Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting Information for

A regiospecific rhamnosyltransferase from *Epimedium*

pseudowushanense catalyzes the 3-O-rhamnosylation of

prenylflavonols

Keping Feng,^a Ridao Chen,^a Kebo Xie,^a Dawei Chen,^a Baolin Guo,^b Xiao Liu,^c Jimei Liu,^a Min Zhang,^a and Jungui Dai^a

^a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China.

E-mail: jgdai@imm.ac.cn

^b Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, 151 Malianwa North Road, Beijing 100193, China.

^c Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, 11 North Third Ring Road, Beijing 100029, China.

Table of Contents

- Scheme S1. Proposed biosynthetic pathway of icariin in *Epimedium*.
- Table S1. The HPLC method used in enzyme products analysis in this study.
- **Table S2.** The HPLC method used in bioconversion analysis in this study.
- Table S3. Details of the plasmids and strains used in this study.
- Table S4. ¹H and ¹³C NMR data of 1a and 1.
- Figure S1. Multiple alignment of the amino acid sequences of EpRhS, RHM2 and OcRhS1.
- Figure S2. Functional characterization of recombinant EpRhS combined with AtUGT78D1.
- Figure S3. Multiple alignment of the amino acid sequences of EpPF3RT, AtUGT78D1 and AtUGT89C1.
- **Figure S4.** The phylogenetic relationships between EpPF3RT and other plant GTs and microbial GTs.
- Figure S5. HPLC-DAD/ESIMS analysis of EpPF3RT enzyme product using 2 as an aglycon acceptor.
- Figure S6. HPLC-DAD/ESIMS analysis of EpPF3RT enzyme products using 3 as an aglycon acceptor.
- Figure S7. HPLC-DAD/ESIMS analysis of EpPF3RT enzyme products using 4 as an aglycon acceptor.
- Figures S8, S9. ¹H and ¹³C NMR spectra of 1a.
- Figures S10, S11. ¹H and ¹³C NMR spectra of 2a.
- Figures S12, S13. ¹H and ¹³C NMR spectra of 3a.
- **Figures S14.** SDS-PAGE of recombinant His₆-EpPF3RT and His₆-EpRhS purified by affinity chromatography.
- Figure S15. The linear regression models and the regression equations of the external standard methods established for the quantitative analysis of baohuoside II (A) and 8-prenylkaempferol (1) (B).

Scheme. S1 Proposed biosynthetic pathway of icariin in *Epimedium*. PAL, phenylalanine ammonia lyase; C4H, cinnamic acid 4-hydroxylase; 4CL, 4-coumaric acid ligase; CHS, chalcone synthase; CHI, chalcone isomerase; F3H, flavanone 3 β -hydroxylase; FLS, flavonol synthase; PT, prenyltransferase; RT, rhamnosyltransferase; GT, glucosyltransferase; OMT, *O*-methyltransferase.

Time	Solvent A (%)	Solvent B (%)	flow rate
(min)	0.1% formic acid	CH ₃ OH	$(mL min^{-1})$
0.00	90.0	10.0	1.0
10.00	50.0	50.0	1.0
30.00	0.0	100.0	1.0
45.00	0.0	100.0	1.0

Table S1. The HPLC method used in analysis of enzymatic reactions *in vitro* in this study

Table S2. The HPLC method used in analysis of whole cell bioconversion in this study

Time	Solvent A(%)	Solvent B(%)	flow rate
(min)	0.1% formic acid	CH ₃ OH	$(mL min^{-1})$
0.00	50.0	50.0	1.0
20.00	0.0	100.0	1.0

Table S3. Details of the plasmids and strains used in this study

plasmids or E. coli	relavent properties
strain	
	Plasmids
pET-28a	pBR322 ori, Kan ^r
pCDFDuet	CloDE13 ori, Str ^r
pE-PF3RT	pET-28a + <i>EpPF3RT</i>
pE-RhS	pET-28a + EpRhS
pC-PF3RT-RhS	pCDFDuet + <i>EpPF3RT</i> + <i>EpRhS</i>
	Primers
pE-PF3RT forward	CAAATGGGTCGC <u>GGATCC</u> ATGAGTTGTATTTCAGTC
pE- PF3RT reverse	GTGGTGGTGGTG <u>CTCGAG</u> TCAAACACCTTTAGCAAGTTT
pC-PF3RT forward	GAATTCATGAGTTGTATTTCAGTC
pC- PF3RT reverse	GTCGACTCAAACACCTTTAGCAAGTT
pE-RhS forward	CAAATGGGTCGC <u>GGATCC</u> ATGGCAACTTATACGCCAAAAAACA
	TC
pE- RhS reverse	GTGGTGGTGGTG <u>CTCGAG</u> TTAGATAGTTGTTTCTTGTTGGGTTC
pC- RhS forward	GAAGGAGATATA <u>CATATG</u> GCAACTTATACGCCAAAAAAC
pC- RhS reverse	TTCTTTACCAGA <u>CTCGAG</u> TTAGATAGTTGTTTTCTTG
	Strains
T-pE	Transetta (DE3) harboring empty pET-28a
T-RT	Transetta (DE3) harboring pE- PF3RT
T-RhS	Transetta (DE3) harboring pE-RhS
B-pC	BL21(DE3) harboring empty pCDFDuet
B-PKR	BL21(DE3) harboring pC- PF3RT -RhS

Н	$\delta_{ m H}$		С	$\delta_{ m c}$	
	1a	1		1a	1
Н-6	6.30 (1H, s)	6.25 (1H, s)	C-2	156.8	146.22
H-3',5'	6.90 (2H, d, <i>J</i> = 8.8 Hz)	7.14 (2H, d, J = 8.0 Hz)	C-3	134.4	136.13
H-2', 6'	7.74 (2H, d, <i>J</i> = 8.8 Hz)	8.16 (2H, d, <i>J</i> = 8.0 Hz)	C-4	177.9	176.46
H-11	3.48 (2H, m)	3.45 (2H, m)	C-5	161.6	161.80
H-12	5.14 (1H, t, <i>J</i> = 7.2 Hz)	5.20 (1H, t)	C-6	98.3	99.31
H-14	1.61 (3H, s)	1.63 (3H, s)	C-7	161.3	164.25
H-15	1.67 (3H, s)	1.73 (3H, s)	C-8	105.9	108.93
H-3',5'	6.90 (2H, d, <i>J</i> = 8.8 Hz)	7.14 (2H, d, $J = 8.0$ Hz)	C-9	153.8	157.72
H-1"	5.26 (1H, d, <i>J</i> = 1.6, Hz)		C-10	104.2	105.11
protons in rhamnose	3.10-3.98		C-1'	122.4	123.44
			C-2', 6'	130.4	128.91
			C-3', 5'	114.1	116.46
			C-4'	158.8	160.58
			C-11	21.2	21.71
			C-12	122.3	121.57
			C-13	131.0	131.95
			C-14	25.4	25.49
			C-15	17.8	19.18
			C-1"	101.8	

Table S4. ¹H and ¹³C NMR data of **1a** and **1**.

 C-2"	70.1
C-3"	70.6
C-4"	70.3
C-5"	71.1
C-6"	17.5

Fig. S1. Multiple alignment of the amino acid sequences of EpRhS, OcRhS (GenBank accession number ANK57460, from *Ornithogalum longebracteatum*) and RHM2 (GenBank accession number NM_104228, from *Arabidopsis. thaliana*).

Fig. S2. Functional characterization of recombinant EpRhS combined with AtUGT78D1. A) Enzymatic reaction catalysed by EpRhS and AtUGT78D1; B) HPLC/ESI-MS analysis of the enzymatic reaction of AtUGT78D1 combined with kaempferol (**3**). a) Standard of **3**; b) Recombinant AtUGT78D1 with EpRhS reaction mixture; C), D) MS spectrum of **3** and **3a** at negative mode.

Fig. S3 Multiple alignment of the amino acid sequences of EpPF3RT, AtUGT78D1 (GenBank accession number NM_102790, from *Arabidopsis thaliana*) and AtUGT89C1 (GenBank accession number XP_002892315, from *A. thaliana*). The black box indicates the conserved region of plant secondary product glycosyltransferases (PSPG motif)

Fig. S4. The phylogenetic relationships between EpPF3RT and other plant GTs and microbial GTs. The results were calculated using the MEGA version 5 software. Method: Neighbor-joining, Bootstrap: 1000. The branch lengths represent relative genetic distances. The protein sequences and corresponding accession numbers that were used for this comparison are as follows: Ph3GT (GenBank accession number AB027454, from *Petunia x hybrida*); Pf3GT (GenBank accession number AB002818, from *Petulia frutescens*); At3RT (GenBank accession number NM_102790, from *Arabidopsis thaliana*); Zm3GT (GenBank accession number X13501, from *Zea mays*); CsF7G6"Rt (GenBank accession number NP_001275829, from *Citrus sinensis*); At7RT (GenBank accession number XP_002892315, from *A. thaliana*);. UrdGT2 (GenBank accession number AAF00209, from *Streptomycesi fradiae*); IroB (GenBank accession number CAE55724, from *Escherichia coli*); SsfS6 (GenBank accession number ADE34512, from *Streptomyces sp*);

Fig. S5. HPLC-DAD/ESIMS analysis of EpPF3RT enzyme products using **2** as an aglycon acceptor. A) HPLC/ESI-MS analysis of the enzymatic reaction with anhydroicaritin (**2**). a) Standard of **2**; b) Control group; c) Recombinant EpPF3RT; B) UV spectra of **2** and **2a**. C) MS spectrum of **2a** at negative mode.

Fig. S6. HPLC-DAD/ESIMS analysis of EpPF3RT enzyme products using **3** as an aglycon acceptor. A) HPLC/ESI-MS analysis of the enzymatic reaction with kaempferol (**3**). a) Standard of **3**; b) Control group; c) Recombinant EpPF3RT; B) UV spectra of **3** and **3a**. C) MS spectrum of **3a** at negative mode.

Fig. S7. HPLC-DAD/ESIMS analysis of EpPF3RT enzyme products using 4 as an aglycon acceptor. A) HPLC/ESI-MS analysis of the enzymatic reaction with kaempferide (4). a) Standard of 4; b) Control group; c) Recombinant EpPF3RT; B) UV spectra of 4 and 4a. C) MS spectrum of 4a at negative mode.

Fig. S9. ¹³C NMR spectrum of **1a** (DMSO- d_6 , 125 MHz).

Fig. S12. ¹H NMR spectrum of **3a** (Methanol- d_4 , 400 MHz).

Fig. S13. ¹³C NMR spectrum of **3a** (Methanol- d_4 , 100 MHz).

Fig. S14. SDS-PAGE of recombinant His_6 -EpPF3RT and His_6 -EpRhS purified by affinity chromatography. Lane M: Protein Marker; Lane 1: His-tagged EpPF3RT (predicted M.W., 52.1 kDa) purified on Ni Sepharose. Lane 2: His-tagged EpRhS (predicted M.W., 75.6 kDa) purified on Ni Sepharose.

Fig. S15. The linear regression models and the regression equations of the external standard methods established for the quantitative analysis of baohuoside II (A) and 8-prenylkaempferol (1) (B).