Supplementary Information

Methylene-linked bis-phenylbenzimidazoles - a new scaffold to

target telomeric DNA/RNA hybrid duplex

M. K. Islam^{a,b}, P. J. M. Jackson^{a,c}, D. E. Thurston^a* and K. M. Rahman^a*

^aInstitute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 9NH, United Kingdom.

^bPresently at Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka-1000, Bangladesh. ^cPresently at Femtogenix Ltd, BioPark, Broadwater Road, Welwyn Garden City AL7 3AX, United Kingdom.

E-mail: david.thurston@kcl.ac.uk (DET), Tel: +44 (0) 207 848 7507; k.miraz.rahman@kcl.ac.uk (KMR), Tel: +44 (0) 207 848 1891

S1:	Reported molecules that bind to non-telomeric DRH duplexes. ¹⁻⁵	2
S2.	Synthesis, Purification and Analysis	2
S3.	Fluorescence Resonance Energy Transfer (FRET) Assay	3
S4.	Molecular Modelling Methodology for DNA/RNA Hybrid Duplex	5
S5.	Circular Dichroism (CD) Analysis	7
S6.	Synthesized molecules and their characterization	9
	Table S6.1: bis-benzo[d]imidazole type molecules in Library 1	9
	Table S6.2: bis-benzo[d]imidazole type molecules with rigid linker in Library 2	10
	Table S6.3: bis-(6-fluoro-2-methylquinoline) molecules in Library 3	11
	Table S6.4: bis-acridine molecules in Library 4	13
S7.	Cytotoxicity Tests with the MTT Assay	14
S8.	¹ H-NMR, ¹³ C-NMR spectrum and HRMS spectrum	16
Refe	rences	70

S1: Reported molecules that bind to non-telomeric DRH duplexes.¹⁻⁵

S2. Synthesis, Purification and Analysis

A standard method for amide coupling was employed to prepare all *bis*-amide molecules in libraries 1 to 4. The reaction was carried out using 1-hydroxybenzotriazole (HOBt) and *N*,*N*'-diisopropylcarbodiimide (DIC).⁶ The HOBt/DIC-mediated amide coupling reaction was employed for all reactions due to the availability of the reagents and previous use within the research group with good yield. Additionally, most of the reactions were done with either dimethylformamide (DMF) or dichloromethane (DCM) as the solvent, because the urea by-product is soluble in DMF (easy to remove during washing) and the initial activation step is faster in nonpolar solvent like DCM.^{7, 8} Initially, the activated ester was generated by treating the corresponding acid with HOBt in the presence of DIC.^{9, 10} After its formation, selected diamines were added and in most cases, the reaction was completed after 14-18 h.

Every single reaction was checked by analytical thin-layer chromatography (TLC) performed on E. Merck silica gel-60 F_{254} layered plates (0.25 mm). TLC plates were visualized under UV light (254 or 360 nm) and/or by staining the plates with vanillin spray or potassium permanganate solution followed by heating.

Compounds were purified by traditional column chromatography using Merck Flash Silica Gel-60 (230-400 mesh). To get an idea of a proper solvent system, traditional TLC was done using different solvent systems to get the best separation profile. Automated flash column chromatography is an air pressure-driven hybrid of medium pressure and short column chromatography, optimized for rapid separations on the basis of UV and ELSD detection. A Reveleris® Purification System was used to purify three compounds, where the mono-adduct and bi-adduct products' retention times (*rf* value) were very close to each other. Trituration process was used to purify

crude chemical combinations with solid impurities. A solvent (either polar or non-polar) was selected in which the desired product was very soluble and the unwanted by-products were insoluble (or *vice versa*). The crude material was washed with the solvent and filtered away, leaving the purified product in solid form and any impurities in solution.

The liquid chromatography-mass spectrometry (LC-MS) technique was applied to monitor reaction progression and identification of the compounds. LC-MS was performed on a Waters Alliance 2695 with water and acetonitrile as the mobile phases. Formic acid (0.1%) was used with the acetonitrile to ensure acidic condition during the course of analysis. The gradient conditions were acetonitrile/water (95%) for 2 minutes which was increased to 50% acetonitrile over 3 minutes. The gradient was then held at 50% acetonitrile for one minute and then increased to 95% acetonitrile over 1.5 minutes. The quantity of acetonitrile was then returned to 5% over 1.5 minutes and held for 0.5 minutes. The total duration of each run was 5 and 10 minutes, which are described as **A** and **B**. The flow rate was 1 mL/min, 200 μ L was split *via* a zero dead volume T-piece which passed into the mass spectrometer. The wavelength range of the UV detector was 220-400 nm. A diode array (535 scans) was functionalized with the system. A monolithic (C-18, 50X4.60 mm) column was used in the system.

Proton NMR (¹H) and carbon NMR (¹³C) were carried out on a Bruker Avance 400 MHz spectrophotometer. Chemical shifts (δ H) are cited in ppm (parts per million) and referenced to deuterated chloroform (CDCl₃, residual signal ¹H δ = 7.26, ¹³C δ = 77.2), deuterated dimethyl sulfoxide (DMSO-d₆, residual signal ¹H δ = 2.54, ¹³C δ = 40.45), deuterated methanol (MeOD, residual methanol signal ¹H δ = 3.31, ¹³C δ = 49.00). Multiplicities in ¹H NMR spectra are quoted as s = singlet, d = doublet, t = triplet q = quartet, m = multiplet, dd = doublet of doublets, dd = doublet of doublets, dt = doublet of triplets, td = triplet of doublets, spt = septet and br = broad. The code (0) in ¹³C NMR spectra denotes the presence of a quaternary carbon.

High resolution mass spectra (HRMS) were obtained on a Thermo Navigator mass spectrometer coupled with liquid chromatography (LC) using electrospray ionisation (ES) and time-of-flight (TOF) mass spectrometry. Infrared spectra (IR) were recorded on a Perkin Elmer spectrum 1000 instrument.

S3. Fluorescence Resonance Energy Transfer (FRET) Assay

Stabilization of DNA/RNA hybrid duplex structures upon addition of the ligand results in an increase of melting temperature of the ligand-bound oligonucleotide. The difference in melting temperatures gives idea about the stabilizing efficiency of the ligand to the DNA structure. A 'FRET melting assay' utilizes this basic principle where an increase in temperature leads to denaturing or melting of the macromolecule, causing the distance between the probes to increase and leading to an increase in fluorescent energy. The technique has been found to be very useful in investigating various types of nucleic acid structures.¹¹

The synthesized molecules were screened against the telomeric DNA/RNA hybrid (DRH) duplex, a hairpin DNA/RNA hybrid duplex was used in this experiment where the DNA strand matched the exact human telomeric repeat sequence and RNA strand counterparts with the RNA template (red colour) of telomerase enzyme (**a**). cDD; Control DNA/DNA duplex – a hairpin form of oligonucleotide sequence was used in this experiment as a control for DRH, which is similar in orientation and base pairs to DRH with the exception of replacing the RNA bases with the corresponding DNA bases (**b**).

500 mL of buffer solution (100 mM K⁺) was prepared with potassium hydroxide and potassium chloride and adjusted to a pH of 7.4 with cacodylic acid (50 mM and 500 mM). The buffer was stored in the freezer at -20 °C. The fluorescence-tagged oligonucleotide sequences were diluted with sterile DEPC water (DNA Grade, Fisher Scientific) to obtain 20 μ M solutions. 400 nM solutions prepared by serial dilution using FRET-buffer were annealed by heating at 85 °C for 5 minutes followed by cooling to room temperature over 3-4 hours (Grant Bio PCH-2 Dry Block Heating/Cooling System). For all ligands, 5 mM stock solutions were made with dimethyl sulfoxide (\geq 99.9 %, A.C.S. spectrophotometric grade, Sigma-Aldrich). From these stock solutions, 100 μ M, 10 μ M, 4 μ M and 2 μ M working solutions were prepared by serial dilutions with FRET buffer.

For the FRET-based DNA melting assay, 50 μ L of annealed DNA was added to each well of a 96-well plate (Bio-Rad Laboratories), then 50 μ L of ligand solution was added to each well. Three different concentrations (10 μ M, 4 μ M and 2 μ M) of each compound were tested in triplicate. Most commonly, pure FRET buffer instead of ligand solution was added to all wells of the first line (A) of the plate to serve as a blank. After 15 minutes of incubation at room temperature, the plate was processed in a DNA Engine Opticon (Continuous Fluorescence Detector, MJ Research) and florescence measurements taken over a temperature range from 30-100 °C at intervals of 0.5 °C. Prior to each measurement, the temperature was kept constant for 30 seconds. The incident radiation was emitted at 450-495 nm and detection measured at 515-545 nm.

The achieved data was analyzed using the program Origin – Scientific Graphing and Analysis Software (Version 7.0, OriginLab Corp.). The increases of the melting temperatures (ΔT_m) were obtained by subtracting the value of the blank from the measured values of each sample. For each concentration of every compound, the average ΔT_m was calculated from the three corresponding values and plotted against the concentration of the ligand.

Table S1: FRET melting assay results for Libraries 1, 2, 3 and 4 molecules with telomeric DNA/RNA hybrid duplex (tDRH) and control cDD sequences.

		ΔT_{m}	$(^{\circ}C)$ (SD =	0.0 - ±0.5, n	= 3)
Library	Compound	tD	RH	cĽ	D
		2 μΜ	1 µM	2 μΜ	1 µM
	1	5.4	2.4	1.5	0.6
	2	5.6	2.3	3.3	0.2
Libnomy 1	3	8.6	4.5	3.2	1.3
Library-1	4	9.5	7.2	1.3	0.8
	5	6.8	4.5	2.3	1.2
	6	8.2	6.8	1.4	0.9
Libnomy 2	7	1.2	0.5	0.8	0.3
Library-2	8	3.6	3.2	1.2	0.6
	9	0.6	0.2	0.1	0.1
	10	0.3	0.1	0.2	0.2
Libnar 2	11	0.5	0.4	0.3	0.1
Libray-5	12	0.6	0.2	0.3	0.1
	13	0.3	0.2	0.2	0.0
	14	0.7	0.3	0.1	0.0
Libror 1	15	0.7	0.1	0.5	0.1
Libray-4	16	0.8	0.1	0.5	0.3

17	1.2	0.5	1.1	0.5
18	1.0	0.3	0.7	0.2

S4. Molecular Modelling Methodology for DNA/RNA Hybrid Duplex

The DNA/RNA hybrid duplex was constructed by first using *make-na* (http://structure.usc.edu/makena/server.html) to create the RNA strand, followed by construction of the DNA sequence (including the TTT loop) using the AMBER module *nab*. The TTT loop was then covalently linked to the DNA backbone using parameters derived in-house. All compounds were docked in the minor groove of the DNA/RNA hybrid duplex sequence using AMBER *xleap*, parm99SB and modified parmbsc0 and Gaff AMBER force field parameters. Energy minimization was then undertaken in a gradient manner by initially placing the DNA or DNA/RNA hybrid duplex under a high force constraint (*i.e.* 500 kcal mol⁻¹ Angstrom⁻²), which was reduced in stages to zero to enable the ligand to find its local energy minimum, followed by reduction in force in a periodic manner with a relaxation of restraints. Once in equilibrium, production simulations were run for a period of 10 ns, and atomic coordinates were saved at 1 ps intervals. Simulations involving the control DNA duplex were undertaken in an identical manner with the use of the AMBER module *nuc* to create the DNA sequence. Analysis of molecular dynamics simulations was undertaken using *VMD*¹², and all models were created using *Chimera*¹³.

Figure S4.1: Below is the snapshot of a 10ns implicit solvent molecular dynamics simulation of compound **6** (blue spheres) with tDRH. Both benzimidazole moieties of the molecule intercalate the sequence; one between G4:C27 and G5:C26 (green) and the second between the A9 and A10 bases (yellow).

Figure S4.2: Following snapshot of a 10ns explicit solvent molecular dynamics simulation of **NSC 273829** (green spheres) shows some interaction with the tDRH sequence (**a**, grey and red) and the cDD (**b**, grey). The molecule is accommodated in each, but the shape-fit of the molecule to the tDRH is more favorable due to the different topological features of the tDRH structure.

Figure S4.3: Following **s**napshot of a 10ns molecular dynamics simulation of **compound 4** (blue spheres) shows significant disorder of the RNA duplex structure (RRH, red ribbon) and benzimidazoles do not intercalate between base pairs.

Figure S4.4: Image of the highest scoring (GBSA) docked pose of compound **3** (black) interacting with the F21T quadruplex (PDB ID: 3CDM) (blue and white). The benzimidazole moieties interact with the top and bottom faces of the quadruplex through van der Waals interactions, thus providing stabilization.

S5. Circular Dichroism (CD) Analysis¹

The fourteen selected molecules with good and moderate selectivity towards DNA/RNA hybrid duplexes (based on preliminary FRET results and molecular modelling studies) were screened against DRH (DNA/RNA hybrid duplexes), cDD (control DNA/DNA duplexes).

Simultaneous UV absorption and CD spectra were acquired on Chirascan or Chirascan Plus spectrometers (Applied Photophysics, Leatherhead, UK). The instruments were flushed with pure nitrogen gas throughout the measurements. Far-UV spectra were recorded from 450 to 200 nm with a 1 nm spectral bandwidth, 0.5 nm stepsize and a 1 s spectrometer time-per-point. A rectangular 0.5 mm path length was employed. Unless otherwise stated, all spectra were measured at 25 °C (temperature controller made by Quantum NorthWest, Model-TC125). During data processing, a spectrum of the DNA media or solution was buffer-subtracted and Savitsky-Golay smoothing with a convolution width of 5 points applied. CD spectra were normalized for concentration and path length and expressed in terms of molar ellipticity per residue. Secondary structure analyses were performed using CDPro.

50 mM Tris (Tris(hydroxymethyl)aminomethane) was prepared, adjusted to pH 7.4 with hydrochloric acid (1 N) and labelled as 50 mM 'Tris-HCl' buffer. The oligonucleotide sequences were diluted with sterile DEPC water (DNA Grade, Fisher Scientific) to obtain 100 μ M solutions. 5 μ M solutions of DNA were prepared by using CD-buffer (Tris-HCl buffer). The DNA solutions were stored in the freezer at -20 °C. For all tested compounds, 5 mM stock solutions were made with dimethyl sulfoxide (\geq 99.9 %, A.C.S. spectrophotometric grade, Sigma-Aldrich). From these stock solutions, 5 μ M, 10 μ M, 15 μ M, 20 μ M and 25 μ M working solutions were prepared during experimentation with DNA solutions.

For the CD-based DNA binding titration assay, 1,000 μ L of respective buffer was first scanned and subsequently 1 μ L of ligand was added into the same cuvette (filled with buffer) to scan one more time. Following the first step, the cuvette was cleaned properly and dried with an N₂ flow. Afterwards, 1,000 μ L of DNA solution were scanned to measure the appropriate wavelength for each type of DNA sequence. After determining the proper wavelength, 1 μ L of ligand solution was added into the same cuvette to make a ligand concentration of 5 μ M, which was then

¹ We would like to express our gratitude to Dr Tam Bui from Biomolecular Spectroscopy Centre, Pharmaceutical Optical & Chiroptical Spectroscopy Facility, King's College London for helping with the CD analysis of the synthesised compounds.

scanned again. Subsequently, an additional 1 μ L of ligand solution was added into the cuvette to make the 10 to 25 μ M ligand concentrations for each scanning. CD measurements were taken at 25 °C at a wavelength of 200-450 nm.

Figure S5.1: CD spectra of (a) the telomeric DRH duplex, and (b) the control DNA duplex (cDD).

Figure S5.2: CD spectra of compound 4 (a) and 6 (b) for the control DNA duplex (cDD).

Figure S5.3: CD spectra of library-2 compounds **7** (**a**) and **8** (**b**) non-interacting with the telomeric DRH duplex sequence (5 μ M) in Tris buffer (pH 7.4) at 0-5 equivalents ligand concentration.

Figure S5.4: CD spectra of compounds from Libray-3 (**a**, compound **12**) and Library-4 (**b**, compound **17**) with DRH (5 μ M) in Tris buffer (pH 7.4) at 0-5 equivalents ligand concentration.

S6. Synthesized molecules and their characterization

Table S6.1: bis-benzo[*d*]imidazole type molecules in Library 1

Compound	Structure	Purity	y (%)
Compound	Structure	Α	В
1	$ \begin{array}{c} $	89	100
2	N N N N N N N N N N	45	37
3		92	94
4	$\begin{array}{c} 0 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	100	100
5		97	70
6	$\begin{array}{c} 0 \\ N \\ N \\ N \\ H \\ N \\ N \\ N \\ N \\ N \\ N$	100	74

(A = 5 minute run and B = 10 minute run)

N,*N*'-(**pentane-1,5-diyl**)**bis**(4-((1*H*-**benzo**[*d*]**imidazol-1-l**)**methyl**)**benzamide**) (1), white solid; $\delta_{\rm H}$ (400 MHz, CDCl₃) 8.09 (s, 2 H), 7.79 (d, *J* = 7.3 Hz, 2 H), 7.83 (d, *J* = 8.6 Hz, 2 H), 7.72 (d, *J* = 8.4 Hz, 4 H), 7.36-7.30 (m,

4 H), 7.12 (d, J = 8.6 Hz, 4 H), 6.50 (t, J = 6.2 Hz, 2 H), 5.38 (s, 4 H), 3.47 (q, J = 6.2 Hz, 4 H), 1.71-1.65 (m, 4 H), 1.48-1.43 (m, 2 H); $\delta_{\rm C}$ (100 MHz, CDCl₃) 163.0, 145.4, 143.8, 141.3, 133.9, 130.1 (2 C), 127.9 (2 C), 127.2, 124.3, 123.8, 120.6, 110.6, 50.2, 39.1, 31.3, 24.5; $\upsilon_{\rm max}/{\rm cm}^{-1}$ 3268, 2936, 1638, 1616, 1540, 1504, 1456, 1385, 1364; m/z Observed 571.2824 [M+H]⁺, Theoretical value 571.2816 [C₃₅H₃₄N₆O₂+H]⁺; yield 23%

N,N'-(hexane-1,6-diyl)bis(4-((1*H*-benzo[*d*]imidazol-1-yl)methyl)benzamide) (2), white solid; $\delta_{\rm H}$ (400 MHz, DMSO-d₆) 8.42 (s, 2 H), 8.37 (t, *J* = 5.7 Hz, 2 H), 7.76 (d, *J* = 8.3 Hz, 4 H), 7.68-7.64 (m, 4 H), 7.35 (d, *J* = 8.3 Hz, 4 H), 7.20-7.17 (m, 4 H), 5.55 (s, 4 H), 3.22-3.17 (m, 4 H), 1.46 (br s, 4 H), 1.28 (br s, 4 H); $\delta_{\rm C}$ (100 MHz, DMSO-d₆) 166.6, 144.4, 143.2, 141.7, 133.0, 130.2 (2 C), 127.5 (2 C), 127.2, 122.6, 121.9, 120.4, 110.6, 59.8, 39.7, 29.6, 26.8; $\upsilon_{\rm max}/{\rm cm}^{-1}$ 3285, 2935, 2359, 1641, 1569, 1540, 1456, 1436, 1363; *m*/z Observed 585.2964 [M+H]⁺, Theoretical value 585.2973 [C₃₆H₃₆N₆O₂+H]⁺; yield 52%.

N,N'-(heptane-1,7-diyl)bis(4-((1*H*-benzo[*d*]imidazol-1-l)methyl)benzamide) (3), pale yellow solid; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.95 (s, 2 H), 7.82-7.78 (m, 2 H), 7.75-7.70 (m, 4 H), 7.23-7.21 (m, 8 H), 7.17 (d, *J* = 8.0 Hz, 4 H), 4.20 (br s, 4 H), 3.86-3.80 (m, 2 H), 3.43-3.36 (m, 2 H), 1.56 (t, *J* = 6.5 Hz, 4 H), 1.34 (br s, 4 H), 1.21 (d, *J* = 6.5 Hz, 2 H); $\delta_{\rm C}$ (101 MHz, CDCl₃) 166.5, 143.5, 142.8, 138.4, 134.5, 133.4, 127.3 (2 C), 126.7 (2 C), 122.9, 122.1, 120.1, 109.6, 48.1, 30.5, 28.9, 28.2, 26.2; $\upsilon_{\rm max}$ /cm⁻¹ 3339, 2966, 1614, 1556, 1494, 1458, 1361; *m*/z Observed 599.3123 [M+H]⁺; Theoretical value 599.3129 [C₃₇H₃₈N₆O₂+H]⁺; yield 83%.

N,N'-(octane-1,8-diyl)bis(4-((1*H*-benzo[*d*]imidazol-1-yl)methyl)benzamide) (4), white solid; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.98 (s, 1 H) , 7.84 (d, *J* = 7.8 Hz, 1 H), 7.72 (d, *J* = 8.4 Hz, 2 H), 7.28 (d, *J* = 2.5 Hz, 1 H), 7.26-7.23 (m, 2 H), 7.21 (d, *J* = 8.4 Hz, 2 H), 6.13 (t, *J* = 5.9 Hz, 1 H), 5.41 (s, 2 H), 4.00 (br s, 2 H), 3.84 (dd, *J* = 13.1, 6.6 Hz, 5 H), 3.45-3.39 (m, 2 H), 1.62-1.56 (m, 2 H), 1.34 (br s, 2 H), 1.16 (m, 15 H); $\delta_{\rm C}$ (100 MHz, CDCl₃) 161.0, 148.1, 143.3, 142.8, 138.4, 134.2, 127.3 (2 C), 126.9 (2 C), 123.1, 122.3, 120.2, 109.6, 48.2, 39.7, 29.2, 28.6, 23.2; $\upsilon_{\rm max}/{\rm cm}^{-1}3328$, 2928, 1627, 1562, 1496, 1458, 1383, 1325; *m/z* Observed 613.3268 [M+H]⁺, Theoretical value 613.3286 [C₃₈H₄₀N₆O₂+H]⁺; yield 74%

N,N'-(nonane-1,9-diyl)bis(4-((1*H*-benzo[*d*]imidazol-1-yl)methyl)benzamide) (5), pale yellow solid, $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.97 (s, 2 H), 7.84 (d, *J* = 8.1 Hz, 4 H) 7.72 (d, *J* = 8.4 Hz, 4 H) 7.24 (td, *J* = 2.9, 1.1 Hz, 4 H) 7.21 (d, *J* = 8.1 Hz, 4 H) 6.20-6.15 (m, 2 H) 5.41 (s, 4 H) 3.87-3.83 (m, 4 H) 3.45-3.39 (m, 4 H) 1.27 (br s, 10 H); $\delta_{\rm C}$ (100 MHz, CDCl₃) 162.2, 143.9, 142.8, 142.0, 134.1, 127.6, 127.3, 126.8, 125.5, 122.9, 120.2, 109.6, 76.9, 50.5, 36.1, 31.1, 28.6, 23.2; $\upsilon_{\rm max}/{\rm cm}^{-1}$ 3335, 2966, 2360, 2338, 1638, 1556, 1495, 1458, 1384, 1325; *m/z* Observed 627.3436 [M+H]⁺, Theoretical value 627.3442 [C₃₉H₄₂N₆O₂+H]⁺; yield 31%

N,*N*'-(decane-1,10-diyl)bis(4-((1*H*-benzo/d]imidazol-1-l)methyl)benzamide) (6), white solid; $\delta_{\rm H}$ (400 MHz, DMSO-d₆) 8.06 (s, 2 H), 7.86 (d, *J* = 8.0 Hz, 4 H), 7.68 (d, *J* = 8.3 Hz, 4 H), 7.22 (td, *J* = 2.9, 1.1 Hz, 4 H), 7.20 (d, *J* = 8.0 Hz, 4 H), 6.20-6.15 (m, 2 H), 5.41 (s, 4 H), 3.87-3.83 (m, 4 H), 3.45-3.39 (m, 4 H), 1.26 (s, 12 H); $\delta_{\rm C}$ (101 MHz, DMSO-d₆) 165.9, 144.4, 143.6, 139.9.8, 134.3, 128.6, 127.7, 127.6, 122.6, 121.9, 119.6, 110.8, 47.4, 40.1, 29.2, 28.8, 26.6; $\upsilon_{\rm max}/{\rm cm}^{-1}$ 3336, 2924, 2850, 1639, 1616, 1543, 1492, 1438, 1369; *m*/*z* Observed 641.3580 [M+H]⁺, Theoretical value 641.3599 [C₄₀H₄₄N₆O₂+H]⁺; yield 70%

<i>Table S6.2: bis</i> -benzo[<i>d</i>]imidazole	type molec	ules with rigid	linker in	Library 2
--	------------	-----------------	-----------	-----------

Compound Structure	Purity (%)
--------------------	------------

N,N'-(1,4-phenylene)bis(4-((*1H*-benzo[*d*]imidazol-1-yl)methyl)benzamide) (7), white powder; $\delta_{\rm H}$ (400 MHz, DMSO-d₆) 10.19 (s, 2 H), 8.46 (s, 2 H), 7.88 (d, *J* = 8.1 Hz, 4 H), 7.71-7.64 (m, 6 H), 7.51 (d, *J* = 8.6 Hz, 2 H), 7.43 (d, *J* = 8.3 Hz, 4 H), 7.23-7.17 (m, 4 H), 5.60 (s, 4 H); $\delta_{\rm C}$ (100 MHz, DMSO-d₆) 164.9, 143.9, 140.4, 134.9, 134.5, 131.8, 128.1 (2 C), 127.4 (2 C), 123.7 (2 C), 122.5, 121.7, 120.5, 110.7, 59.9; $\upsilon_{\rm max}/{\rm cm}^{-1}$ 3286, 3163, 3066, 2947, 1612, 1570, 1492, 1458, 1350; *m*/*z* Observed 577.2371 [M+H]⁺; Theoretical value 577.2347 [C₃₆H₂₈N₆O₂+H]⁺; yield 51%.

*N*₄*N*₄'-bis(4-((1H-benzo[*d*]imidazol-1-yl)methyl)phenyl)-[1,1'-biphenyl]-4,4'-dicarboxamide (8), white solid; $\delta_{\rm H}$ (400 MHz, DMSO-d₆) 10.47 (s, 2 H), 9.69 (s, 2 H), 8.11-8.07 (m, 4 H), 7.94-7.91 (m, 4 H), 7.90-7.86 (m, 4 H), 7.85-7.82 (m, 4 H), 7.58-7.54 (m, 4 H), 7.51 (d, *J* = 8.6 Hz, 4 H), 5.72 (s, 4 H); $\delta_{\rm C}$ (100 MHz, DMSO-d₆) 164.2, 144.9, 142.2, 139.6, 134.9, 134.3, 133.1, 132.9, 128.9 (2 C), 128.7 (2 C), 127.1 (2 C), 125.9, 122.6, 122.0, 120.8 (2 C), 113.4, 51.5; $\nu_{\rm max}/{\rm cm}^{-1}$ 3105, 3032, 2989, 1597, 1493, 1438, 1415, 1385, 1365; *m*/*z* Observed 653.2670 [M+H]⁺; Theoretical value 653.2660 [C₄₂H₃₂N₆O₂+H]⁺; yield 90%.

Compound	Structure	Purity	y (%)
Compound	Structure	Α	В
9	$O \qquad O \qquad$	88	81
10	$O \\ H \\ H \\ H \\ O \\ H \\ O \\ H \\ O \\ O \\ $	77	87

Table S6.3: bis-(6-fluoro-2-methylquinoline) molecules in Library 3

(A = 5 minute run and B = 10 minute run)

N,N'-(**pentane-1,5-diyl**)*bis*(6-fluoro-2-methylquinoline-4-carboxamide) (9), pale yellow solid; $\delta_{\rm H}$ (400 MHz, DMSO-d₆) 8.63 (dd, *J* = 8.6, 5.1 Hz, 2 H), 8.29-8.26 (m, 2 H), 7.94-7.86 (m, 2 H), 7.69-7.66 (m, 2 H), 7.42-7.34 (m, 2 H), 3.16 (t, *J* = 6.8 Hz, 4 H), 2.46 (s, 6 H), 1.60-1.56 (m, 4 H), 1.32-1.28 (m, 2 H); $\delta_{\rm C}$ (100 MHz, DMSO-d₆) 166.4, 158.3, 156.9, 145.1, 142.1, 131.6, 126.6, 123.5, 120.9, 107.2, 40.0, 29.1, 23.5, 23.4; ($\upsilon_{\rm max}/{\rm cm}^{-1}$) 3336, 2931, 2874, 1612, 1558, 1523, 1462, 1385, 1361; *m/z* Observed 477.2101 [M+H]⁺; Theoretical value 477.2097 [C₂₇H₂₆F₂N₄O₂+H]⁺; yield 37%

N,N'-(hexane-1,6-diyl)*bis*(6-fluoro-2-methylquinoline-4-carboxamide) (10), white solid; $\delta_{\rm H}$ (400 MHz, DMSO-d₆) 8.79-8.77 (m, 2 H), 8.03 (dd, *J* = 9.1, 5.5 Hz, 2 H), 7.84-7.76 (m, 2 H), 7.72-7.64 (m, 2 H), 7.51-7.48 (m, 2 H), 3.66-3.60 (m, 4 H), 2.71 (s, 6 H), 1.60-1.58 (m, 4 H), 1.43-1.39 (m, 4 H); $\delta_{\rm C}$ (100 MHz, DMSO-d₆) 166.4, 158.3, 156.9, 145.1, 141.7, 131.6, 123.6, 123.5, 120.9, 108.7, 40.3, 29.1, 26.4, 24.8; $\upsilon_{\rm max}/{\rm cm}^{-1}$ 3275, 2966, 2943, 2854, 1639, 1593, 1562, 1547, 1288; *m*/*z* Observed 491.2252 [M+H]⁺; Theoretical value 491.2253 [C₂₈H₂₈F₂N₄O₂+H]⁺; yield 31%

N,N'-(heptane-1,7-diyl)*bis*(6-fluoro-2-methylquinoline-4-carboxamide) (11), white powder; $\delta_{\rm H}$ (400 MHz, DMSO-d₆) 8.93 (dd, *J* = 9.2, 2.7 Hz, 1 H), 8.89 (dd, *J* = 9.2, 2.9 Hz, 1 H), 8.25 (br s, 2 H), 8.08 (dd, *J* = 5.0 Hz, 2.3 Hz, 2 H), 7.71 (s, 2 H), 7.42-7.39 (m, 2 H), 3.39-3.36 (m, 4 H), 2.52 (s, 6 H), 1.53-1.49 (m, 4 H), 1.26-1.23 (m, 6 H); $\delta_{\rm C}$ (100 MHz, DMSO-d₆) 166.7, 161.2, 158.7, 145.3, 142.0, 131.8, 123.7, 121.1, 120.3, 120.0, 109.2, 47.4, 41.2, 29.2, 28.8, 26.9, 25.0; $\upsilon_{\rm max}/{\rm cm}^{-1}$ 3282, 2966, 2965, 2858, 1639, 1593, 1549, 1465; *m/z* Observed 505.2410 [M+H]⁺; Theoretical value 505.2410 [C₂₉H₃₀F₂N₄O₂+H]⁺; yield 25%

N,N'-(octane-1,8-diyl)*bis*(6-fluoro-2-methylquinoline-4-carboxamide) (12), white solid; $\delta_{\rm H}$ (400 MHz, DMSO-d₆) 8.78 (d, *J* = 5.0 Hz, 1 H), 8.03 (dd, *J* = 9.2, 5.7 Hz, 1 H), 7.79 (dd, *J* = 9.2, 5.7 Hz, 1 H), 7.71-7.64 (m, 2 H), 7.52-7.49 (m, 1 H), 5.48 (d, *J* = 6.6 Hz, 2 H), 3.67-3.58 (m, 2 H), 3.34-3.31 (m, 6 H), 2.69-2.66 (m, 2 H), 1.36-1.34 (m, 2 H), 1.02-0.97 (m, 12 H); $\delta_{\rm C}$ (100 MHz, DMSO-d₆) 166.5, 158.5, 157.2, 145.3, 141.9, 131.8, 123.4, 121.1, 120.1, 101.5, 39.3, 29.3, 29.1, 26.8, 23.7; $\upsilon_{\rm max}/{\rm cm}^{-1}$ 3275, 2966, 2851, 1643, 1593, 1547, 1466, 1334; *m/z* Observed 519.2567 [M+H]⁺; Theoretical value 519.2566 [C₃₀H₃₂F₂N₄O₂+H]⁺; yield 92%

N,N'-(nonane-1,9-diyl)*bis*(6-fluoro-2-methylquinoline-4-carboxamide) (13), white powder; $\delta_{\rm H}$ (400 MHz, DMSO-d₆) 8.77 (t, *J* = 5.4 Hz, 2 H), 8.04 (dd, *J* = 9.2, 5.7 Hz, 2 H), 7.78 (d, *J* = 2.8 Hz, 1 H), 7.80 (d, *J* = 2.8 Hz, 1 H), 7.67 (td, *J* = 8.7, 2.9 Hz, 2 H), 7.50 (s, 2 H) 3.32-3.28 (m, 4 H), 2.67 (s, 6 H), 1.60-1.54 (m, 4 H), 1.34-1.30 (m, 10 H); $\delta_{\rm C}$ (100 MHz, DMSO-d₆) 166.1, 158.3, 158.1, 144.9, 141.6, 131.5, 123.4, 123.2, 120.7, 108.7, 38.9, 29.0, 28.9, 28.7, 26.4, 24.6; $\upsilon_{\rm max}/{\rm cm}^{-1}$ 3298, 2935, 2854, 1639, 1593, 1539, 1466, 1334; *m*/*z* Observed 533.2716 [M+H]⁺; Theoretical value 533.2723 [C₃₁H₃₄F₂N₄O₂+H]⁺; yield 81%

N,N'-(nonane-1,9-diyl)*bis*(6-fluoro-2-methylquinoline-4-carboxamide) (14), white powder; $\delta_{\rm H}$ (400 MHz, DMSO-d₆) 8.03 (dd, *J* = 9.3, 5.3 Hz, 2 H), 7.79 (dd, *J* = 9.8, 2.8 Hz, 3 H), 7.67 (d, *J* = 8.3 Hz, 1 H), 7.47 (ddd, *J* = 9.3, 7.9, 2.9 Hz, 2 H), 6.33 (t, *J* = 5.7 Hz, 2 H), 7.31 (s, 2 H), 3.56-3.51 (m, 3 H), 2.70 (s, 6 H), 1.70-1.65 (m, 4 H), 1.46-1.39 (m, 5 H), 1.36-1.32 (m, 4 H), 1.26 (s, 2 H); ; $\delta_{\rm C}$ (100 MHz, DMSO-d₆) 175.1, 168.3, 154.1, 144.8, 143.5, 130.0, 128.9, 120.8, 120.1, 104.4, 40.1, 32.0, 29.4, 28.9, 26.7, 24.8; $\upsilon_{\rm max}/{\rm cm}^{-1}$ 3271, 2920, 2850, 1643, 1547, 1226, 1161; m/z Observed 547.2885 [M+H]⁺; Theoretical value 547.2879 [C₃₂H₃₆F₂N₄O₂+H]⁺; yield 90%.

Compound	Stanotymo	Purity	y (%)
Compound	Structure	Α	В
15	F O N H N F F	100	91
16	$ \begin{array}{c} F \\ O \\ H \\ H$	100	88
17	$ \begin{array}{c} F \\ O \\ N \\ H \\ H \\ F \end{array} $	56	88

Table S6.4: bis-acridine molecules in Library 4

(A = 5 minute run and B = 10 minute run)

N,N'-(hexane-1,6-diyl)*bis*(7-fluoro-1,2,3,4-tetrahydroacridine-9-carboxamide) (15), tan solid; $\delta_{\rm H}$ (400 MHz, DMSO-d₆) 8.72 (t, *J* = 5.5 Hz, 2 H), 7.98 (dd, *J* = 9.3, 5.5 Hz, 2 H), 7.60 (td, *J* = 8.8, 2.8 Hz, 2 H), 7.28 (dd, *J* = 9.9, 2.9 Hz, 2 H), 3.40-3.35 (m, 4 H), 3.05-3.00 (m, 4 H), 2.85 (t, *J* = 6.2 Hz, 4 H), 1.89 (d, *J* = 5.5 Hz, 4 H), 1.85-1.80 (m, 4 H), 1.59 (d, *J* = 6.0 Hz, 4 H), 1.44 (br s, 4 H); $\delta_{\rm C}$ (100 MHz, DMSO-d₆) 165.8, 158.4 (2 C), 142.9, 141.8, 131.2, 126.9, 121.1, 117.1, 107.5, 48.6, 33.2, 28.9, 28.2, 22.3, 22.0 (2 C); $\upsilon_{\rm max}/\rm{cm}^{-1}$ 3232, 3055, 2947, 2866, 1632, 1555, 1496, 1450; *m*/*z* Observed 571.2877 [M+H]⁺; Theoretical value 571.2879 [C₃₄H₃₆F₂N₄O₂+H]⁺; yield 55%

N,N'-(heptane-1,7-diyl)*bis*(7-fluoro-1,2,3,4-tetrahydroacridine-9-carboxamide) (16), pale yellow solid; $\delta_{\rm H}$ (400 MHz, DMSO-d₆) 8.73-8.69 (m, 2 H), 7.98 (dd, *J* = 9.2, 5.7 Hz, 2 H), 7.60 (td, *J* = 8.7, 2.5 Hz, 2 H), 7.28 (dd, *J* = 9.8, 2.5 Hz, 2 H), 3.05-3.00 (m, 4 H), 2.86-2.82 (m, 4 H), 1.87-1.84 (m, 4 H), 1.85-1.78 (m, 6 H), 1.61-1.56 (m, 4 H), 1.40-1.38 (m, 8 H); $\delta_{\rm C}$ (100 MHz, DMSO-d₆) 165.8, 158.4 (2 C), 142.9, 141.8, 131.3, 126.9, 123.7, 119.0, 107.7, 40.1, 33.2, 28.9, 28.4, 26.5, 26.0, 22.3 (2 C); $\upsilon_{\rm max}/{\rm cm}^{-1}$ 3225, 3074, 2928, 2858, 1631, 1558, 1493, 1454, 1431; *m/z* Observed 585.3028 [M+H]⁺; Theoretical value 585.3036 [C₃₅H₃₈F₂N₄O₂+H]⁺; yield 39%

N,N'-(octane-1,8-diyl)*bis*(7-fluoro-1,2,3,4-tetrahydroacridine-9-carboxamide) (17), yellow powder; $\delta_{\rm H}$ (400 MHz, DMSO-d₆) 8.70 (t, *J* = 5.5 Hz, 2 H), 7.98 (dd, *J* = 9.3, 5.5 Hz, 2 H), 7.60 (td, *J* = 8.8, 2.8 Hz, 2 H), 7.27 (dd, *J* = 9.8, 2.8 Hz, 2 H), 3.66-3.59 (m, 2 H), 3.40-3.36 (m, 2 H), 3.05-3.00 (m, 4 H), 2.84 (t, *J* = 6.4 Hz, 4 H), 1.89 (d, *J* = 5.0 Hz, 4 H), 1.84-1.79 (m, 4 H), 1.57 (d, *J* = 6.8 Hz, 4 H), 1.42-1.37 (m, 8 H); ; $\delta_{\rm C}$ (100 MHz, DMSO-d₆) 168.2, 164.4 (2 C), 142.9, 141.3, 131.9, 126.6, 123.3, 120.0, 105.1, 39.6, 33.8, 31.4, 27.5, 27.1, 26.4, 21.9 (2 C); $\upsilon_{\rm max}/{\rm cm}^{-1}$ 3336, 3271, 2858, 1628, 1554, 1493, 1454, 1442; *m/z* Observed 599.3190 [M+H]⁺; Theoretical value 599.3192 [C₃₆H₄₀F₂N₄O₂+H]⁺; yield 57%

N,N'-(**nonane-1,9-diyl**)*bis*(7-fluoro-1,2,3,4-tetrahydroacridine-9-carboxamide) (18), white solid; ; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.89 (dd, *J* = 9.2, 5.4 Hz, 2 H), 7.35 (td, *J* = 8.6, 2.6 Hz, 2 H), 7.27-7.22 (m, 2 H), 6.40 (t, *J* = 5.7 Hz, 2 H), 3.52 (q, *J* = 6.6 Hz, 4 H), 3.02-2.98 (m, 4 H), 2.83 (t, *J* = 5.2 Hz, 4 H), 1.91-1.85 (m, 4 H), 1.83-1.77 (m, 4 H), 1.69-1.63 (m, 4 H), 1.45-1.36 (m, 10 H); ; $\delta_{\rm C}$ (100 MHz, CDCl₃) 167.6, 165.0 (2 C), 144.1, 139.2, 133.6, 127.3, 122.9, 121.1, 103.4, 40.6, 32.8, 29.8, 27.1, 26.4, 26.2, 22.2 (2 C); $\upsilon_{\rm max}/{\rm cm}^{-1}$ 3336, 2935, 2874, 1612, 1562, 1523, 1462, 1384, 1327; *m*/*z* Observed 613.3354 [M+H]⁺; Theoretical value 613.3349 [C₃₇H₄₂F₂N₄O₂+H]⁺; yield 74%

S7. Cytotoxicity Tests with the MTT Assay

MTT assay was done to look for cytotoxic compounds by screening "hits" from initial high-throughput drug screening for cytotoxic effects. Cytotoxicity was monitored by using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT). A colorimetric reaction is used in this assay to measure the reducing potential of the cell. Viable cells will reduce the MTT reagent to a coloured formazan product. HeLa (Cervical cancer), MDA-

MB-231 (Triple negative breast cancer) and NCI H1975 (Non-small cell lung cancer) cell lines were used in this assay, which were obtained from the American Type Culture Collection (Manassas, VA).

The MTT assay is comprised of a number of crucial steps, from cell splitting to 96-well plate reading in a photometer. The below steps were followed to process the MTT assay for each type of cell line:

HeLa and MDA-MB231 cell lines were cultivated in Dulbecco's modified eagle medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 1% penicillin and streptomycin and 1% NEAA (200x) non-essential amino acids. NCI H1975 cell lines were grown in RPMI-1640 supplemented with 10% fetal bovine serum (FBS) and 1% penicillin and streptomycin. Three cells were maintained in an incubator at 37 °C with 5% CO₂.

Cells were passed when they are 70-80% confluent. In this process, a small number of confluent cells are transferred into a new vessel since a high density of rapidly dividing cells is related to cells going into senescence. Cells contained in a T-flask were taken out from the incubator and checked under a microscope (dead cells floated and appeared round-shaped, whereas growing cells were attached to the bottom surface in a rod-shaped and clustered fashion). Previous media was aspirated by using a vacuum pump (a sharp pointed pipette, 2 mL, was used for this purpose). 5 mL of DPBS was added to wash previous media fully and clean the T-flask, which was aspirated again to remove the floating dead cells as well. 1 mL of trypsin-EDTA was added to detach the growing cells and the flask was then incubated at 37 °C in a 5% CO₂ incubator for 2 minutes. 10 mL of DMEM was added to inactivate the trypsin; afterwards the total suspension was transferred into a falcon tube for centrifugation (2.5 minutes, 21 °C, 1.5 rpm). All the supernatant medium was aspirated out, leaving the cells at the bottom of the tube. Finally, 5 mL of DMEM was added and mixed properly and an appropriate amount of cell suspension transferred to a newly-labelled T-flask according to next passage time. Furthermore, an appropriate amount of DMEM was added into the same T-flask to make a total volume of 15 mL (in general, 15 mL is the optimum volume for the survival of cells in a T-flask). Lastly, the new T-flask was returned to the incubator (37 °C, 5% CO₂) for the next splitting schedule. Cells were passaged every 2 to 3 days. 70% ethanol was used to clean the fume hood, equipment, flask and pipette before starting any process.

In our experiments, 96-well polypropylene plates were used to seed cells and carry out the MTT experiments with tested compounds which are free of binding affinity for proteins or DNA, allowing complete sample recovery. These plates can withstand temperatures of -80 to +121°C. A haemocytometer was used to count cells, where a solution of cells was made with typan blue stain (10 μ L cells/90 μ L stain) to visualize the cells under an electron microscope. An appropriate amount of cell suspension was taken to make a dilution of cells with DMEM to confirm about 10⁶ cells per well. Afterwards, a multichannel pipette was used to seed cells on to the plate, which was then returned for incubation at 37°C in a 5% CO₂ incubator (incubation time was varied from 24 – 72 hours).

During the addition of test compounds, the previous medium was aspirated out from every well by using sharp pipette tips and replaced with an equal amount (100 μ L) of fresh medium and ligand of appropriate concentration, made from a 5 mM stock solution by using DMSO, which were then added onto the cell seeded plate. Lastly, the plate was returned for further incubation at 37°C in a 5% CO₂ incubator (incubation time was 72 hours).

After incubation of 72 hours, plates were processed to read and assay the data. Firstly, old medium was aspirated off from each well after the predetermined incubation period and subsequently each well was washed with 100 μ L of medium (high glucose content but without phenol red). Then all medium was aspirated off from each well and 100 μ L of previously made MTT/medium phenol red-free solution was added into each well. A further 4

hours of incubation was done at 37° C in a 5% CO₂ incubator and afterwards medium was aspirated off from each well and 100 µL of DMSO was added to dissolve the crystals formed. The plate was again incubated for 5 minutes at 37° C in a 5% CO₂ incubator and subsequently placed in a shaker for 5 minutes (500 rpm) to remove all air bubbles. Absorbance were then taken by an Infinite 200Pro plate reader at a 570 nm wavelength and the data was processed with the help of Tecan i-control application software.

Of note, MTT solution was prepared in a 1:10 dilution with phenol red-free medium; *e.g.*, 1 mL of MTT was added into 9 mL of phenol red-free medium. The final solution was filtered through a 0.2 µm filter and kept in the dark at 4°C. Such solutions can be stored for up to a month.

S8. ¹H-NMR, ¹³C-NMR spectrum and HRMS spectrum

										0			2	ompound I
Acquisition	1 Time (st	ec) 3.9584	4	Comment	Sam	ple Ref KI-6(2)				Date		03 Feb 2012 0	1:33:52	
Date Stamp		03 Fel	b 2012 01:3	33:52										
File Name		C:\Do(cuments an	nd Settings/Kazi I	laha/My Docume	nts\M. K. Islam\KI I	IMR 10.05.12\N	IMR RAW	kn1-02-02	-2012-30 (KI	6(2))/10/fid			
Frequency	(ZHW)	400.1	5	Nucleus	Ή	Nu	mber of Transie	ents 16		Origin		spect		
Original Po	vints Cou.	nt 32768		Owner	nmr	Po	ints Count	327	88	Pulse.	Sequence	zg30		
Receiver G	ain	812.71		SW(cyclical)	(Hz) 8276	3.15 So.	vent	GH	LOROFOR	RM-d Spectr	um Offset (Hz)	2465.2024		
Spectrum 1	ype	STAN	DARD	Sweep Widtl	h (Hz) 8277	7.89 Tel	nperature (deg)	ree C) 27.(00					
יים אוועים	A0010	ישי כם		ADM A Su	1 1 1 1	1010 0000	41 71 (m)		17 62	<u>г-қ 20 п</u> -	1 10 5 20	05 7 ED 6 50	- 1- K OK U-	
			TOYOT	In (p-INTVIC)	71 - C+71 mdo	+о (ш, ∠ п) 1.	m) 1/11 - CO	c (u + 1)	.+/ (d	TU 70.0-0	ос.с (п + ;	oc.o (n + .s)	(I, J-0.00 DZ,	71.) (n 2
(d, J=8.5)	9 Hz, 4	t H) 7.30) - 7.36 ((m, 4 H) 7.72	? (d, J=8.34]	Hz, 4 H) 7.83	(d, <i>J</i> =8.59 H	Iz, 2 H)	b) 61.7	1, <i>J</i> =7.33 E	Hz, 2 H) 8.09) (s, 2 H)		
0.11														
0.10 http://														
որ														
F-60.0														
рил 00 0														
00.0														
~ 0.07													M01(m)	
sua		M11(d)				M04(s)							72	
ini t		(p)60W				c 81							' ı —	
ezi SO:0 SO:0		M08(d	6			e.e-								
ermo 40.0	M10(12 23 : (2)	2	NDG(d)										
	c 6	<u>-</u> 2-	(m)7(m)	11						M03(q)			(m)2(m)	
3	6°.8-	2	10	2	05(t)					84. 94.		90	10 8	
0.02		18.7 8.7-	ε. Τ εε. Τ ε. Τ	25	6t 09'					** 1 1 3 1 3 7 3 7 3 7 3 7 3			43 42 1€9 1€9 1€9	
0.01	-	ſ	7	·9-/	9					€- 			诗	-
-				and the second se	Annesetimeters	and the second of the second o	State of the local division of the second	distant and	the state of the s		a spirate spirate states		シンシー	
n	2 1	5 4.464.36	8 3.62 C	3.65 2	12	4.02 L				4.10			4.15 2.37 LL LL	
£			1.5.7	1.0.7	1.5 6.0 6.0		5.0 4.	- - - - - - - - - - - - - - 	4.0	3.5	3.0	25 2.0	1.5	1.0
							Chemical S	Shift (ppm)						
No. Shift1	(H mdd)	s Type	J (Hz	Multiplet1	Connections	(mdd)	No. Shift:	1 (ppm) H	's Type	(ZH) n a	Multiplet1	Connections	(mqq)	
1 1.4	45 2	ε	•	M01	•	[1.43 1.48]	7 7	.33	a t	•	M07		[7.30 7.36]	
2 1.6	88	ε	•	M02	,	[1.65 1.71]	8	72	٩ •	8.34	M08	M06	[7.70 7.73]	
3.4	44	•	6.32	MO3	,	[3.44 3.50]	6	. 79	P	7.33	M09	,	[7.77 7.81]	
4 5.3	88	ø	•	M04	•	[5.36 5.41]	10 7	8	P Ci	8.59	M11		[7.81 7.85]	
5 6.5	20	+	6.06	M05	•	[6.47 6.53]	1	60.2	°	,	M10	,	[8.07 8.11]	
6 7.1	12 4	0	8.59	M06	M08	[7.10 7.14]								

	2020		1	2	NOTODO 10/2	PULLED TO	11-1-0		2012	4	C MOC 4 CO	CC OC	ompound 2
Date Stamp	03 Aug	g 2012 13:07:	28	Z			DIUNCIAL	CLOFIN	1 1	16	71 n7 fine en	13.01.20	
File Name	C:\Dot	cuments and	Settings/Kazi Ha	ha\My Documen	tts/M. K. Islam/KI NN	IR_10.05.12VNMF	KCL/K	1_5(2)\10\ft	d Fr	equency (MHz)	400.13		
Nucleus	Ħ		Number of Tr	ansients 64	õ	rigin		RX400	õ	riginal Points Count	32768		
Owner	Chemi	ist	Points Count	327	168 Pi	ulse Sequence	Z	g30	R	eceiver Gain	362.00		
SW(cyclical) (Hz)	8250.8	83	Solvent	DM:	SO-d6 SJ	pectrum Offset (h	(z) 2	467.9133	SI	sectrum Type	STANDARD		
Sweep Width (Hz)	8250.5	57	Temperature	(degree C) 23.(900								
1H NMR (400 N	AH- DN	δ (<i>b</i> -03)	opm 0 89 (s	1 H) 1 23 ((s 2 H) 1 28 (b	r s 4 H) 1 2	16 (br	4 H)	3 17 - 3	22 (m 5 H) 3 8	2.(s 1 H) 5	55 (s 4 H) 7 17	- 7 20
									1000				
o) c2./ (H 4 .m)	l, J=8.31	Hz, 4 H)	7.46 - 7.49	(m, 2 H) 7.6	4 - 7.68 (m, 2 I	H) ///((H	=8.31	Hz, 4 H) 8.37 (t,	Vater Nz, 2 H	<u>1) 8.</u> 42 (s, 2 0 <u>MSO</u>	H)	
0.075				M10(m)									
			×	(11(m)		M07(s)							
tienel				(p)60W		99.9-				_	W)4(br. s.)	
E 0.050-			TM (NCFM)	2(d) 7 0 M08(m)								M03(br. s.)	
niosq		-	77.7 M14(e) M14(e)	0 .34 2.36						M05(m)		M02(s)	
₹ 005-		-	5	2.7- 2.1- 2.1- 81.	4.7				M06(s)	c 81 50		20 M01(s)	
			▶.8-_ 7£.8-\ 9£.1	27.7- 99.7-	1.	-			= 28.6	21/6 87-		68.0-	
			1			-						JUL L	and a short of the second
-												· / / /	
		-	.632.04 3.801	.93 1.94 3.63 3.5 L L L L L	9	3.96 ∎			0.84 U	4.26 L	<i>т</i> _	66 3.97 1.35 0.91	
10.0	9.6 1	0.6	8.5 8.0	7.5 7.0) 6.5 6.0	5.5 5.5 5.5 5.5 5.5 5.1	5.0 ft (ppm)	4.5	4.0 3.5	5 3.0 2.5	2.0	1.5 1.0 0.	12 12 12
No. Shift1 (ppm H'	s Type) (Hz)	Multiplet1	Connections	(mqq)	No. Shift1 (p	Pmi H	Type) (Hz)	Multiplet1 Co	onnections	(mdd)	
1 0.89 1	0		M01	,	[0.88 0.90]	8 7.19	4	ε		M08	,	[7.17 7.20]	
2 1.23 2	s	,	M02		[1.22 1.24]	9 7.35	4	P	8.31	60W	M12	[7.33 7.37]	
3 1.28 4	br.s.	•	M03		[1.26 1.30]	10 7.48	3	E	•	M10		[7.46 7.49]	
4 1.46 4	br. s.	,	M04	•	[1.44 1.49]	11 7.66	2	ε	•	M11	,	[7.64 7.68]	
5 3.19 5	ε	•	MOS	•	[3.17 3.22]	12 7.76	4	P	8.31	M12	60W	[7.74 7.78]	
6 3.82 1	s	•	MDG	•	[3.80 3.83]	13 8.37	2	+	5.67	M13		[8.35 8.40]	
7 5.55 4	ه د	,	M07	,	15.52 5.57	14 8.42	~	60	,	M14		[8.41 8.44]	

						8 08 Hz															9 1 1						
						2 H) 7 21 (d. <i>J</i> ≓(M01(s)	≯L'L- 9L'L-	7	72.1				82.	1-2-		3	N International Action	10.51 L	1.5 1.0 0	(mdd)	[7.20 7.22]	[7.23 7.26]	[7.71 7.74]	[7.81 7.87]	[7.96 7.98]
			spect	nchz	0 27.000	5 - 6 20 (m. 3			-5.05									<	and the second se		2.0 1	Connections	M08		M06		•
)\10\fid		avianha	ature (deoree C	(s. 4 H) 6.1			68'2-	<u> </u>											0 2.5	Multiplet1	M06	M07	M08	M09	M10
51:28		12-11 (KI 7	o rigin	- use o	Temper	H) 5.41		12(m)	000								l	-3'36 -3'45 -3'45		L 48	3.1) (Hz)	8.08	2.97, 1.14	8.34	8.08	
2012 15:5		06-02-20		OFORM-		7 (m. 4	2 H)	W	6 Þ .E-							3(m)	ີ ຍ 5∈ 98	8'E-	Ì	ຕ ຄຸ_	3.5	Type	p	td	p	p	ø
06 Feb		RAWKn1-	91700	CHLOR	8277.89	3 - 3.87	s) 7.97 (s	•							a 1	₹ -4'15 -4'14	01 01 7 91	-4.	Ş	4	4.0 ppm)	n H's	4	4	4	4	2
		12VNMR	Islents		(2)	H) 3.8	z. 4 H)														4.5 cal Shift (Shift1 (pp	7.21	7.24	7.72	7.84	7.97
		R 10.05.	er or trai	nt out	o Width (I	(m. 3	8.08 H												****		5.0 Chemi	Ň	9	7	80	6	9
if KI-7 Date	_	K. Islam\KI NM	ounn	Solve	D Swee	3 39 - 3 45	7.84 (d. <i>J</i> =								M04(s)	14.8				4.50 	5.5 1	(mdd)	1.25 1.28]	3.39 3.45]	3.83 3.87]	5.40 5.41]	3.15 6.20J
ample Re		ments/M.		78 15	TANDAR	10 H)	(H H)										2(m)	91.9 21.9		2-	6.0	0	[]	3	2	[]	9
s		aha/My Docu		H71	0	om 1.27 (s	J=8.34 Hz										M	61.9		6	6.5	Connection	•			•	•
Comment	8	settings/Kazi H	Nucleus	SW/cvclice/) (Spectrum Typ	RM-d) ô n	D 7.72 (d.			_					Mp6(d)	M07(td)	50 53 53 53		Married Warrent	3.83 4.37 UUU	0.7	Multiplet1	M01	M02	M03	M04	MO5
	012 15:51:2	nents and S			4	OROFO	Hz. 4 E						(p)60	(s)		M08(d)	92 1714 1713 193	2.77 2.77 2.77		3.884.70	1.5) (Hz)					
3.9584	06 Feb 2	C:\Docun	400.13	512 00	2465.202	CHL	7. 1.14						Σ	M10	_ 2 0.	8	<u> 26'2</u> -			2.29	8.0	Type	s	в	ε	s	ε
(sec)				NIIN	Hz)	MH ₇	J=2.5														8.5	H's	10	3	4	4	2
ion Time (dut	ne 2017	CV (WHZ)	r Gain	n Offset (IR (400	24 (td.														0.6	ift1 (ppm	1.27	3.42	3.85	5.41	6.17
Acquisit	Date Sta	File Nan	Frequer	Receive	Spectrul	IH NN	4 H) 7			20.0	5	0.06	Vilism 0.0 0.0	etul 2	ətulo	edA S	0.02	0.01	0			No. Sh	1	2	3	4	S

Acquisi	tion Time ((sec)	3.9715	0	comment	KI-4 PR(DTON_noprint.kcl DN	ISO {C:\Bruk	enTOPSPI	N} KI 42					
Date			25 Nov 2	2014 12:58	8:40		Date Stamp		25 Nov 2	014 12:58	8:40				
File Nai	me		D:/KI N/	MR/nmr/KI	20141125\10\fid		Frequency ((ZHW	400.13	<	Vucleus	1H			
Numbe	r of Transie	ents	512	0	Drigin	DRX400	Original Poi	nts Count	32768	0	Owner	Chen	list		
Points (Count		32768	đ	ulse Sequence	zg30	Receiver Ga	in	71.80	S	SW(cyclical) (Hz)	8250.	83		
Solvent			DMSO-6	d6 S	pectrum Offset (Hz) 2468.16	50 Spectrum T	dbe	STANDA	RD S	Sweep Width (Hz	8250.	57		
Tempe	rature (deg	rree C)	20.100												
IN HI	AR (400	() MH	Z DM	SO-d) 8	5 nnm 1 21 (br.s. 10 H)	1 44 (t. <i>J</i> =6 42	Hz 4 H)	3.15 - 3	21 (m.	6 H) 5.55 (4 H) 7.17	- 7.20 (m. 2	t H) 7.35 (d <i>J</i> =8	31 Hz. 4
	01 7 21		L VII C	6 19		16 (1 T_0)			0 42 6-						
			7 (117	0.1 - +0.	/ (117 7111) /		и пz, + п) о.+	(u ⁊ 's) I	(s) (†.0	(117	Water				
0.35												-			
0:30															
≥ 0.25	րուր														
lisna	mm				M07(m)										
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	որո						M04(s)					2	5		
anios C	mm	_	M10(s)	P)60M	(m) M05(m)		= 99						2	MUT(pr. s.)	
sdA 2		~	M11(s)	c S	(p)une(d)		- <u>-</u> 9							- 1-2 - 1-0(
0.10	mm		643	Ľ 1 1 Ľ 1	17 20 20 7.34 7.36						M03(m)		_	M02(t)	
			¢۱ —8	<u>9</u> J	2						9 2114 6111 	_		3	
0.05	mm			9'	7'Z 9'Z						-3' 1 5-7 5-8-1 9'E-	_		** **	
•							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							J	
		5	26222	4472.1	32.134.204.23		4.16				6.11			3.9410.06	
			د بایت بیایت				2 0 2 0 2 0 2						Lulu uluu lu		
	0.6	-	3	0.0	<u>.</u>	2	C.C. 0.0	Chemical	Shift (ppm)	P		C-7	0.7	2	3
No.	hift1 (ppm	H's	Type) (Hz)	Multiplet1	Connections	(mdd)	No. Shift	1 (ppm) H	's Typ	e J (Hz)	Multiplet1	Connections	(mdd)	
+	1.21	10	br. s.	•	M01		[1.20 1.23]	7	7.47	m G	•	M07	•	[7.45 7.48]	
2	1.44	4	÷	6.42	M02		[1.42 1.47]			a c	•	M08		[7.64 7.67]	
3	3.18	9	ε		M03		[3.15 3.21]	6	7.76	p t	8.31	M09	MDG	[7.74 7.78]	
4	5.55	4	ø	•	M04		[5.54 5.55]	9 9	3.41	°	•	M10	•	[8.39 8.42]	
5	7.19	4	ε	•	M05		[7.17 7.20]	₽	3.43	°	•	M11	•	[8.42 8.44]	
9	7.35	4	σ	8.31	M06	60W	[7.34 7.36]								

ø

2

თ

Acqui	sition Time (sec)	1.3631	Cor	mment	KI-99 C	013CPD nopri	nt.kel DMSO {C:	\Bruker\TOPSPIN} KI	36 Date	13 May 2015 03:14:24	
Date (Stamp	13 Ma)	y 2015 03:14:24			Ë	e Name	D:\PHD STUE	DIES/Thesis/KI NMR/nmr/KI	20150512\41\fid	
Frequ	ency (MHz)	100.61	Nuc	cleus	130	W	umber of Transi	ents 2048	Origin	DRX400	
Origin	al Points Count	32768	OW	mer	Chemis	rt Pc	vints Count	32768	Pulse Sequence	zgpg30	
Recei	ver Gain	1149.4	t0 SW	V(cyclical) (Hz)	24038.	46 St	olvent	DMSO-d6	Spectrum Offset (Hz)	10036.5459	_
Spect	um Type	STAN	DARD Sw	eep Width (Hz)	24037.	73 Te	mperature (deg	ree C) -9.600			
5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		201 000	1 00 00				10 1 7 20 20 1	1 22 20 12 1 20 20 20 20		
2	NMIK (101 N	AHZ, DI	MSO-a o D	opm 25.09 (s, 1	c. 22. (J	3 (s, 1 C).	24.32 (s, 1 C	() 20.07 (s, 1 C)) /0.02 (J [C) 30.0/ (s, 1 C) 39.09 (s, 1 C) 39.31 (s, 1 C)	
39.7	2 (s, 1 C) 39	.93 (s, 1	C) 40.14 (s	i, 1 C) 40.35 (s,	1 C) 4	0.88 (s, 1 C	() 107.41 (s,	1 C) 120.23 (s,	1 C) 123.76 (s, 1 C) 1	26.99 (s, 1 C) 132.63 (s, 1 C) 136.58	
(s 1	C) 142.25 (s	s. 1 C) 1	44.26 (s. 1 C	C) 157.00 (s. 1	C) 158.	98 (s. 1 C)	166.18 (s.	1 C) 183.75 (s. 1	C) 191.60 (s. 1 C)		
										M07(s)	
	purification	i via flash	column chron	matography using	_					M09(s)	
	methanol/e	ethyl acet: Ilization v	ate/dichlorome	ethane 1:2:97 foll	owed					M10(s)	
										M11(s)	
										M13(s)	
۶ų										M08(s)	
sua										M01(s)	
au										M12(s)	
əın										MU2(5)	
losd										3339 	
< 0.75										M04(s)	
	M2	(3(s)	M20(s)	M18(s) M16((s)					23 26'3	
0.50	M24(s)	M22(≤)	M21(s) N	M19(s) M17(s)	M15(s)	M14(s)				8 	
	- 8	00	9 9	9 6 8	- 8	- 1				0.6	
0.25).781	-1453 -1443	-136.5 -132.6 -126.9 -128.7(2.021-	¥ 701-					
											18 I -
	0	2	Ē	071	2	4	Chemics	al Shift (ppm)	5	2 tv 20 Dt 0t	
Ň	shift1 (ppm C's	Type	Multiplet1	(mqq)	Ň	Shift1 (ppm	C's Type	Multiplet1	(bpm)		
-	23.09 1	s	M01	[23.06 23.12]	p	39.93	2	M10 [39.	. 39.96]		
2	23.53 1	s	M02	[23.50 23.56]	7	40.14	1 s	M11 [40.	.1140.17]		
e	24.32 1	s	M03	[24.29 24.35]	12	40.35	1 2	M12 [40.	.32 40.38]		
4	26.07 1	s	M04	[26.04 26.10]	3	40.88	1 2	M13 [40.	.85 40.91]		
2	35.78 1	s	M05	[35.75 35.81]	4	107.41	- s	M14 [107.	.38 107.44]		
8	36.67 1	s	M06	[36.64 36.70]	15	120.23	1 2	M15 [120.	.20 120.26]		
7	39.09	s	70M	[39.06 39.12]	9	123.76	•	M16 [123.	.73 123.79]		
	39.31 1	s	M08	[39.28 39.34]	1	126.99	•	M17 [126.	.98 127.02]		
•	1 20 70	•	WUD	137.02 00.001	;	0000	,	1133	100 101 10		

Acquisitio	n Time (sec)	3.971: 12 Me	v 2015 08-35	Comment 8:40	KI-98 PROTON	noprint.kcl DMSO {C:\Bru Data Stemp	ker/TOPSPIN} KI 12 May 2015 05	35 1-38-40			
Date Manual			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		10010-1	Date Statup	12 INGY 2U U	Mindau P	T,		
Number of	Transients	256		Drinin ZUIJUJIZ	DRX400	Critical Points Count	32768	Owner	Chemist		Τ
Points Cou	unt	32768		Pulse Sequence	zq30	Receiver Gain	512.00	SW(cvclical) (Hz)	8250.83		
Solvent		DMSC)-d6	Spectrum Offiset (Hz)	2460.1077	Spectrum Type	STANDARD	Sweep Width (Hz)	8250.57		
Temperat	ure (degree (c) -9.300									
IMN Hi	R (400 M	Hz, DN	۶ (<i>p</i> -OSI ر	5 ppm 1.43 (br.	s., 4 H) 1.60 (bi	r. s., 4 H) 2.64 - 2.7	1 (m, 6 H) 3.	50 - 3.66 (m, 4 H)	7.51 (br. s., 2 H) 7.6	4 - 7.72 (m, 2 H) 7.7	- 9/
7.84 (m.	2 H) 8.0	3 (dd	J=9.06°.5.	54 Hz. 2 H) 8.	79 (br. s., 2 H)						
									M02(br.	s.)	
									M01	(br. s.)	
								Water	MU3(m)	86 66 00 10	
								2		001	
0:30								_	-2.6		
۱۹۰۰۰ ۲۸									E		
iene G											
ы 0.20 П									85		
əın									-2.6		
0.15						6		M04(m)			
1∀ h		60M	(br. s.)	97-		97'9 97'9		29 29	0	64.	
0.0 10 10111			\$0'8 \$0'8	29°2 02 62°2 18 28°2 80°8		1_		3 .60 -3.65 -3.65 -3.65 -3.65 -3.65 -3.65	8		
0.05			9] 8]					-3'E			
փող 0							a contrar a contrar an anna an	}		5	
		1	ξIJ	2.00 2.02 223 2.03 UUUUUU				3.96 L	6.02 L	16 11	
F	9.6	<mark>9.0</mark>	8.5	8.0 7.5	7.0 6.5	6.0 5.5 5.0 Chemical S	hift (ppm)	0 3.5 3.0	2.5 2.0 1.	5 1.0 0.5	- 0
No. Shift	1 (ppm H's	Type) (Hz)	Multiplet1	(mdd)						
1	.43 4	br. s.	•	M01	[1.39 1.47]						
2	.60 4	br. s.	•	M02	[1.56 1.65]						
сл С	2.67 6	ε	'	M03	[2.64 2.71]						
4	3.63	ε	'	M04	[3.60 3.66]						
2	.51 2	br. s.	•	M05	[7.49 7.54]						
9	.67 2	ε	•	M06	[7.64 7.72]						
7	7.80 2	ε	,	M07	[7.76 7.84]						
	1.03 2	B	9.06. 5.54	M08	17.99 8.071						

Compound 10

[8.71 .. 8.85]

60M

ł

8.79 2 br.s.

Acquisi	tion Time	(sec)	3.9715	-	Comment	KI-94 PROTON	N noprint.	kd DMSO {(C:\Bruker\]	TOPSPINJ KI 2	7	
Date			12 May	2015 08:10	0:56		Date S	tamp	12	? May 2015 08:	10:56	
File Nai	me		D:/KI NN	MR 10.05.	.12/nmr/KI_20150512/	20\fid	Freque	ency (MHz)	40	00.13	Nucleus	1H
Numbe	r of Transi	ients	256	-	Origin	DRX400	Origine	I Points Co.	ount 32	2768	Owner	Chemist
Points (Count		32768	-	Pulse Sequence	zg30	Receiv	'er Gain	45	56.10	SW(cyclical) (Hz	7) 8250.83
Solvent			DMSO-6	d6	Spectrum Offset (Hz)	2458.3450	Spectr	um Type	SI	TANDARD	Sweep Width (H	z) 8250.57
Tempe	ature (de	gree C)	-9.300									
IN HI	AR (40)	0 MH	z. DM	3 (<i>p</i> -OS	δ ppm 0.97 - 1.0	2 (m. 24 H) 1	36 (br. s	s3 H) 1	1.57 (br.	s. 2 H) 2	66 - 2.69 (m.	3 H) 3.34 (br. s., 8 H) 3.58 - 3.67 (m. 4 H) 5.4
(d. J=	6.55 Hz	z. 4 H	7.49	- 7.52 (n	n. 1 H) 7.64 - 7.	71 (m. 1 H) 7.	79 (dd	J=10.20). 2.90 H	Iz. 1 H) 8.0)3 (dd. J=9.1	9.5.67 Hz. 1 H) 8.78 (d. <i>J</i> =5.04 Hz. 1 H)
										M)6(m)	Mo3(pr. s.) M01(m)
											MO5(br. s.) MO4	f(m) M02(br. s.)
											46.6-	86.00 10.17 86.00 10.17 10.00 10.17 10.17 10.02 10.17 10
											_	-
٨					(m) <u>9</u> (m)			19/2.0W				96
ensiti 0. 0.					M10(dd)			() 61			89	· L
tul əti)80M	(m		9.8 <u>–</u> .8			52. 52. 52.	
losd/					09'2-			1		29,	_3'	
4				M12((d) M11(dd)					6-7	09'	2
				67.8 77.8	20.8 40.8 87.7 87.7 87.7 87.7					99'Ê-	85	9°1
				J						,	187	8.0
0	-			Ĭ								mon non
	10.5	10.0	9.6 1	0.6	8.5 8.0 7.5 8.1 8.0 7.5	5. 7.0 6.5	6.0	5.5 Chen	5.0 4 nical Shift (5 4.0 (ppm)	3.5 3.0	2.5 2.0 1.5 1.0 0.5 0 -0.5
No.	nift1 (ppm)	H's	Type) (Hz)	Multiplet1	(mdd)	No. Shift	t1 (ppm H	l's Type	(ZH) ſ	Multiplet1	(mdd)
•	1.00	24	ε	•	M01	[0.97 1.02]	7	5.48 4	4 d	6.55	M07	[5.45 5.52]
2	1.36	3	br. s.	•	M02	[1.34 1.39]	8	7.51 1	1 B	•	M08	[7.49 7.52]
3	1.57	2	br. s.	•	M03	[1.55 1.61]	6	7.67 1	а В		M09	[7.64 7.71]
4	2.67	e	ε	,	M04	[2.66 2.69]	10	7.79 1	dd dd	10.20, 2.90	M10	[7.77 7.82]
5	3.34	80	br. s.	'	MOS	[3.31 3.36]	1	8.03	9	9.19, 5.67	M11	[8.01 8.06]
9	3.63	4	ε	,	M06	[3.58 3.67]	12	8.78 1	4 7	5.04	M12	[8.75 8.80]

Compound 12

Compound 13) Hz, 2 H)													0.5 0	
								J=8.75, 2.9(1(DC. S.)	e.r—-				001)	9.70 L	1.0	(mdd)
				t	_) 7.67 (td,		w)CUM	NC .					9	82.1 92.1-7	.)		3.86	2.0 1.5	onnections
			1H	Chemis	8250.83	8250.57		50 (s, 2 H	A03(s)	= 79.2-	_	DWSC	¥ —							6.00 L	2.5	iplet1 Co
					cal) (Hz)	Vidth (Hz)		1, 3 H) 7.5	(F	Water	c —			04(m)	-16.0		3'30			2.88 L	3.0	z) Mult
	35	37:36	Nucleus	Owner	SW(cycli	Sweep V		- 3.32 (m	l Hz, 2 F		-			×)		3.5	pe J (H
	PSPINJ KI	lay 2015 20	13	88	70	NDARD		H) 3.28 -	t, <i>J</i> =5.41												5 4.0 0m)	H's Ty
	::\Bruker\TO	06 N	400.	int 327(574.	STA		.67 (s, 6	H) 8.77 (.0 4. ical Shift (pc	Shift1 (ppm)
	cel DMSO {C	tamp	ncy (MHz)	I Points Col	er Gain	un Type		a, 4 H) 2	7 Hz, 2 1												5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	No.
	TON noprint.k	Date St	Freque	Origina	Receiv	Spectru		4 - 1.60 (n	1= 9.19, 5.6												6.0	(mqq)
	KI-95 PROT		id	DRX400	zg30	2468.6687		10 H) 1.5	.04 (dd, J												6.5	ctions
			150505\30\f		8	et (Hz)		· (br. s.,	r, 1 H) 8											35	0'1	Conner
	comment	36	2/nmr/Kl_20	Drigin	ulse Sequen	Spectrum Offs		ppm 1.34	J=2.77 Hz		MD6(td)	MOS(s	• 09°2-	(pp)	(p)20W	M10(d)	18.7 77.7- 78.7]		12.1023715	0. 7.5	Multiplet1
		2015 20:37	MR 10.05.1		<u> </u>	-d6 S		SO-d) δ	7.78 (d					M08			8.06 8.04 50.8 20.8 20.8	ſ		2 ⁻⁷ -1	8.5 8.8) (Hz)
	3.9715	06 May	D:\KI N	1024	32768	DMSO.	c) -9.300	IHz, DM	Hz, 1 H)							M09(t)	92 27.8 <u>8</u>	<u>7.8</u> - 7.8-	\exists	1.95 L	0.6	Type
	n Time (sec)			f Transients	unt		ire (degree	R (400 M	J=2.77 I												5.6	1 (ppm H's
	Acquisition	Date	File Name	Number of	Points Cot	Solvent	Temperatu	IMN HI	7.80 (d,		1.5 0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	نړ <i>ې</i> 2.	snetn c	l ətul S	losd/	,	<u>.</u>	 		F	No. Shift

Compound 13

[7.64 .. 7.71] [7.76 .. 7.79] [7.79 .. 7.81] [8.01 .. 8.06] [8.75 .. 8.79]

M08, ?, ? M10 M07

M06 M07 M08 M09

2.77 2.77 9.19, 5.67 5.41, 5.41

뭥 P ▫

2

7.67 7.78 7.80 8.04 8.77

6 7 8 9 10

 [1.32..1.38]

 [1.54..1.60]

 [1.54..1.60]

 [3.28..3.32]

 [3.28..3.32]

M01 M02 M05 M05

ï ,

(**o**) br. s.

1.34 1.56 2.67 3.30 7.50

ŝ ო 4 2

ε

4

9 9 m 2

ε 60

+

3

td 8.75, 8.75, 2.

5

M06, M09 M08, ?

							Compor	ound 14
Acquisition Time (sec)	3.9715	Comment	KI-96 FC 9 PRC	JTON_noprint.kcl CDCl3 {	C:\Bruker\TOPSPI	N} KI 14		
Date	23 Mar 2015 18:2	7:12		Date Stamp	23 Mar 2015 18:	27:12		
File Name	D:\KI NMR\nmr\K	1_20150323\10\fid		Frequency (MHz)	400.13	Nucleus	1H	
Number of Transients	512	Origin	DRX400	Original Points Count	32768	Owner	Chemist	
Points Count	32768	Pulse Sequence	zg30	Receiver Gain	574.70	SW(cyclical) (Hz)	8250.83	
Solvent	CHLOROFORM-(q		Spectrum Offset (Hz)	2465.1563	Spectrum Type	STANDARD	
Sweep Width (Hz)	8250.57	Temperature (degree C)	21.200					

(t, J=5.67 Hz, 2 H) 7.31 (s, 2 H) 7.47 (ddd, J=9.25, 7.99, 2.90 Hz, 2 H) 7.67 (d, J=8.31 Hz, 1 H) 7.79 (dd, J=9.82, 2.77 Hz, 3 H) 8.03 (dd, J=9.32, 5.29 Hz, 2 H) 1H NMR (400 MHz, CHLOROFORM-d) & ppm 1.26 (s, 2 H) 1.36 (br. s., 5 H) 1.39 - 1.46 (m, 5 H) 1.65 - 1.70 (m, 4 H) 2.70 (s, 6 H) 3.51 - 3.56 (m, 3 H) 6.33

Compound 14

7.78 .. 7.81

[8.01 .. 8.06]

M09, M07

M11 M12

9.82, 2.77 9.32, 5.29

평 평

e

2.79

÷ 9

[2.69 .. 2.71] . 3.56]

3.51 ..

ε

c)

œ

2.70

v. g

3.53

8.03

	,	-									-	
3.9715	100	Comment	KI-10	3 (white)/5.27mg	in 1ml DMSO PROT	ON nop	rint.kcl DN	ISO {C:\Bruker	TOPSPINJ KI	17		
22 APL 2 D:\KI NN	ci ci u	05.12/nmr/KI 2015	0422/10/fid	F	le stamp equency (MHz)	400.1	3	Nucleus		Ħ		
256		Origin	DRX4	00	iginal Points Count	3276		Owner		Chemist		
32768		Pulse Sequen	ce zg30	Re	ceiver Gain	574.7		SW(cyclic	al) (Hz)	8250.83		
DMSO-	d6	Spectrum Offs	set (Hz) 2468.	4170 Sp	ectrum Type	STAN	IDARD	Sweep W	idth (Hz)	8250.57		
-9.100												
Z DMG	P-08) δ mm 1 44	Obrs 4 H) 1	9 (d. <i>J</i> =6 (14 Hz 4 H) 1 8	0-18	5 (m 4	H) 1 89 (d	<i>.1</i> =5 54 H	- 4 H) 2 85	(t . <i>J</i> =6 17 Hz 4	H) 3 00 -
- 3.40 (,4 Ф	H) 7.28 (dd,	J=9.95, 2.90	Hz, 2 H) 7.6) (td, <i>J</i> =8.81, 2	2.77 H ₂	r, 2 H)	7.98 (dd, <u>J</u>	<u>=9.3</u> 2, 5.5	4 Hz, 2 H) 8.	72 (t, <i>J</i> =5.54 Hz	, 2 H)
								≥∧	/ater	DMSO		
								F				
										-		
									() 60 60 60 60 60 60 60 60 60 60 60 60 60	ž	02(d)	
		100W	1		92.3				9.0	M04(d)	MD1(pr. s.)	
~	M11(t)	M10(dd)	M08(dd)					LU LOW	-5.8	M03(m	44.1	
	27.8	96 86 6(50 50 50 50					36.67 2.6	•3.0 2.3.0 8⊄	-1 8 8 8 8 1 8	09	
	0,	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2- 2- 2-2- 9-2-9				_		2-7 28.2- 2-7	96. r- 18. r-	1	
	2.8-	89.7-]	9'Z-					-3'32 -3'40 -3'40	/ 671	-		
	_						_	Ţ		-		
	٢					and the second	4	7	5000			
	2.00	2,30 2,3	3 2.18					3.89	4,594,24	3.834.123	(90 4.45	
0.6	 5:8	8.0	.5 7.0	6.5 6.0	5.5 5.0 Chemical Shi	4.5 (ft (ppm)	4.0	3.5	3.0 2	5 2.0	ытытыты 1.5 1.0	0.5 0
Type	(ZH) ſ	Multiplet1	Connections	(mqq)	No. Shift1 (s'H [mdd	Type) (Hz)	Multiplet1	Connections	(mqq)	
br. s.	•	M01		[1.41 1.46]	7 3.3	8	ε	•	M07	•	[3.35 3.40]	
٦	6.04	M02	MOS	[1.57 1.63]	8 7.2	8	뭥	9.95, 2.90	M08	?, M09	[7.26 7.30]	
ε	•	M03	,	[1.80 1.85]	9 7.6	0	멸	8.81, 2.77	60W	?, M08	[7.57 7.63]	
P	5.54	M04	•	[1.86 1.92]	10 7.9	8	Pp	9.32, 5.54	M10	2, M11	[7.96 8.01]	
+	6 17 6	17 M05	M02. 7	12.83 2.881	11 8.7	2	+	5.54,5.54	M11	M10.7	IS 70 8 741	

00..3.05]

M06

ε

4

8

G

Accurate	ion Timo leo	A 2.07	Ĩ	Commont	K1 40	A 67mol/0 Bml DM	POTON P	noint bol D	N-OT OOW	BurbadTODCE	DINI KI 57			
Date		27 A	pr 2015 12:05	.36		Date	stamp	27 Apr	2015 12:	05:36				
File Nan	e.	D:/KI	I NMR 10.05.	12/nmr/KI_2015/	0427/10/fid	Frequ	ency (MHz)	400.13	_	Nucleus		1H		
Number	of Transient	ts 256		Origin	DRX4	00 Origin	al Points Count	32768		Owner		Chemist		
Points C	ount	3276	8	Pulse Sequenc	e zg30	Recei	ver Gain	512.00	_	SW(cyclics	(JHZ) (HZ)	8250.83		
Solvent		DMS	9P-O	Spectrum Offse	xt (Hz) 2468.	6687 Spect	rum Type	STAN	DARD	Sweep Wid	dth (Hz)	8250.57		
Temper	sture (degre	e C) -9.20	0											
NN HT	TR (400)	VIH- DI	RSO-d 1	δ mm 1 40 (hr s 7 H) 1	56 - 1 61 (m	4 H) 1 78 - 1	m) 85 (m	6 H) 1	87 (hr s	4 H) 2 82	- 2 86 (m 4 F	T) 3 00 - 3 05 (m	4 H)
1 0C L		7 7 57 1		60 (44 F-0			7-010-2			0 0 0 72 /				
11 07-1	0.7-7.0	, 20.7) (U 7 'ZU	000 (110, J-0	ZU 70.7 '60'	מט) אין (חבי	ינ יגויג-ר י	7,20,10	0.0 (п.	.36 .36 .36	(u ⁊ 'n			
										₹ <mark>3</mark>				
												MSO	1(br. s.)	
											Ac	M02(Ē	
2 0.10										2	06(m)	C	01	
isnej										_	MO5(m)	M03(m)	71	
ul et				M08(td)						30	t 1	M04(br. s.)		
niloso		~	M10(m)	M (bb)edM	(pp)20					'E~ 28		69 30 1 81 28 29 29		
1¥			66°.2 00° 02°8 12°8–	89 2.60 -2	-7.26 7.29 7.29					6-3.3	2.86 ⁻²	8.1-		
1.,			⁸ 7							5.8-2	7 7 7			
0										ر ۲				
											-	-		
			2.01	2.28 2.37	2,11						4.274.02	4.305.694.2	17.61	
	9.6 1.1	0.6	ىتاتىسا 8.5	8.0 7.5		6.0 5.5 6.0	5.5 5.0 Chamical St	4.5 4.5	4.0	3.5	3.0 2.5	2.0 1	5 1.0 0.5	
		P	1.01-5	A LOCATION AND		1			F	111-1	And a state of the		,)	_
0		odki ei		munpicri	CONTIGUARDING	(midd)		indd)	- i hhe	(211) n	MININFIC	CONTINUES	(111044)	
-	1.40	7 br.s.	'	M01	•	[1.36 1.43]	9.0	33	ε	'	M06	•	[3.00 3.05]	
2	1.58	4 8	,	M02		[1.56 1.61]	2 27	2	믱	9.82, 2.52	M07	?, M08	[7.25 7.30]	
m	1.81	е 9	,	M03		[1.78 1.85]	8	2	B	8.69, 2.52	M08	?, M07	[7.57 7.63]	
4	1.87	4 br.s.	'	M04	•	[1.85 1.91]	6	8	뭥	9.19, 5.67	60W	•	[7.95 8.01]	
\$	2.84	4	'	MOS	,	[2.82 2.86]	10 8.	71 2	ε	,	M10	,	[8.69 8.73]	

						•	•	Compound 17
Acquisition Time (sec)	3.9715	Comment	KI-100 (5.55mg/1n	nI DMSO) PROTON_nopr	int.kcl DMSO {C:\Br	uker/TOPSPIN} KI 7		
Date	23 Apr 2015 09:53	3:20		Date Stamp	23 Apr 2015 09:50	3:20		
File Name	D:\KI NMR_10.05.	.12/nmr/KI_20150423/10/	Vid	Frequency (MHz)	400.13	Nucleus	1H	
Number of Transients	256	Origin	DRX400	Original Points Count	32768	Owner	Chemist	
Points Count	32768	Pulse Sequence	zg30	Receiver Gain	456.10	SW(cyclical) (Hz)	8250.83	
Solvent	DMSO-d6	Spectrum Offset (Hz)	2468.6687	Spectrum Type	STANDARD	Sweep Width (Hz)	8250.57	
Temperature (degree C)	-9.400							

3.05 (m, 4 H) 3.36 - 3.40 (m, 2[°]H) 3.59 - 3.66 (m, 2 H) 7.27 (dd, J=9.82, 2.77 Hz, 2 H) 7.60 (td, J=8.81, 2.77 Hz, 2 H) 7.98 (dd, J=9.32, 5.54 Hz, 2 H) 8.70 (t, 1H NMR (400 MHz, DMSO-d,) & ppm 1.37 (br. s., 8 H) 1.57 (d, J=6.80 Hz, 4 H) 1.79 - 1.84 (m, 4 H) 1.89 (d, J=5.04 Hz, 4 H) 2.84 (t, J=6.42 Hz, 4 H) 3.00 -J=5 54 Hz, 2 H)

Compound 17

[7.96 .. 8.00]

?, M12 M11

M11 M12

9.32, 5.54 5.54, 5.54

P

5

7.98 8.70

÷ 9

[2.82 .. 2.87] [3.00 .. 3.05]

M02, ?

6.42, 6.42

+

4 4

2.84

v,

3.03

Ε

[8.68 .. 8.73

		1			,	•	Compound 18
Acquisition Time (sec)	3.9715	Comment KI-101 PR	OTON_noprint.kcl CDCl3 {C:\Br	uker/TOPSPIN} KI 1	4		
Date	23 Apr 2015 10:18	8:56	Date Stamp	23 Apr 2015 10:1	8:56		
File Name	D:\KI NMR_10.05	5.12/nmr/KI_20150423\20\fid	Frequency (MHz)	400.13	Nucleus	1H	
Number of Transients	256	Origin DRX400	Original Points Count	32768	Owner	Chemist	
Points Count	32768	Pulse Sequence zg30	Receiver Gain	228.10	SW(cyclical) (Hz)	8250.83	
Solvent	CHLOROFORM-(p	Spectrum Offset (Hz)	2465.4077	Spectrum Type	STANDARD	
Sweep Width (Hz)	8250.57	Temperature (degree C) -9.400					

1H NMR (400 MHz, CHLOROFORM-d) δ ppm 1.36 - 1.45 (m, 10 H) 1.63 - 1.69 (m, 4 H) 1.77 - 1.83 (m, 4 H) 1.85 - 1.91 (m, 4 H) 2.83 (t, *J*=5.16 Hz, 4 H) 2.98 - 3.02 (m, 4 H) 3.52 (g, J=6.63 Hz, 4 H) 6.40 (t, J=5.67 Hz, 2 H) 7.22 - 7.27 (m, 2 H) 7.35 (td, J=8.62, 2.64 Hz, 2 H) 7.89 (dd, J=9.19, 5.41 Hz, 2 H)

Compound 18

7.32 .. 7.38]

17.86 .. 7.91

2, M08

M10 M11

8.62, 2.64 9.19.5.41

₽

N 2

7.35 7.89

9 7

> [2.80 .. 2.86] 3.02]

> > 5.16

i

ε ε

4

1.88

4

2.83

8

2.98.

[1.85 .. 1.91]

믕

References

- 1. J. Ren and J. B. Chaires, *Biochemistry*, 1999, **38**, 16067-16075.
- 2. C. M. Barbieri, T. K. Li, S. Guo, G. Wang, A. J. Shallop, W. Pan, G. Yang, B. L. Gaffney, R. A. Jones and D. S. Pilch, *J Am Chem Soc*, 2003, **125**, 6469-6477.
- 3. S. Rangarajan and S. H. Friedman, *Bioorg Med Chem Lett*, 2007, 17, 2267-2273.
- 4. N. N. Shaw, H. Xi and D. P. Arya, *Bioorg Med Chem Lett*, 2008, 18, 4142-4145.
- 5. R. T. Wheelhouse, N. C. Garbett, N. J. Buurma and J. B. Chaires, *Angew Chem Int Edit*, 2010, **49**, 3207-3210.
- 6. A. M. Song, J. Marik and K. S. Lam, *Tetrahedron Lett*, 2004, **45**, 2727-2730.
- 7. K. D. Kopple and D. E. Nitecki, *Journal of the American Chemical Society*, 1962, **84**, 4457-4464.
- 8. J. C. Sheehan and G. P. Hess, *Journal of the American Chemical Society*, 1955, **77**, 1067-1068.
- 9. A. D. Corbett and J. L. Gleason, *Tetrahedron Lett*, 2002, **43**, 1369-1372.
- 10. W. König and R. Geiger, *Chemische Berichte*, 1973, **106**, 3626-3635.
- 11. J. L. Mergny and J. C. Maurizot, *Chembiochem*, 2001, **2**, 124-132.
- 12. W. Humphrey, A. Dalke and K. Schulten, *J Mol Graph*, 1996, **14**, 33-38, 27-38.
- 13. E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng and T. E. Ferrin, *J Comput Chem*, 2004, **25**, 1605-1612.