Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Peroxy Mediated Csp2-Csp3 Dehydrogenative Coupling: Regioselective Functionalization of Coumarins and Coumarin-3-carboxylic acids

Farnaz Jafarpour, Masoumeh Darvishmolla School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran

jafarpur@ut.ac.ir

Table of Contents

1 General remarks	S2
2 General experimental details	S2
2-1 Synthesis of coumarins	S2
2-2 Synthesis of coumarin-3-carboxylic acids	S3
2-3 General procedure for direct functionalization of coumarins	S3
3 Radical trapping experiment	S4
4 Compounds characterization data	S4
5 Copies of ¹ H NMR and ¹³ C NMR spectra	S11

1 General remarks: The following includes general experimental procedures, specific details for representative reactions, isolation and spectroscopic information for the compounds. All reagents were commercially available and used as received. Coumarins **1d**, **1i** and **1j** and coumarin-3-carboxylic acid derivatives were synthesized following the procedures described in the literature.¹ The reactions were carried out in an oil bath using Microwave Vials (2-5 ml). Column chromatography was carried out on silica gel (230–400 mesh). TLC was conducted on silica gel 250 micron, F254 plates. ¹H NMR spectra were recorded at room temperature on Bruker 300, 400 and 500 MHz spectrometers, using CDCl₃ as solvent. Chemical shifts are reported in ppm with TMS as an internal standard (TMS: δ 0.0 ppm). ¹³C NMR spectra are referenced from the solvent central peak (77.23 ppm). Chemical shifts are given in ppm. Elemental analyses (CHN) were recorded on a Thermo Finnigan Flash EA 1112 elemental analyzer.

2 General experimental details

A suspension of 7-hydroxycoumarin (1.0 mmol), Etl or Mel (1.5 equiv.) and anhydrous K_2CO_3 (2 equiv.) in anhydrous N,N-dimethylformamide (10 mL) was stirred at rt for 24 h. The solution was diluted with EtOAc (20 mL) and the organic phase washed with H₂O (3 × 10 mL), dried over anhydrous MgSO₄ and concentrated in vacuo to give 7-alkoxycoumarins **1d** or **1e** as white solids, respectively.¹

2-1-2 Synthesis of coumarin 1i

6-chloro-2*H*-chromen-2-one **1i** was synthesized by the Wittig reaction of 6-chloro-2hydroxybenzaldehyde with the Wittig reagent, ethyl(triphenylphosphoranylidene)acetate in *N*,*N*'-diethylaniline under reflux. 6-chloro-2-hydroxybenzaldehyde (1 mmol) and ethyl(triphenylphosphoranylidene)acetate (1.2 mmol) were dissolved in *N*,*N*'diethylaniline (15 ml) and the resulting mixture was stirred at reflux for 4 h. The solvent was removed under reduced pressure and the resulting brown oil was purified by column chromatography on silica gel with n-hexane/ethyl acetate (8/2 v/v).²

¹ (a) A. Sánchez-Recillas, G. Navarrete-Vázquez, S. Hidalgo-Figueroa, M. Y. Rios, M. Ibarra-Barajas, S. Estrada-Soto, *Eur. J. Med. Chem.*, **2014**, 77, 400; (b) F. Plisson, X.-C. Huang, H. Zhang, Z. Khalil, R. J. Capon, *Chem. An Asian J.*, **2012**, 7, 1616.

² D. Maes, M. Eugenia Riveiro, C. Shayo, C. Davio, S. Debenedetti, N. De Kimpe, *Tetrahedron*, **2008**, *64*, 4438.

2-2 Synthesis of coumarin-3-carboxylic acids

Salicylaldehyde (26 mmol), Meldrum's acid (26 mmol) were dissolved in absolute ethanol (10 mL). Catalytic amounts of piperidine (2 drops) and glacial acetic acid (2 drops) were added and the reaction mixture was heated at reflux and monitored by TLC. Upon completion, the mixture was cooled to room temperature and the coumarin-3-carboxylic acids were obtained by filtration and dried under vacuum. The products were used without further purification.³

2-3 General procedure for direct functionalization of coumarins

2-3-1 Procedure I

A vial equipped with a stir bar was charged with coumarin (29.2 mg, 0.2 mmol, 1 equiv), ether (0.4 mL), TBHP (tert-butyl hydroperoxide 70 wt % in water, 0.8 mmol, 4 equiv). Then the vial was capped and the resulting mixture was heated in an oil bath at 120 °C for 24 h. The reaction mixture was cooled to room temperature. Then the reaction mixture was quenched with a saturated solution of Na₂SO₃ for removal of excess TBHP and extracted with ethyl acetate. The combined organic layer was dried over MgSO₄ and concentrated under reduced pressure. The residue was subjected to column chromatography on silica gel with n-hexane/ethyl acetate (9/1 v/v) as eluent to provide the desired product.

2-3-2 Procedure II (scale up process)

Into a dry 10-mL vial equipped with a magnetic stirring bar were added coumarin (292 mg, 2.0 mmol, 1 equiv), ether (4.0 mL), TBHP (tert-butyl hydroperoxide 70 wt % in water, 8.0 mmol, 4 equiv). Then the vial was capped and the resulting mixture was heated in an oil bath at 120 °C for 24 h. The reaction mixture was cooled to room temperature. Then the reaction mixture was quenched with a saturated solution of Na₂SO₃ for removal of excess TBHP and extracted with ethyl acetate. The combined organic layer was dried over MgSO₄ and concentrated under reduced pressure. The residue was subjected to column chromatography on silica gel with n-hexane/ethyl acetate (9/1 v/v) as eluent to provide the desired product.

³ M. Li, J. L. Petersen, J. M. Hoover, Org. Lett., 2017, 19, 638.

3 Radical trapping experiment

A vial equipped with a stir bar was charged with coumarin (29.2 mg, 0.2 mmol, 1 equiv), THF (0.4 mL), TBHP (tert-butyl hydroperoxide 70 wt % in water, 0.8 mmol, 4 equiv) and 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO) (0.4 mmol, 2.0 equiv). Then the vial was capped and the resulting mixture was heated in an oil bath at 120 °C for 24 h. While no desired product **3k** was found, the TEMPO-THF adduct **5** was detected.

4 Compounds characterization data

3-(1,4-Dioxan-2-yl)-2H-chromen-2-one 3a⁴

Colorless solid, isolated yield 70% (33 mg), mp 80-81 °C (ref.⁴, 80.1–80.8 °C); ¹H NMR (300 MHz, CDCl₃): δ 7.81 (s, 1H), 7.46-7.42 (m, 2H), 7.28-7.19 (m, 2H), 4.70-4.67 (m, 1H), 4.21-4.17 (m, 1H), 3.95-3.82 (m, 2H), 3.78-3.71 (m, 1H), 3.66-3.58 (m, 1H), 3.21-3.14 (m, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 159.9, 153.1, 139.2, 131.5, 128.0, 126.0, 124.6, 119.0, 116.4, 72.7, 70.9, 67.2, 66.4 ppm. CHN analysis [%]: Anal. Calcd for C₁₃H₁₂O₄: C, 67.23; H, 5.21. Found: C, 67.54; H, 5.35.

⁴ C. Wang, X. Mi, Q. Li, Y. Li, M. Huang, J. Zhang, Y. Wu, *Tetrahedron*, 2015, 71, 6689.

3-(1,4-Dioxan-2-yl)-6-methyl-2H-chromen-2-one 3b⁵

Colorless solid, isolated yield 78% (38 mg), mp 115-116 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.79 (s, 1H), 7.30-7.25 (m, 2H), 7.19-7.17 (m, 1H), 4.74 (m, 1H), 4.23 (dd, *J* = 11.2, 2.3 Hz, 1H), 3.95-3.91 (m, 2H), 3.82- 3.78 (m, 1H), 3.66 (td, *J* = 11.2, 4.0 Hz, 1H), 3.20 (t, *J* = 11.2 Hz, 1H), 2.38 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 160.2, 151.3,139.2, 134.3, 132.6, 127.8, 125.9, 118.8, 116.2, 72.8, 71.0, 67.3, 66.4, 20.8 ppm. CHN analysis [%]: Anal. Calcd for C₁₄H₁₄O₄: C, 68.28; H, 5.73. Found: C, 68.57; H, 5.86.

3-(1,4-Dioxan-2-yl)-7-methyl-2H-chromen-2-one 3c

Colorless solid, isolated yield 82% (40 mg), mp 126-127 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.75 (s, 1H), 7.29 (d, *J* = 7.8 Hz, 1H), 7.04 (s, 1H), 7.02 (d, *J* = 8.4 Hz, 1H), 4.67 (d, *J* = 9.6 Hz, 1H), 4.17 (dd, *J* = 11.2, 2.6 Hz, 1H), 3.91-3.82 (m, 2H), 3.75-3.72 (m, 1H), 3.63-3.57 (m, 1H), 3.16 (dd, *J* = 11.2, 9.7 Hz, 1H), 2.36 (s, 3H) ppm; ¹³C NMR (CDCl₃, 100 MHz): δ 159.1, 152.3, 141.8, 138.2, 126.7,124.7, 123.8, 115.6, 115.6, 71.7, 70.0, 66.3, 65.4, 20.7 ppm. IR: 3062, 2965, 2850, 1701, 1616, 1452, 1372, 1102, 1031, 801 cm⁻¹. MS *m*/z 246 (M⁺⁺, 90%), 202 (80), 187 (30), 174 (28), 160 (100), 132 (45). CHN analysis [%]: Anal. Calcd for C₁₄H₁₄O₄: C, 68.28; H, 5.73. Found: C, 68.54; H, 5.83.

3-(1,4-Dioxan-2-yl)-7-ethoxy-2H-chromen-2-one 3d

Colorless solid, isolated yield 64% (35 mg), mp 117-119 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.77 (s, 1H), 7. 35 (d, *J* = 8.7 Hz, 1H), 6.82-6.74 (m, 2H), 4.70 (dd, *J* = 9.0, 1.2 Hz, 1H), 4.19 (dd, *J* = 11.2, 2.4 Hz, 1H), 4.06 (q, *J* = 6.9 Hz, 2H), 3.96-3.89 (m, 2H), 3.80-3.77 (m, 1H), 3.69-3.61 (m, 1H), 3.25-3.18 (m, 1H), 1.42 (t, *J* = 6.9 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 162.1, 160.3, 155.1, 139.4, 128.9, 122.3, 113.3, 112.6, 101.0, 72.7, 71.1, 67.3, 66.4, 64.2, 14.6 ppm. IR: 2973, 2855, 1697, 1606, 1438, 1229, 1115, 928 cm⁻¹. MS *m*/*z* 276 (M⁺⁺, 95%), 232 (40), 217 (17), 204 (20), 190 (100), 134 (90). CHN analysis [%]: Anal. Calcd for C₁₅H₁₆O₅: C, 65.21; H, 5.84. Found: C, 65.51; H, 5.97.

3-(1,4-Dioxan-2-yl)-7-methoxy-2H-chromen-2-one 3e

Colorless solid, isolated yield 74% (39 mg), mp 150-152 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.80 (s, 1H), 7.37 (d, *J* = 8.6 Hz, 1H), 6.84-6.77 (m, 2H), 4.74-4.71 (m, 1H), 4.20 (dd, *J* = 11.2, 2.4 Hz, 1H), 3.96-3.90 (m, 2H), 3.84 (s, 3H), 3.81-3.77 (m, 1H), 3.69-3.61 (m, 1H), 3.21 (dd, *J* = 11.0, 9.7 Hz, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 162.6, 160.3,155.0, 139.4, 128.9, 122.4, 112.8, 112.7, 100.5, 72.6, 71.1, 67.3, 66.4, 55.8 ppm. IR: 2970, 2845, 1702, 1609, 1432, 1199, 1117, 934 cm⁻¹. MS *m/z* 262 (M⁺⁺, 80%), 218 (35), 203

⁵ B. Niu, W. Zhao, Y. Ding, Z. Bian, C. U. PittmanJr, A. Zhou, H. Ge, J. Org. Chem., 2015, 80, 7251.

(15), 177 (100), 151 (40), 133 (30). CHN analysis [%]: Anal. Calcd for C₁₄H₁₄O₅: C, 64.12; H, 5.38. Found: C, 64.44; H, 5.50.

3-(1,4-Dioxan-2-yl)-8-methoxy-2H-chromen-2-one 3f

Colorless solid, isolated yield 56% (29 mg), mp 116-118 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.85 (d, *J* = 1.3 Hz, 1H) 7.20 (t, *J* = 8.0 Hz, 1H), 7.10-7.05 (m, 2H), 4.79 (d, *J* = 8.4, 1H), 4.27 (dd, *J* = 11.2, 2.6 Hz, 1H), 3.96-3.93 (m, 2H), 3.96 (s, 3H), 3.83-3.80 (m, 1H), 3.71-3.67 (m, 1H), 3.23 (dd, *J* = 11.2, 9.6 Hz, 1H) ppm; ¹³C NMR (CDCl₃, 100 MHz): δ 159.4, 147.1, 142.9, 139.3, 126.4, 124.4, 119.7, 119.4, 113.4, 72.7, 71.0, 67.3, 66.4, 56.3 ppm. IR: 2916, 2850, 1703, 1607, 1576, 1475, 1271, 1105, 733 cm⁻¹. MS *m/z* 262 (M⁺⁺, 100%), 218 (60), 203 (37), 176 (77), 148 (18), 133 (20). CHN analysis [%]: Anal. Calcd for C₁₄H₁₄O₅: C, 64.12; H, 5.38. Found: C, 64.40; H, 5.49.

6-Bromo-3-(1,4-Dioxan-2-yl)-2H-chromen-2-one 3h⁵

Colorless solid, isolated yield 60% (33 mg), mp 127-128 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.78 (s, 1H), 7.63 (d, *J* = 2.3 Hz, 1H), 7.58 (dd, *J* = 8.7, 2.3 Hz, 1H), 7.20 (d, *J* = 8.7 Hz, 1H), 4.77-4.73 (m, 1H), 4.25 (dd, *J* = 11.2, 2.6 Hz, 1H), 3.99-3.89 (m, 2H), 3.83-3.80 (m, 1H), 3.68 (td, *J* = 11.2, 3.7 Hz, 1H), 3.20 (dd, *J* = 11.2, 9.7 Hz, 1H) ppm; ¹³C NMR (CDCl₃, 100 MHz): δ 159.2, 152.0, 137.8, 134.2, 130.3, 127.5, 120.6, 118.3, 117.2, 72.7, 70.9, 67.3, 66.4 ppm. CHN analysis [%]: Anal. Calcd for C₁₃H₁₁BrO₄: C, 50.19; H, 3.56. Found: C, 50.46; H, 3.66.

6-chloro-3-(1,4-dioxan-2-yl)-2H-chromen-2-one 3i

Colorless solid, isolated yield 73% (39 mg), mp 145-146 °C ;¹H NMR (500 MHz, CDCl₃): δ 7.81 (s, 1H), 7.49 (d, *J* = 2.0 Hz, 1H), 7.46 (dd, *J* = 10.0, 2.0 Hz, 1H), 7.27 (d, *J* = 10.0 Hz, 1H), 4.78-4.75 (m, 1H), 4.26 (dd, *J* = 11.2, 2.2 Hz, 1H), 4.00-3.90 (m, 2H), 3.84-3.81 (m, 1H), 3.69 (td, *J* = 11.8, 3.7 Hz, 1H), 3.24-3.20 (m, *J* = 11.2, 9.6 Hz, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ 159.2, 151.5, 137.8, 131.3, 129.8, 127.5, 127.1, 120.0, 117.9, 72.6, 70.9, 67.2, 66.3 ppm. IR: 2966, 2918, 1703, 1604, 1251, 1177, 932 cm⁻¹. MS *m/z* 266 (M⁺⁺, 100%), 222 (65), 180 (50), 152 (45), 89 (30). CHN analysis [%]: Anal. Calcd for C₁₃H₁₁ClO₄: C, 58.55; H, 4.16. Found: C, 58.90; H, 4.28.

2-(1,4-dioxan-2-yl)-3H-benzo[f]chromen-3-one 3j

Yellow solid, isolated yield 78% (44 mg), mp 159-160 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.65 (s, 1H), 8.34 (d, *J* = 8.4 Hz, 1H), 7.97 (d, *J* = 9.0 Hz, 1H), 7.91 (d, *J* = 8.1 Hz, 1H), 7.70-7.67 (m, 1H), 7.59-7.55 (m, 1H), 7.45 (d, *J* = 9.0 Hz, 1H) 4.87 (dd, *J* = 9.6, 1.2 Hz, 1H), 4.34 (dd, *J* = 11.3, 2.7 Hz, 1H), 4.10-3.97 (m, 2H), 3.87 (m, 1H), 3.75 (td, *J* = 11.4, 3.3 Hz, 1H), 3.30 (dd, *J* = 11.2, 10 Hz, 1H)

ppm;¹³C NMR (125 MHz, CDCl₃): δ 159.9, 152.8, 134.8, 132.7, 130.3, 129.1, 128.9, 128.1, 126.0, 125.0, 121.8, 116.6, 113.2, 72.9, 71.0, 67.3, 66.4 ppm. IR: 2966, 2854, 1693, 1571, 1511, 1112, 920 cm⁻¹. MS *m/z* 282 (M⁺⁺, 100%), 238 (50), 196 (80), 168 (80), 139 (60). CHN analysis [%]: Anal. Calcd for C₁₇H₁₄O₄: C, 72.33; H, 5.00. Found: C, 72.69; H, 5.13.

3-(Tetrahydrofuran-2-yl)-2H-chromen-2-one 3k⁴

Yellow oil, isolated yield 68% (30 mg); ¹H NMR (300 MHz, CDCl₃): δ 7.78 (s, 1H), 7.48-7.43 (m, 2H), 7.31-7.22 (m, 2H), 4.94 (t, *J* = 6.6 Hz, 1H), 4.13-3.90 (m, 2H), 2.52-2.43 (m, 1H), 2.03-1.86 (m, 2H), 1.80-1.69 (m, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 160.6, 153.1, 136.5, 131.0, 130.9, 127.8, 124.5, 119.2, 116.4, 76.0, 67.0, 32.2, 25.7 ppm. CHN analysis [%]: Anal. Calcd for C₁₃H₁₂O₃: C, 72.21; H, 5.59. Found: C, 71.96; H, 5.50.

3-(Tetrahydro-2H-pyran-2-yl)-2H-chromen-2-one 3l⁴

Colorless oil, isolated yield 63% (28 mg); ¹H NMR (500 MHz, CDCl₃): δ 7.82 (s, 1H), 7.47 (t, *J* = 7.6 Hz, 2H), 7.31 (d, *J* = 8.1 Hz, 1H), 7.25 (t, *J* = 7.6 Hz, 1H), 4.46 (d, *J* = 11.0 Hz, 1H), 4.18 (dt, *J* = 11.2, 1.9 Hz, 1H), 3.65 (td, *J* = 11.2, 2.6 Hz, 1H), 2.21 (d, *J* = 12.5 Hz, 1H),1.92-1.90 (m, 1H), 1.73-1.58 (m, 3H), 1.30-1.24 (m, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ 160.3, 153.1, 137.4, 130.9, 131.0, 127.9, 124.4, 119.5, 116.4, 74.6, 69.1, 32.2, 26.0, 23.6 ppm. CHN analysis [%]: Anal. Calcd for C₁₄H₁₄O₃: C, 73.03; H, 6.13. Found: C, 72.72; H, 5.98.

7-Methoxy-3-(tetrahydrofuran-2-yl)-2H-chromen-2-one 3m⁴

Colorless oil, isolated yield 77% (38 mg); ¹H NMR (300 MHz, CDCl₃): δ 7.72 (s, 1H), 7.36 (d, *J* = 8.4 Hz, 1H), 6.83-6.81 (m, 2H), 4.96-4.91 (t, *J* = 6.3 Hz, 1H), 4.12-4.05 (m, 1H), 3.93-3.89 (m, 1H), 3.84 (s, 3H), 2.52-2.41 (m, 1H), 1.99-1.89 (m, 2H), 1.78-1.71 (m, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 162.2, 160.9, 154.8, 136.7, 128.7, 127.4, 112.9, 112.6, 100.5, 75.9, 68.9, 55.8, 32.3, 25.7 ppm. CHN analysis [%]: Anal. Calcd for C₁₄H₁₄O₄: C, 68.28; H, 5.73. Found: C, 68.53; H, 5.83

3-(1,3-Dioxolan-2-yl)-2H-chromen-2-one 3n⁴

Colorless solid, isolated yield 35% (15 mg), mp 66-67 °C (ref 1, 66.6–67.2 °C); ¹H NMR (400 MHz, CDCl₃): δ 7.96 (s, 1H), 7.58-7.52 (m, 2H), 7.35-7.27 (m, 2H), 5.94 (s, 1H), 4.17-4.05 (m, 4H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 159.9, 153.9, 139.8, 132.2, 128.5, 124.6, 118.7, 116.7, 99.0, 64.5 ppm. CHN analysis [%]: Anal. Calcd for C₁₂H₁₀O₄: C, 66.05; H, 4.62. Found: C, 66.28; H, 4.73.

3-(1,3-Dioxolan-4-yl)-2H-chromen-2-one 3n'

Colorless solid, isolated yield 35% (16 mg), mp 82-84 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.77 (s, 1H), 7.46-7.42 (m, 2H), 7.27-7.19 (m, 2H), 5.10 (s, 1H), 5.02-4.99 (m, 1H), 4.98 (s, 1H), 4.28 (dd, *J* = 8.6, 7.2 Hz, 1H), 3.73 (dd, *J* = 8.6, 5.4 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 159.5, 152.1, 136.5, 130.4, 127.0, 126.9, 123.6, 117.9, 115.5, 94.7, 71.4, 69.5 ppm. IR: 2959, 2848, 1712, 1603, 1258, 1083, 1015, 941, 793. MS *m*/*z* 218 (M⁺⁺, 1%), 172 (100), 149 (50), 130 (40), 102 (20). CHN analysis [%]: Anal. Calcd for C₁₂H₁₀O₄: C, 66.05; H, 4.62. Found: C, 66.36; H, 4.76.

6-Bromo-3-(1,3-dioxolan-4-yl)-2H-chromen-2-one 3o

Colorless solid, isolated yield 30% (18 mg), mp 111-113 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.75 (s, 1H), 7.63 (s, 1H), 7.58 (d, *J* = 8.7 Hz, 1H), 7.20 (d, *J* = 8.7 Hz, 1H), 5.21 (s, 1H), 5.05-5.03 (m, 1H), 5.03 (s, 1H), 4.33 (t, *J* = 7.8 Hz, 1H), 3.79 (dd, *J* = 8.4, 5.4 Hz, 1H) ppm; ¹³C NMR (CDCl₃, 100 MHz): δ 158.8, 150.9, 135.2, 133.1, 129.3, 128.3, 119.4, 117.3, 116.2, 94.7, 71.3, 69.4 ppm. IR: 2860, 1713, 1475, 1166, 1074, 926, 811. MS *m*/*z* 296 (M⁺⁺, 1%), 252 (100), 210 (30), 182 (10), 115 (17), 89 (15). CHN analysis [%]: Anal. Calcd for C₁₂H₉BrO₄: C, 48.51; H, 3.05. Found: C, 48.81; H, 3.17.

8-Methoxy-3-(tetrahydrofuran-2-yl)-2H-chromen-2-one 3p

Colorless solid, isolated yield 67% (33 mg), mp 109-111 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.76 (d, *J* = 1.4 Hz, 1H), 7.18 (t, *J* = 8.0 Hz, 1H), 7.06-7.01 (m, 2H), 4.95 (td, *J* = 7.0, 1.3 Hz, 1H), 4.12-4.06 (m, 1H), 3.96-3.90 (m, 1H), 3.92 (s, 3H), 2.55-2.47 (m, 1H), 2.04-1.86 (m, 2H), 1.78-1.70 (m, 1H) ppm; ¹³C NMR (CDCl₃, 100 MHz): δ 158.9, 146.1, 141.7, 135.4, 130.3, 123.2, 118.9, 118.3, 111.8, 74.9, 67.9, 55.2, 31.2, 24.6 ppm. IR: 2960, 1708, 1475, 1260, 1017, 795 cm⁻¹. MS *m*/*z* 246 (M⁺⁺, 33%), 218 (77), 203 (100), 176 (33), 149 (33). CHN analysis [%]: Anal. Calcd for C₁₄H₁₄O₄: C, 68.28; H, 5.73. Found: C, 67.96; H, 5.58.

6-Bromo-3-(tetrahydrofuran-2-yl)-2H-chromen-2-one 3q⁶

Colorless solid, isolated yield 63% (37 mg), mp 110-112 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.71 (d, J = 1.3 Hz, 1H), 7.61 (d, J = 2.3 Hz, 1H), 7.55 (dd, J = 8.7, 2.3 Hz, 1H), 7.19 (d, J = 8.7 Hz, 1H), 4.92 (td, J = 7.6, 1.3 Hz, 1H), 4.11-4.05 (m, 1H), 3.96-3.91 (m, 1H), 2.55-2.46 (m, 1H), 2.05-1.86 (m, 2H), 1.78-1.69 (m, 1H) ppm; ¹³C NMR (CDCl₃, 100 MHz): δ 158.8, 150.9, 134.1, 132.6, 131.4, 129.1, 119.8, 117.2, 115.9, 74.9, 67.9, 31.2, 24.7 ppm. CHN analysis [%]: Anal. Calcd for C₁₃H₁₁BrO₃: C, 52.91; H, 3.76. Found: C, 53.23; H, 3.90.

⁶ L. Dian, H. Zhao, D. Zhang-Negrerie, Y. Du, Adv. Synth. Catal., 2016, 358, 2422.

3-(1-Ethoxyethyl)-6-methyl-2H-chromen-2-one 3s⁵

Colorless oil, isolated yield 56% (26 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.66 (s, 1H) 7.24-7.22 (m, 2H), 7.16-7.14 (m, 1H), 4.53 (qd, *J* = 6.4, 1.0 Hz, 1H), 3.45 (qd, *J* = 7.0, 2.0 Hz, 2H), 2.33 (s, 3H), 1.35 (d, *J* = 6.4 Hz, 3H), 1.18 (t, *J* = 7.0 Hz, 3H) ppm; ¹³C NMR (CDCl₃, 100 MHz): δ 160.1, 150.3, 136.1, 133.1, 131.1, 130.5, 126.7, 118.1, 115.2, 71.2, 63.7, 20.6, 19.8, 14.5 ppm. CHN analysis [%]: Anal. Calcd for C₁₄H₁₆O₃: C, 72.39; H, 6.94. Found: C, 72.63; H, 7.03.

3-(1-Butoxybutyl)-7-methyl-2H-chromen-2-one 3t

Colorless oil, isolated yield 51% (29 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.63 (s, 1H) 7.30 (d, *J* = 7.9 Hz, 1H), 7.05 (s, 1H), 7.01 (dd, *J* = 7.9, 1.0 Hz, 1H), 4.37 (dd, *J* = 7.1, 3.6 Hz, 1H), 3.38 (dt, *J* = 9.3, 6.5 Hz, 1H), 3.27 (dt, *J* = 9.3, 6.5 Hz, 1H), 2.36 (s, 3H), 1.71-1.62 (m, 1H), 1.54-1.30 (m, 7H), 0.86 (t, *J* = 7.3 Hz, 3H), 0.85 (t, *J* = 7.3 Hz, 3H) ppm; ¹³C NMR (CDCl₃, 100 MHz): δ 160.1, 152.2, 141.1, 136.5, 128.4, 126.4, 124.5, 115.9, 115.5, 75.1, 68.5, 36.9, 31.0, 20.7, 18.3, 17.8, 12.9, 12.8 ppm. IR: 2957, 2869, 1715, 1620, 1458, 1090, 809 cm⁻¹. MS *m*/*z* 288 (M⁺⁺, 1%), 245 (25), 216 (45), 189 (100), 129 (70), 73 (75). CHN analysis [%]: Anal. Calcd for C₁₈H₂₄O₃: C, 74.97; H, 8.39. Found: C, 75.30; H, 8.56.

3-(1-Butoxybutyl)-2H-chromen-2-one 3u⁶

Colorless oil, isolated yield 45% (25 mg); ¹H NMR (400 MHz, CDCl₃): δ 7.67 (s, 1H) 7.44-7.40 (m, 2H), 7.25-7.18 (m, 2H), 4.40 (dd, *J* = 7.6, 3.4, 1H), 3.40 (dt, *J* = 9.3, 6.5 Hz, 1H), 3.30 (dt, *J* = 9.3, 6.5 Hz, 1H), 1.73-1.64 (m, 1H), 1.56-1.44 (m, 4H), 1.40-1.29 (m, 3H), 0.86 (t, *J* = 7.3 Hz, 3H), 0.85 (t, *J* = 7.3 Hz, 3H) ppm; ¹³C NMR (CDCl₃, 100 MHz): 160.9, 153.1, 137.5, 131.0, 130.8, 127.7, 124.3, 119.3, 116.4, 76.1, 69.6, 37.9, 32.0, 19.4, 18.8, 13.9 ppm. CHN analysis [%]: Anal. Calcd for C₁₇H₂₂O₃: C, 74.42; H, 8.08. Found: C, 74.73; H, 8.23.

3-(1,2-dimethoxyethyl)-2H-chromen-2-one 3v

Colorless solid, isolated yield 68% (32 mg), mp 70-75 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.81 (s, 1H), 7.52-7.49 (m, 2H), 7.32 (d, *J* = 8.0 Hz, 1H), 7.29-7.25 (m, 1H), 4.59 (dd, *J* = 5.7, 1.8 Hz, 1H), 3.66 (dd, *J* = 10.5, 1.8 Hz, 1H), 3.54 (dd, J = 10.5, 5.7 Hz, 1H), 3.43 (s, 3H), 3.37 (s, 3H) ppm;¹³C NMR (125 MHz, CDCl₃): δ 160.6, 153.3, 139.5, 131.4, 128.0, 125.9, 124.4, 119.1, 116.4, 77.4, 73.7, 59.2, 57.8 ppm. IR: 3053, 2939, 1697, 1604, 1453, 1099, 752 cm⁻¹. MS *m/z* 234 (M⁺⁺, 1%), 203 (12), 189 (100), 159 (10), 89 (8). CHN analysis [%]: Anal. Calcd for C₁₃H₁₄O₄: C, 66.66; H, 6.02. Found: C, 66.90; H, 6.12.

3-cyclohexyl-2H-chromen-2-one 3w⁴

Colorless solid, isolated yield 60% (27 mg), mp 80-85 °C (ref.⁴, 69.3–70.1 °C); ¹H NMR (500 MHz, CDCl₃): δ 7.47-7.44 (m, 3H), 7.30 (d, *J* = 8.5 Hz, 1H), 7.27-7.24 (m, 1H), 2.78 (tt, *J* = 11.7, 3.1 Hz, 1H), 2.00-1.97 (m, 2H), 1.87-1.85 (m, 2H), 1.79-1.77 (m, 1H), 1.50-1.41 (m, 2H), 1.35-1.23 (m, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ 161.6, 152.8, 136.4, 134.9, 130.5, 127.4, 124.2, 119.7, 116.3, 38.3, 32.2, 26.6, 26.2 ppm. CHN analysis [%]: Anal. Calcd for C₁₅H₁₆O₂: C, 78.92; H, 7.06. Found: C, 79.20; H, 7.19.

3-Benzoyl-2H-chromen-2-one 4⁷

Colorless solid, isolated yield 45% (23 mg), mp 132-133°C (Ref⁷, 131-133); ¹H NMR (500 MHz, CDCl₃): δ 8.09 (s, 1H), 7.89 (d, *J* = 8.1 Hz, 2H), 7.58-7.66 (m, 3H), 7.31-7.49 (m, 4H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ 191.5, 158.3, 154.7, 145.3, 136.2, 133.8, 133.6, 129.5, 129.1, 128.5, 127.0, 124.9, 118.1, 116.9 ppm. CHN analysis [%]: Anal. Calcd for C₁₆H₁₀O₃: C, 76.79; H, 4.03. Found: C, 76.50; H, 3.92.

⁷ F. Jafarpour, M. Abbasnia, J. Org. Chem., **2016**, 81, 11982.

5 Copies of ¹H NMR and ¹³C NMR spectra

Compound 3a

Compound 3b

Compound 3c

Compound 3d

Compound 3e

Compound 3f

Compound 3j

Compound 3I

Compound 3m

Compound 3n

Compound 3n'

Compound 3t

Compound 3u

8.0881 7.9018 7.9018 7.8905 7.8905 7.8905 7.8905 7.8905 7.8905 7.8905 7.8605 7.7655 7.8605 7.7655 7.7655 7.7755 7.7555

