) + H⁺) = 835.4341 Da, theoretical mass ((cyclo 2(S)-8) + H⁺) = 835.4354 Da. Observed mass ((cyclo 2(S)-8) + Na⁺) = 857.4157 Da, theoretical mass ((cyclo 2(S)-8) + Na⁺) = 857.4174 Da.

Melting point: 175–180 °C

Specific Rotation $\left[\propto \right]_{D}^{20} = -60 \circ (CHCl_{3}, c = 1)$

IR: (neat) cm⁻¹ = 3290, 2964, 2351, 1749, 1635, 1516, 1031.

Amino acid	Atom	¹ H chemical shift	¹³ C chemical shift
Ala	NH	8.57-8.55, m	-
	αCH	3.81-3.79, m	51.0
	βCH_3	1.10, d, $J = 7.2$	17.3
	CO	-	172.7
X'	NH	8.02-8.00, m	-
	αCH	4.25-4.21, m	56.3
	βCH_2	2.98-2.93, m	37.4
	γC	-	128.4
	o-Ar	6.72, d, <i>J</i> = 1.5	121.5
	o'-Ar	6.55, dd, $J_a = 8.0$, $J_b = 1.5$	113.3
	m-Ar	-	145.4
	m'-Ar	6.65, d, $J = 8.0$	115.6
	p-Ar	-	147.7
	OMe	3.73, s	55.9
	СО	-	170.4
Ile	NH	7.44, d, $J = 8.0$	-
	αCH	3.96-3.94, m	58.4
	β СН	1.64-1.60, m	36.6
	$\gamma \mathrm{CH}_2$	1.50-1.47, m; 1.20-1.17, m	25.6
	$\gamma \mathrm{CH}_3$	0.84-0.81, m	15.4
	δ CH ₃	0.84-0.81, m	11.0
	CO	-	171.1
Gly (a)	NH	7.49-7.47, m	-
	αCH_2	4.29-4.22, m; overlapped	41.4
		with water	
	СО	-	171.8
Phe	NH	8.65, br	-
	αCH	4.45-4.42, m	53.6
	βCH_2	2.97-2.95, m; 2.85-2.82, m	37.4
	γ-C	-	136.3
	o-Ar	7.31-7.22 (Ar)	128.8
	m-Ar	7.31-7.22 (Ar)	129.6
	p-Ar	7.31-7.22 (Ar)	127.4
	CO	-	171.0
Pro	αCH	3.69-3.67, m	60.6
	βCH_2	1.92-1.87, m; 0.88-0.85, m	29.9
	γCH_2	1.59-1.55, m; 1.30-1.26, m	21.6
	δCH_2	3.30-3.27, m; 3.19-3.16, m	46.1
	СО	-	170.4
Val	NH	8.01, d, J = 8.4	-
	αCH	overlapped with OMe	61.8
	βСН	1.98-1.96, m	29.7
	$\gamma \mathrm{CH}_3$	0.84-0.81, m	19.4
	CO	-	171.4
Gly (b)	NH	8.02-8.00, m	-

Table S8: Assignment of ¹H and ¹³C NMR (700 MHz, DMSO- d_6) 2(*S*)-**8**. Extensive 2D NMR work was carried out to achieve this assignment. NMR data for the major conformer.

α CH ₂	4.12-4.09, m; 3.69-3.67, m	42.5	
СО		170.2	
			Гаbl

e S9: Assignment of ¹ H and ¹³ C NMR (700 MHz, DMSO- d_6) 2(S)-8. Extensive 2D NMR work was
carried out to achieve this assignment. NMR data for the minor conformer.

Amino acid	Atom	¹ H chemical shift	¹³ C chemical shift
Ala	NH	7.95, d, <i>J</i> = 7.2	-
	αCH	4.05-4.02, m	49.3
	βCH ₃	1.14, d, $J = 7.2$	17.3
	CO	-	171.4
X'	NH	overlapped with Ar	-
	αCH	4.63-4.61, m	53.6
	βCH_2	2.89-2.86, m; 2.60-2.56, m	38.2
	γC	-	128.4
	o-Ar	6.75, d, <i>J</i> = 1.5	121.7
	o'-Ar	6.58, dd, $J_a = 8.0$, $J_b = 1.5$	113.5
	m-Ar	-	145.4
	m'-Ar	6.61, d, $J = 8.0$	115.2
	p-Ar	-	147.7
	OMe	3.74, s	55.9
	CO	-	ND
Ile	NH	8.14, br	-
	αCH	3.90-3.87, m	59.1
	β СН	1.71-1.68, m	35.7
	γCH_2	1.59-1.55, m; 1.12-1.10, m	25.2
	γCH_3	0.84-0.81, m	15.4
	δ CH ₃	0.84-0.81, m	11.0
	CO	-	ND
Gly (a)	NH	8.57-8.55, m	-
	$\alpha \ CH_2$	4.01-3.98, m; 3.32-3.30, m	42.2
	CO		ND
Phe	NH	7.73, d, $J = 6.9$	-
	αCH	4.75-4.72, m	52.6
	βCH_2	2.97-2.95, m	37.4
	γ-C	-	136.3
	o-Ar	7.31-7.22 (Ar)	128.8
	m-Ar	7.31-7.22 (Ar)	129.6
	p-Ar	7.31-7.22 (Ar)	127.4
	СО	-	171.2
Pro	αCH	4.25-4.21, m	61.6
	βCH_2	2.08-2.06; 1.92-1.87, m	28.7
	γCH_2	1.71-1.60, m; 1.30-1.26, m	22.1
	δ CH ₂	3.62-3.60, m	47.5
	CO	-	ND
Val	NH	7.58, d, $J = 7.1$	-
	αCH	4.05-4.02, m	61.8
	βСН	2.05-2.02, m	30.0

	γCH_3	0.84-0.81, m	19.4
	CO	-	ND
Gly (b)	NH	8.02-8.00, m	-
	αCH_2	3.77-3.75, m; 3.66-3.63, m	41.4
	CO	-	170.2

Figure S30: ¹H NMR spectrum (700 MHz, DMSO- d_6) of cycle 2(*S*)-**8**. Subscripts b, s are respectively referred to the major and minor conformation.

Figure S31: HSQC ¹³C-¹H NMR spectrum (700 MHz, DMSO-*d*₆) of cycle 2(*S*)-8.

Figure S32: HSQC ¹⁵N-¹H NMR spectrum (700 MHz, DMSO-*d*₆) of cycle 2(*S*)-8.

Figure S33: EXSY NMR spectrum of cycle 2(*S*)-**8** at 35 °C. α -CH signal of Phe in the major conformation was irradiated.

Figure S34: A) HPLC trace (System A3) at 220 nm of 2(*S*)-**8**. B) MS trace at the desired molecular weight (Single Ion Monitoring SIM mode) of 2(*S*)-**8**.

Figure S35: MS-MS fragmentation data of 2(S)-**8** after selection of ion with m/Z = 835.4 Da. The selected fragments and their theoretical masses are shown. Fragment containing the VP unit are important as they provide evidence that the VP bond, and hence the cycle, were formed.

Cyclooctapeptide (-AXIG_aFPVG_b-) 2(*R*)-8 7:1 (conformers)

Yield = 15%, 8.2 mg; purity = 96%; rt = 37.7 mins. The m/z analysis was performed by HR-ESI. Observed mass (cyclo 2(*R*)-**8** + H⁺) = 835.4345 Da, theoretical mass (cyclo 2(*R*)-**8** + H⁺) = 835.4354 Da. Observed mass (cyclo 2(*R*)-**8** + Na⁺) = 857.41680 Da, theoretical mass (cyclo 2(*R*)-**8** + Na⁺) = 857.4174 Da.

Melting point: $172-177 \degree C$ Specific Rotation $\left[\propto \right]_{D}^{20} = -86 \degree (CHCl_{3}, c = 1)$ IR: (neat) cm⁻¹ = 3290, 2964, 2351, 1749, 1635, 1516, 1031.

Amino acid	Atome	¹ H chemical shift	¹³ C chemical shift
Ala	NH	8.32. d. $J = 6.7$	-
	αCH	4.33-4.29. m	48.3
	β CH ₃	1.15. d. J = 7.1	18.1
	CO		173.7
X'	NH	8.07. br	-
	αCH	4.53-4.51, m	54.0
	β CH ₂	3.22-3.19, m: 2.90-2.84, m	37.7
	γC	-	128.4
	o-Ar	6 79 d $J = 1.8$	122.0
	o'-Ar	658 dd $J_{c} = 80 J_{b} = 18$	113 3
	m-Ar	-	145.3
	m'-Ar	6.63 d J = 8.0	115.5
	n-Ar	-	147.8
	OMe	373 s	55.9
	CO	-	169.0
Ile	NH	8.12 d I = 6.7	-
	αCH	3 87-3 84 m	59 1
	всн	1 71-1 68 m	35.6
	y CH	1 27-1 25 m ⁻ overlapped	24 5
		with β CH ₂ (Ala)	21.0
	v CH.	0.79-0.73 m	15.5
	γCH_3	0.79-0.75, m	15.5
	$0 C \Pi_3$	0.79-0.75, 111	11.4
Clrr(a)			1/3./
Gly (a)		7.90, l, J = 0.0	- /1 /
	αCH_2	overlapped with Okle	41.4
Dha		956 + 1 - 60	1/0.0
Phe		8.50, 0, J = 0.0	-
		4.43-4.41, m 2.00.2.84 m; 2.75.2.72 m	33.2 26.1
	$\rho C \Pi_2$	2.90-2.84 III, 2.73-2.72, III	20.1 126.2
	γ-C	-	130.3
	0-Ar	(.50-/.25 (Ar))	128.9
	m-Ar	/.30-/.23 (AI) 7.26.7.25 (Arr)	129.8
	p-Ar	/.30-/.23 (AI)	12/./
Dro		-	109.1
P10	α ΟΗ	overlapped with water	00.3
	βCH_2	1.82-1./9, m; 0.86-0.84, m	30.4
	γCH_2	1.60-1.58, m; 1.34-1.31, m	21.8
	δCH_2	3.32-3.28, m; 3.22-3.19, m	46.1
	CO	-	170.6
Val	NH	8.14, d, J = 8.9	-
	αCH	3.83-3.80, m	60.8
	β СН	1.82 - 1.79, m	29.2
	γCH_3	0.79-0.73, m; 0.71, d, <i>J</i> = 6.9	19.5
	CO	-	171.0

Table S10: Assignment of ¹H and ¹³C NMR (700 MHz, DMSO- d_6) 2(*R*)-**8**. Extensive 2D NMR work was carried out to achieve this assignment. NMR data for the major conformer.

Gly (b)	NH	7.13, t, $J = 4.8$	-	
	$\alpha \operatorname{CH}_2$	overlapped with OMe	41.4	Tabl
	CO		169.1	
				е

S11: Assignment of ¹H and ¹³C NMR (700 MHz, DMSO- d_6) 2(*R*)-**8**. Extensive 2D NMR work was carried out to achieve this assignment. NMR data for the minor conformer.

Ala NH 7.70, d, $J = 7.2$ - α CH 4.33-4.29, m 49.3 β CH ₃ 1.15, d, $J = 7.1$ 17.3 CO - 171.4 X' NH 8.29, br - α CH 4.53-4.51, m 53.6 β CH ₂ 3.01-2.99, m; 2.78-2.75, m 37.1 γ C - 128.4 o-Ar 6.90, d, $J = 1.8$ 121.7 o'-Ar 6.60, br 114.0 m-Ar - 145.1 m'-Ar 6.66, d, $J = 8.2$ 115.1 p-Ar - 147.2 OMe 3.74, s 55.9 CO - ND Ile NH 8.38, d, $J = 9.0$ - α CH 4.33-4.29, m 56.4 β CH 1.71-1.68, m 35.6 ω CH 1.21.25 24.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
CO-171.4X'NH $8.29, br$ - α CH $4.53 \cdot 4.51, m$ 53.6 β CH2 $3.01 \cdot 2.99, m; 2.78 \cdot 2.75, m$ 37.1 γ C- 128.4 o -Ar $6.90, d, J = 1.8$ 121.7 o' -Ar $6.60, br$ 114.0 m-Ar- 145.1 m'-Ar $6.66, d, J = 8.2$ 115.1 p-Ar- 147.2 OMe $3.74, s$ 55.9 CO-NDIleNH $8.38, d, J = 9.0$ - α CH $4.33 \cdot 4.29, m$ 56.4 β CH $1.71 \cdot 1.68, m$ 35.6 α CH $1.27 \cdot 1.25, m; combined$ 24.5
X'NH8.29, br- α CH4.53-4.51, m53.6 β CH23.01-2.99, m; 2.78-2.75, m37.1 γ C-128.4o-Ar6.90, d, $J = 1.8$ 121.7o'-Ar6.60, br114.0m-Ar-145.1m'-Ar6.66, d, $J = 8.2$ 115.1p-Ar-147.2OMe3.74, s55.9CO-NDIleNH8.38, d, $J = 9.0$ - α CH4.33-4.29, m56.4 β CH1.71-1.68, m35.6 α CH1.27, 1.25, m; curphened24.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
o-Ar $6.90, d, J = 1.8$ 121.7 o'-Ar $6.60, br$ 114.0 m-Ar- 145.1 m'-Ar $6.66, d, J = 8.2$ 115.1 p-Ar- 147.2 OMe $3.74, s$ 55.9 CO-NDIleNH $8.38, d, J = 9.0$ - α CH $4.33-4.29, m$ 56.4 β CH $1.71-1.68, m$ 35.6
o'-Ar6.60, br114.0m-Ar-145.1m'-Ar6.66, d, $J = 8.2$ 115.1p-Ar-147.2OMe3.74, s55.9CO-NDIleNH8.38, d, $J = 9.0$ - α CH4.33-4.29, m56.4 β CH1.71-1.68, m35.6 ω CH1.27, 1.25, mm superlammed24.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
m'-Ar $6.66, d, J = 8.2$ 115.1p-Ar-147.2OMe $3.74, s$ 55.9CO-NDIleNH $8.38, d, J = 9.0$ - α CH $4.33-4.29, m$ 56.4 β CH1.71-1.68, m35.6 ω CH $1.27, 1.25, ms$ succlamed24.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{tabular}{c c c c c c c c c c c c c c c c c c c $
CO-NDIleNH $8.38, d, J = 9.0$ - α CH $4.33-4.29, m$ 56.4 β CH $1.71-1.68, m$ 35.6 ω CH $1.27, 1.25, ms$ supplement 24.5
IleNH $8.38, d, J = 9.0$ - α CH $4.33-4.29, m$ 56.4 β CH $1.71-1.68, m$ 35.6 α CH $1.27, 1.25, m$ succlamed 24.5
α CH4.33-4.29, m56.4 β CH1.71-1.68, m35.6 α CH1.27, 1.25, m, supelarmed24.5
β CH 1.71-1.68, m 35.6
CII 1 27 1 25 m availanced 24.5
γCH_2 1.27-1.23, m; overlapped 24.5
with β CH ₃ (Ala)
γ CH ₃ 0.79-0.73, m 15.5
δ CH ₃ 0.79-0.73, m 11.4
CO - ND
Gly (a) NH 8.53, br -
α CH ₂ 4.16-4.13, m 41.4
CO ND
Phe NH overlapped with NH (V_b) -
α CH 4.70-4.67, m 53.9
β CH ₂ 2.90-2.84, m; 2.57-2.55, m 38.6
ү-С – 136.3
o-Ar 7.36-7.25 (Ar) 128.9
m-Ar 7.36-7.25 (Ar) 129.8
p-Ar 7.36-7.25 (Ar) 127.4
CO - ND
Pro $α$ CHoverlapped with water60.5
β CH ₂ 1.24-1.22, m 29.2
v CH ₂ 1.83-1.80, m ⁻ 1 41-1 39 m 24 9
δCH_2 3 32-3 28 m 3 22-3 19 m 46 1
CO - ND
Val NH 7.79. d. $J = 9.0$ -

	αCH	4.11-4.08, m	58.1	
	β СН	2.09-2.05, m	30.3	
	γCH_3	0.79-0.73, m	19.5	
	ĊO	-	ND	
Gly (b)	NH	8.03, t, J = 5.5	-	
/	αCH_2	3.94-3.91, m	41.4	NH(Fs,Vb,Ib)
	CO	-	ND	NH(Fb,GAs)
				NH(Is,Ab,X's)

Figure S36: ¹H NMR spectrum (700 MHz, DMSO- d_6) of cycle 2(*R*)-**8**. Subscripts b, s are respectively referred to the major and minor conformation.

Figure S37: HSQC ¹³C-¹H NMR spectrum (700 MHz, DMSO- d_6) of cycle 2(*R*)-**8**.

Figure S38: HSQC ¹⁵N-¹H NMR spectrum (700 MHz, DMSO- d_6) of cycle 2(R)-8.

Figure S39: EXSY NMR spectrum of cycle 2(R)-**8** at 35 °C. α -CH signal of Phe in the minor conformation was irradiated.

Figure S40: (A) HPLC trace (System A3) at 220 nm of 2(R)-**8**. (B) MS trace at the desired molecular weight (Single Ion Monitoring SIM mode) of 2(R)-**8**.

Figure S41: MS-MS fragmentation data of 2(R)-**8** after selection of ion with m/z = 835.4 Da. The selected fragments and their theoretical masses are shown.

Yield = 31%, 15 mg (chemical cyclisation; purity = 96%; rt = 18.5 mins.

The m/z analysis was performed by HR-ESI.

Observed mass (cyclo 2(S)-44) + H⁺) = 805.4229 Da, theoretical mass ((cyclo 2(S)-44) + H⁺) = 805.4249 Da. Observed mass ((cyclo 2(S)-44) + Na⁺) = 827.4041 Da, theoretical mass ((cyclo 2(S)-44) + Na⁺) = 827.4068 Da.

Melting point: 181–184 °C

Specific Rotation $\left[\begin{array}{c} \propto \end{array} \right]_{D}^{20} = -62 \circ (\text{MeOH}, c = 1)$

IR: (neat) cm⁻¹ = 3290, 2964, 2351, 1749, 1635, 1516, 1031.

Table S12: ¹H NMR and ¹³C (700 MHz, DMSO). Extensive 2D NMR work was carried out to achieve this assignment. NMR data for the major conformer.

Amino acid	Atom	¹ H chemical shift	¹³ C chemical shift
Ala	NH	8.56-8.54, m	-
	αCH	3.82-3.77, m	51.1
	βCH_3	1.10, d, $J = 7.2$	17.3
	CO	-	171.2
Y	NH	8.00-7.97, m	-
	αCH	4.25-4.17, m	56.5
	βCH_2	2.98-2.92, m	35.7
	γC	-	127.8
	o-Ar	6.65, d, J = 8.2	115.2
	m-Ar	6.96, d, <i>J</i> = 8.2	130.1
	p-Ar	-	156.0
	OH	9.22, s	-
	CO	-	170.4
Ile	NH	7.49-7.46, m	-
	αCH	3.87-3.84, m	58.3
	β СН	1.63-1.60, m	36.8
	γCH_2	1.51-1.47, m; 1.21-1.17, m	25.4
	γ CH ₃	0.86-0.82, m	15.4
	δ CH ₃	0.86-0.82, m	11.0

	CO	-	172.8	
Gly (a)	NH	7.49-7.46, m	-	Tabl
	$\alpha \ CH_2$	4.25-4.17, m; 3.45.3.42, m	41.2	
	CO		171.7	е
Phe	NH	8.64, br	-	\$13.
	αCH	4.45-4.42, m	53.4	515.
	βCH_2	2.98-2.92 m; 2.84-2.81, m	37.3	^{1}H
	γ-C	-	138.4	ممم
	o-Ar	7.29-7.21 (Ar)	128.4	and
	m-Ar	7.29-7.21 (Ar)	129.8	¹³ C
	p-Ar	7.29-7.21 (Ar)	127.2	
	CO	-	171.1	NM
Pro	αCH	3.70-3.67, m	60.6	 R
	βCH_2	1.92-1.89, m; 0.86-0.82, m	29.7	_
	γCH_2	1.59-1.56, m; 1.29-1.26, m	21.6	(700
	δCH_2	3.30-3.27, m; 3.18-3.15, m	45.9	MHz
	CO	-	170.4	
Val	NH	8.30, d, <i>J</i> = 8.4	-	,
	αCH	3.75-3.72, m	62.0	DMS
	β СН	1.99-1.96, m	29.6	DIVIS
	γ CH ₃	0.86-0.82, m; 0.79, d, <i>J</i> =	19.6	O).
	•	6.6		Evto
	CO	-	171.4	EXLE
Gly (b)	NH	overlapped with Ar	-	nsiv
	$\alpha \ CH_2$	4.12-4.09, m; 3.75-3.72, m	42.9	
	CO		170.4	e 20

NMR work was carried out to achieve this assignment. NMR data for the minor conform	ner
---	-----

Amino acid	Atom	¹ H chemical shift	¹³ C chemical shift
Ala	NH	8.00-7.97, m	-
	αCH	4.01-3.97, m	49.0
	βCH_3	1.13, d, J = 7.2	17.3
	CO	-	ND
Y	NH	overlapped with Ar	-
	αCH	4.59-4.57, m	56.5
	βCH_2	2.84-2.81, m; 2.54-2.52, m	37.9
	γC	-	127.8
	o-Ar	6.65, d, J = 8.2	115.2
	m-Ar	6.96, d, J = 8.2	130.4
	p-Ar	-	156.0
	ОН	9.12, s	-
	CO	-	ND
Ile	NH	8.17, br	-
	αCH	3.88-3.86, m	58.8
	β СН	1.71-1.69, m	36.0
	γCH_2	1.59-1.56, m; overlapped	25.2
	• -	with β CH ₃ (Ala)	
	γ CH ₃	0.86-0.82, m	15.4
	δ CH ₃	0.86-0.82, m	11.0

3.0 2.8	2.6	2.4	2.2	2.0	[ppm]	9.0	8.5		8.0	7.5	[ppm
2.3054			ļ	1.2032 1.2194 3.0994		0.4315	1.0411	1.2370	2.3173	0.4859 0.5154 2.5120	8.9196
β-CH(Ys) β-CH2(Fb,Yb,Fs)	β-C H(Ys)	DMSO	β-C H (β-CH(F β-CH2 у s,vb)	m-Ar(s) Ps) Ps) Bigger (r) Bigger	Он(b)	NH (Ab,GAs, NH (F)	NH (V⊳) N NH (I	H (Yb,GB	Ar(F), NI s,As) NH (GAb, Ib NH (Fs,Vs)	H(Geb,Ys)
	<u> </u>						ND				
Oly (0)	αCH_{2}		3.82-3	.97, m .77, m; 3	3.75.3.72, m		42.6				
Gly(b)	CO NH		8 00 7	- 07 m			1/1.4		┍┺╍	4.6 4.4	4.2
	γ CH ₃		0.86-0	.82, m			19.6		0.579	0.541	3.1748
	β CH		2.07-2	.03, m			30.1		-17		[]
, ai	αCH		4.06-4	.03, m			58.4		A-C	H(Fs,Ys)	11 N
Val	NH		7.58.0	J = 7.4			-		~ ~ ~		
	δCH_2		3.62-3	.60, m			47.2 ND			α-C H(F ь) q(
	γCH_2		1.59-1	.56, m; I	1.29-1.26, m		21.6			~	
	βCH_2		1.92-1	.89, m			29.0				
Pro	αCH		4.25-4	.17, m			61.6				
	CO		-	•			171.3				α-
	p-Ar		7.29-7	.21 (Ar)			127.2				
	m-Ar		7 29-7	$^{21}(Ar)$			120.4				
	γ -C		- 7 20-7	· · 21 (Ar)			138.4				
	βCH_2		2.98-2	.92 m			57.5 128.4				
	αCH		4.76-4	.72, m			52.6				
Phe	NH		7.71, c	J = 6.9			-				
	CO			, ,	,		ND				
Oly (u)	αCH_2		4.01-3	.97.m: 3	.82-3.77. m		42.4				
Gly (a)	NH		8 56-8	- 54 m							
	CO						ND				

Figure S42: ¹H NMR spectrum (700 MHz, DMSO- d_6) of cycle **44**. Subscripts b, s are respectively referred to the major and minor conformation.

Figure S43: HSQC ¹³C-¹H NMR spectrum (700 MHz, DMSO-*d*₆) of cycle 44.

Figure S44: HSQC ¹⁵N-¹H NMR spectrum (700 MHz, DMSO-*d*₆) of cycle 44.

Figure S45: EXSY NMR spectrum of cycle **44** at 35 °C. α-CH signal of Phe in the minor conformation was irradiated.

Figure S46: A) HPLC trace (System A2) at 220 nm of 44. B) MS trace at the desired molecular weight (Single Ion Monitoring SIM mode) of 44.

Figure S47: MS-MS fragmentation data of **44** after selection of ion with m/z = 805.4 Da. The selected fragments and their theoretical masses are shown.

Bibliography

- D. M. Miles-Barrett, A. R. Neal, C. Hand, J. R. D. Montgomery, I. Panovic, O. S. Ojo, C. S. Lancefield, D. B. Cordes, A. M. Z. Slawin, T. Lebl, and N. J. Westwood, *Org. Biomol. Chem.*, 2016, 14, 10023-10030.
- S2 CCDC 1505597 (*anti*-(±)-**3**), CCDC 1505596 ((*S*)-**2a**), CCDC 1505598 ((*S*)-**14b**), CCDC 1510492 (*anti*-(2*R*, 3*R*)-**3**) and CCDC 1506889 ((±)-**41**) contain the supplementary crystallographic data. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif.</u>
- K. Sun, X. Li, W. Li, J. Wang, J. Liu, Y. Sha, Chem. Pharm. Bull. (Tokyo)., 2004, 52, 1483–1486.
- S4 S. Strych, D. Trauner, *Angew. Chemie Int. Ed.*, 2013, **52**, 9509–9512.

- S. F. Musolino, O. S. Ojo, N. J. Westwood, J. E. Taylor, A. D. Smith, *Chem. Eur. J.*, 2016, 22, 18916-18922.
- S6 C. S. Lancefield, O. S. Ojo, F. Tran, and N. J. Westwood Angew. Chemie. Int. Ed. 2015, 54, 258–262
- S7 J. Koehnke, A. Bent, W. E. Houssen, D. Zollman, F. Morawitz, S. Shirran, J. Vendome, A.
 F. Nneoyiegbe, L. Trembleau, C. H. Botting, M. C. M. Smith, M. Jaspers, J. H. Naismith, *Nat. Struct. Mol. Biol.* 2012, **19**, 767–772.