Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Hydrogen-Free Reductive Amination Using Iron Pentacarbonyl as a Reducing Agent

Oleg I. Afanasyev,[†] Dmitry L. Usanov,[‡] Denis Chusov^{*,†,§}

[†]A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences Vavilova st. 28, Moscow, 119991, Russian Federation

> *c/a: Department of Chemistry and Chemical Biology, Harvard University 12 Oxford Street, Cambridge, MA 02138, USA*

§ Faculty of Science, RUDN University, 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation

E-mail: chusov@ineos.ac.ru or denis.chusov@gmail.com

Supporting Information

	Table of contents	
1.	General information	2
2.	Optimization of the reaction conditions	4
3.	Spectroscopic and analytical data	6
4.	¹ H, ¹³ C NMR and mass spectra of obtained compounds	15

1. General information

Unless otherwise stated, all reagents were purchased from commercial suppliers and were used without further purification. Reaction products were purified by column chromatography (Acros Organics, silica gel 0.06-0.200 mm). ¹H spectra were recorded in CDCl₃ on Bruker Avance 300, Bruker Avance 400 spectrometers; ¹³C spectra were recorded in CDCl₃ on Bruker Avance 400 and Bruker Avance 600 spectrometers. Chemical shifts are reported in parts per million relative to CHCl₃ (7.26 and 77.16 ppm for ¹H and ¹³C respectively). The following abbreviations were used to designate chemical shift multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad; coupling constants are given in Hertz (Hz). ESI-HRMS experiments: high resolution mass spectra were recorded on Bruker microTOF II instrument equipped with electrospray ionization (ESI) ion source.^{1,2} Measurements were performed in positive (MS⁺) ion mode (interface capillary voltage: 4500 V) with scan range m/z: 50-3000. External calibration of the mass spectrometer was performed with sodium formate solution in MeCN. Direct syringe injection was used for all the analyzed solutions in MeCN (flow rate: 3 µL/min). Nitrogen was used as a nebulizer gas (0.4 bar) and as a dry gas (4.0 L/min); interface temperature was set at 180 °C. Recorded spectra were processed using Bruker DataAnalysis 4.0 software package. Reactions with heating were carried out in high pressure Schlenk tubes, made from borosilicate glass (Rettberg, articular no.134029514, fig. 1). Reactions without heating were carried out in regular Schlenk tubes.

Fig. 1. High pressure Schlenk tube used for reductive amination reaction.

¹ Belyakov, P. A.; Kadentsev, V. I.; Chizhov, A. O.; Kolotyrkina, N. G.; Shashkov, A. S.; Ananikov, V. P. *Mendeleev Commun.* **2010**, *20*, 125-131.

² Kachala, V. V.; Khemchyan, L. L.; Kashin, A. S.; Orlov, N. V.; Grachev, A. A.; Zalesskiy, S. S.; Ananikov, V. P. *Russ. Chem. Rev.* **2013**, *82*, 648-685.

General procedure for reductive amination

Procedure: A dry Schlenk tube with a magnetic stirrer was flashed with argon three times. The indicated amounts of the amine and the carbonyl compound were added, followed by dropwise addition of iron carbonyl (note 1). The Schlenk tube was sealed and placed into a preheated oil bath. After the indicated time (note 2) the Schlenk tube was opened to air, and the reaction mixture was transferred to a round bottom flask. Volatile components were evaporated in vacuum. In order to break the iron complex of the desired product, an excess of triethylamine was added and the reaction mixture was dried in vacuum. After this workup it is possible to purify the products via column chromatography on silica gel. Iron complexes with target amines can also be broken with sodium hydroxide. For this purpose, after removal of the volatile components the reaction mixture was added. This mixture was evaporated to dryness on a rotary evaporator. The resulting black residue was suspended in DCM, filtered via a celite pad and concentrated. The resulting oil can be distilled or purified via column chromatography.

Note 1: In case of active amines (e.g. pyrrolidine) cooling is necessary during the addition of $Fe(CO)_5$.

Note 2: Four hours are usually sufficient for this reaction. Active amines react in 2 hours.

2. Optimization of the reaction conditions

Investigation of the temperature influence

Entry ^a	Temperature	yield, %
1	90°C	14%
2	110 °C	26%
3	130 °C	41%
4	150 °C	40%
5	160 °C	41%
6	180 °C	44%

^a 1.5 eq. of amine and 1 eq. of aldehyde were used. Yields were determined via GC with internal standard. Tol = pmethylphenyl.

Screening of various amounts of iron carbonyl

Entry ^a	Number of Fe(CO) ₅ equivalents	yield, %
1	5	51%
2	3	41%
3	2	45%
4	1	24%
5	0.5	15%
6	0.2	11%

^a 1.5 eq. of amine and 1 eq. of aldehyde were used. Yields were determined via GC with internal standard. Tol = pmethylphenyl.

Screening of various amounts of the amine

Entry ^a	Number of morpholine equivalents	yield, %
1	1	18%
2	1.2	27%
3	2	52%
4	3	73%
5 ^b	3	86%

^a x eq. of amine and 1 eq. of aldehyde were used. Yields were determined via GC with internal standard. Tol = p-methylphenyl.

^b 3 equivalents of iron carbonyl were used.

Investigation of the influence of reaction atmosphere

Entry ^a	Headspace fill gas	yield, %
1	Ar	73%
2	СО	61%
3	N ₂	74%

^a 3 eq. of amine and 1 eq. of aldehyde were used. Yields were determined via GC with internal standard. Tol = p-methylphenyl.

3. Spectroscopic and analytical data

4-(4-methylbenzyl)morpholine (1a)

A dry Schlenk tube with a magnetic stirrer was flashed with argon. Morpholine (297 μ L, 300 mol %, 3.44 mmol), *p*-tolylaldehyde (135 μ L, 100 mol %, 1.15 mmol) and iron pentacarbonyl (464 μ L, 300 mol %, 3.44 mmol) were added, the Schlenk tube was sealed and placed into an oil bath preheated to 130 °C. After 4 hours of heating, the Schlenk tube was opened to air, and the reaction mixture was transferred to a round-bottom flask. Volatile components were evaporated in vacuum. 3 ml of triethylamine were added, and the volatile components were removed again. The residue was purified by column chromatography (eluent: hexane : ethyl acetate 5 : 1; Rf=0.6) to afford 189 mg (86 %) of the product as a yellowish oil, solidified at room temperature (mp 54-55°C)

¹H NMR (300 MHz, CDCl₃) δ 7.29 (d, J = 7.8 Hz, 2H), 7.20 (d, J = 7.8 Hz, 2H), 3.78 (t, J = 4.5 Hz, 4H), 3.56 (s, 2H), 2.53 (t, J = 4.5 Hz, 4H), 2.41 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 136.8, 134.7, 129.3, 129.0, 67.1, 63.3, 53.7, 21.2.

NMR spectra are in agreement with the literature data.^{3,4}

4-(4-(benzyloxy)benzyl)morpholine (1b)

A dry Schlenk tube with a magnetic stirrer was flashed with argon. Morpholine (297 μ L, 300 mol %, 3.44 mmol), *p*-benzyloxybenzaldehyde (243.6 mg, 100 mol %, 1.15 mmol) and iron pentacarbonyl (464 μ L, 300 mol %, 3.44 mmol) were added, the Schlenk tube was sealed and placed into an oil bath preheated to 130 °C. After 4 hours of heating, the Schlenk tube was opened to air, and the reaction mixture was transferred to a round-bottom flask. Volatile components were evaporated in vacuum. 3 ml of triethylamine were added, and the volatile components were removed again. The residue was purified by column chromatography (eluent: hexane : ethyl acetate 1 : 1; Rf=0.3) to afford 227 mg (70 %) of the product as a white solid (mp 45-46°C).

³ Cui, X.; Dai, X.; Deng, Y.; Shi, F.; Chem. Eur. J., 2013, 19, 3665.

⁴ Moskovets, A. P.; Usanov, D. L.; Afanasyev, O. I.; Fastovskiy, V. A.; Molotkov, A. P.; Muratov, K. M.; Denisov, G. L.; Zlotskii, S. S.; Smolyakov, A. F.; Loginov, D. A.; Chusov, D. *Org. Biomol. Chem.*, **2017**, *30*, 6384.

¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.33 (m, 5H), 7.29 (d, *J* = 8.4 Hz, 2H), 6.99 (d, *J* = 8.4 Hz, 2H), 5.10 (s, 2H), 3.75 (t, *J* = 4.5 Hz, 4H), 3.49 (s, 2H), 2.53 – 2.40 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 158.1, 137.1, 130.4, 130.1, 128.6, 127.9, 127.5, 114.6, 70.0, 67.1, 62.8, 53.6.

HRMS: Calculated for C₁₈H₂₂NO₂ (M+H)⁺: 284.1645: found: 284.1646

4-(3-bromo-4-methoxybenzyl)morpholine (1c)

A dry Schlenk tube with a magnetic stirrer was flashed with argon. Morpholine (297 μ L, 300 mol %, 3.44 mmol), 3-bromo-4-methoxybenzaldehyde (246.8 mg, 100 mol %, 1.15 mmol) and iron pentacarbonyl (464 μ L, 300 mol %, 3.44 mmol) were added, the Schlenk tube was sealed and placed into an oil bath preheated to 130 °C. After 4 hours of heating, the Schlenk tube was opened to air, and the reaction mixture was transferred to a round-bottom flask. Volatile components were evaporated in vacuum. 3 ml of triethylamine were added, and the volatile components were removed again. The residue was purified by column chromatography (eluent: hexane : ethyl acetate 4 : 1; Rf=0.1) to afford 253 mg (77 %) of the product as a white solid (mp 92-93°C).

1H NMR (400 MHz, CDCl₃) δ 7.51 (s, 1H), 7.20 (d, J = 8.2 Hz, 1H), 6.83 (d, J = 8.2 Hz, 1H), 3.87 (s, 3H), 3.75 – 3.59 (m, 4H), 3.39 (s, 2H), 2.50 – 2.28 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 155.1, 134.0, 131.5, 129.3, 111.7, 111.5, 67.1, 62.3, 56.4, 53.6.

HRMS: Calculated for $C_{12}H_{17}^{79}BrNO_2$ (M+H)⁺: 286.0437: found: 286.0433 Calculated for $C_{12}H_{17}^{81}BrNO_2$ (M+H)⁺: 288.0417: found: 288.0420

4-(2-phenylpropyl)morpholine (1d)

A dry Schlenk tube with a magnetic stirrer was flashed with argon. Morpholine (328 μ L, 300 mol %, 3.80 mmol), 2-phenylpropanal (170 μ L, 100 mol %, 1.27 mmol) and iron pentacarbonyl (512 μ L, 300 mol %, 3.80 mmol) were added, the Schlenk tube was sealed and placed into an oil bath preheated to 130 °C. After 4 hours of heating, the Schlenk tube was opened to air, and the reaction mixture was transferred to a round-bottom flask. Volatile components were evaporated in vacuum. 3 ml of triethylamine were added, and the volatile components were removed again. The residue was purified by column chromatography (eluent: hexane : ethyl acetate 4 : 1; Rf=0.4) to afford 239 mg (92 %) of the product as a colorless oil.

¹H NMR (300 MHz, CDCl₃) δ 7.46 – 7.23 (m, 5H), 3.82 – 3.70 (m, 4H), 3.05 – 2.84 (m, 1H), 2.62 – 2.50 (m, 4H), 2.50 – 2.40 (m, 2H), 1.37 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 146.0, 128.4, 127.2, 126.2, 67.1, 66.6, 54.0, 37.1, 19.9.

NMR spectra is in accordance with the literature data ^{5,6}

4-(1,3-diphenylpropan-2-yl)morpholine (1e)

A dry Schlenk tube with a magnetic stirrer was flashed with argon. Morpholine (297 μ L, 300 mol %, 3.44 mmol), 1,3-diphenylpropan-2-one (226 μ L, 100 mol %, 1.15 mmol) and iron pentacarbonyl (464 μ L, 300 mol %, 3.44 mmol) were added, the Schlenk tube was sealed and placed into an oil bath preheated to 130 °C. After 4 hours of heating, the Schlenk tube was opened to air, and the reaction mixture was transferred to a round-bottom flask. Volatile components were evaporated in vacuum. 3 ml of triethylamine were added, and the volatile components were removed again. The residue was purified by column chromatography (eluent: hexane : ethyl acetate 4 : 1; Rf=0.5) to afford 242 mg (75 %) of the product as a colorless oil.

¹H NMR (300 MHz, CDCl₃) δ 7.40 – 7.17 (m, 10H), 3.70 (t, *J* = 4.5, 4H), 3.03 (quint, *J* = 6.6 Hz, 1H), 2.94 (dd, *J* = 13.4, 6.6 Hz, 2H), 2.71 (t, *J* = 4.5, 4H), 2.61 (dd, *J* = 13.4, 6.5 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 140.8, 129.3, 128.3, 125.9, 68.7, 67.6, 49.1, 35.9.

NMR spectra are in agreement with the literature data.^{7,4}

4-(4-phenylbutan-2-yl)morpholine (1f)

A dry Schlenk tube with a magnetic stirrer was flashed with argon. Morpholine (297 μ L, 300 mol %, 3.44 mmol), 4-phenylbutan-2-one (172 μ L, 100 mol %, 1.15 mmol) and iron pentacarbonyl (464 μ L, 300 mol %, 3.44 mmol) were added, the Schlenk tube was sealed and placed into an oil bath preheated to 130 °C. After 4 hours of heating, the Schlenk tube was opened to air, and the reaction mixture was transferred to a round-bottom flask. Volatile components were evaporated in vacuum. 3 ml of triethylamine were added, and the volatile components were removed again. The residue was purified by column chromatography (eluent: hexane : ethyl acetate 2 : 1; Rf=0.4) to afford 190 mg (75 %) of the product as a yellowish oil.

⁵ Andrews, K. G.; Summers, D. M.; Donnelly, L. J.; Denton, R. M.; Chem. Commun., 2016, 52, 1855

⁶ Dutta, B.; Schwarz, R.; Omar, S.; Natour, S.; Abu-Reziq, R. Eur. J. Org. Chem., 2015, 1961

⁷ K. D. Hesp, M. Stradiotto, J. Am. Chem. Soc., 2010, 132, 18026–18029

¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.02 (m, 5H), 3.84 – 3.60 (m, 4H), 2.79 – 2.36 (m, 7H), 1.95 – 1.81 (m, 1H), 1.67 – 1.54 (m, 1H), 1.05 (d, *J* = 6.5 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 142.7, 128.5, 128.4, 125.7, 67.6, 58.5, 48.8, 35.3, 32.9, 13.9.

NMR spectra are in agreement with the literature data.8

4-(adamantan-2-yl)morpholine (1g)

A dry Schlenk tube with a magnetic stirrer was flashed with argon. Morpholine (297 μ L, 300 mol %, 3.44 mmol), adamantanone (172.4 mg, 100 mol %, 1.15 mmol) and iron pentacarbonyl (464 μ L, 300 mol %, 3.44 mmol) were added, the Schlenk tube was sealed and placed into an oil bath preheated to 130 °C. After 4 hours of heating, the Schlenk tube was opened to air, and the reaction mixture was transferred to a round-bottom flask. Volatile components were evaporated in vacuum. 3 ml of triethylamine were added, and the volatile components were removed again. The residue was purified by column chromatography (eluent: hexane : ethyl acetate 4 : 1; Rf=0.7; visualizing of the TLC spot with iodine) to afford 215 mg (85 %) of the product as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 3.70 (t, J = 4.6 Hz, 4H), 2.39 (s, 4H), 2.11 – 1.94 (m, 5H), 1.88 – 1.73 (m, 4H), 1.71 – 1.57 (m, 4H), 1.36 (d, J = 11.8 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 68.0, 67.4, 50.3, 37.9, 37.3, 31.4, 28.6, 27.6, 27.5.

NMR spectra are in agreement with the literature data.⁹

4-(1-phenylethyl)morpholine (1h)

A dry Schlenk tube with a magnetic stirrer was flashed with argon. Morpholine (297 μ L, 300 mol %, 3.44 mmol), acetophenone (134 μ L, 100 mol %, 1.15 mmol) and iron pentacarbonyl (464 μ L, 300 mol %, 3.44 mmol) were added, the Schlenk tube was sealed and placed into an oil bath preheated to 130 °C. After 4 hours of heating, the Schlenk tube was opened to air, and the reaction mixture was transferred to a round-bottom flask. Volatile components were evaporated in vacuum. 3 ml of triethylamine were added, and the volatile components were removed again. The residue was purified by column chromatography (eluent: hexane : ethyl acetate 4 : 1; Rf=0.3) to afford 193 mg (88 %) of the product as a vellowish oil.

¹H NMR (300 MHz, CDCl₃) δ 7.48 – 7.24 (m, 5H), 3.75 (t, *J* = 4.5 Hz, 4H), 3.36 (q, *J* = 6.6 Hz, 1H), 2.63 – 2.35 (m, 4H), 1.42 (d, *J* = 6.6 Hz, 3H).

⁸ Kyasa, S.; Fisher, T. J.; Dussault, P. H. Synthesis **2011**, 3475.

⁹ Tankabekyan, N.A.; Mokhov, V.M.; Popov, Yu.V. Zh. Org. Khim., 2014, 50, 1071.

¹³C NMR (101 MHz, CDCl₃) δ 143.9, 128.3, 127.6, 126.9, 67.2, 65.4, 51.3, 19.9.

NMR spectra are in agreement with the literature data.¹⁰

N-(4-methylbenzyl)-1-phenylethan-1-amine (1i)

A dry Schlenk tube with a magnetic stirrer was flashed with argon benzylethylamine (312 μ L, 200 mol %, 2.50 mmol), *p*-tolylaldehyde (147 μ L, 100 mol %, 1.25 mmol) and iron pentacarbonyl (336 μ L, 200 mol %, 2.50 mmol) were added, the Schlenk tube was sealed and placed into an oil bath preheated to 140 °C. After 4 hours of heating, the Schlenk tube was opened to air, and the reaction mixture was transferred to a round-bottom flask. Volatile components were evaporated in vacuum. 3 ml of triethylamine were added, and the volatile components were removed again. The residue was purified by column chromatography (eluent: hexane : ethyl acetate 10 : 1; Rf=0.4) to afford 220 mg (78 %) of the product as a yellowish oil.

¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.26 (m, 5H), 7.21 (d, *J* = 7.7 Hz, 2H), 7.16 (d, *J* = 7.7 Hz, 2H), 3.88 - 3.79 (m, 1H), 3.66 (d, *J* = 13.0 Hz, 2H), 3.59 (d, *J* = 13.0 Hz, 1H), 2.37 (s, 3H), 1.57 (br. s, 1H), 1.39 (d, *J* = 4.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 145.8, 137.7, 136.5, 129.2, 128.6, 128.2, 127.0, 126.8, 57.5, 51.5, 24.7, 21.2.

NMR spectra are in agreement with the literature data. ^{11,12}

¹⁰ Varjosaari, S. E.; Skrypai, V.; Suating, P.; Hurley, J. J. M.; Lio, A. M. D.; Gilbert, T. M.; Adler, M. J. *Adv. Synth. Catal.*, **2017**, *359*, 1872.

¹¹ Nişancı, B.; Ganjehyan, K.; Metin, Ö.; Daştan, A.; Török, B J. Mol. Catal. A Chem. 2015, 409, 191.

¹² Saidi, O.; Blacker, A. J.; Farah, M. M.; Marsden, S. P.; Williams, J. M. J. Chem. Commun. 2010, 46, 1541.

1-(4-methylbenzyl)pyrrolidine (1j)

A dry Schlenk tube with a magnetic stirrer was flashed with argon Pyrrolidine (346 μ L, 300 mol %, 4.22 mmol) and *p*-tolylaldehyde (166 μ L, 100 mol %, 1.41 mmol) were added, the reaction flask was placed into an ice bath and iron pentacarbonyl (568 μ L, 300 mol %, 4.22 mmol) was added dropwise. CAUTION: addition of Fe(CO)₅ initiates exothermic reaction! Schlenk tube was allowed to warm to room temperature, and stirring was continued overnight (actually, 2-3 hours should be enough). The Schlenk tube was opened to air, and reaction mixture was transferred to a round-bottom flask. Volatile components were evaporated in vacuum. 3 ml of triethylamine were added, and the volatile components were removed again. The residue was purified by column chromatography (eluent: hexane : ethyl acetate 1 : 1; Rf=0.3) to afford 209 mg (85 %) of the product as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.23 (d, J = 7.7 Hz, 2H), 7.13 (d, J = 7.7 Hz, 2H), 3.59 (s, 2H), 2.56 – 2.44 (m, 4H), 2.35 (s, 3H), 1.85 – 1.71 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 136.5, 136.4, 128.9, 60.6, 54.2, 23.5, 21.2.

NMR spectra are in agreement with the literature data ^{13,14}

2-(4-(4-methylbenzyl)piperazin-1-yl)pyrimidine (1k)

A dry Schlenk tube with a magnetic stirrer was flashed with argon. 2-(Piperazin-1-yl)pyrimidine (300 mg, 200 mol %, 1.83 mmol), *p*-tolylaldehyde (72 μ L, 100 mol %, 0.61 mmol) and iron pentacarbonyl (246 μ L, 300 mol %, 1.83 mmol) were added, the Schlenk tube was sealed and placed into an oil bath preheated to 140 °C. After 4 hours of heating, the Schlenk tube was opened to air, and the reaction mixture was transferred to a round-bottom flask. Volatile components were evaporated in vacuum. 3 ml of triethylamine were added, and the volatile components were removed again. The residue was purified by column chromatography (eluent: hexane : ethyl acetate 1 : 1; Rf=0.4) to afford 142 mg (87 %) of the product as an off-white solid (mp 71-72°C).

¹³ Varjosaari, S.E.; Skrypai, V.; Suating, P.; Hurley, J. J. M.; De Lio, A. M.; Gilbert, T. M.; Adler, M. J. *Adv. Synth. Catal.* **2017**, *359*, 1872.

¹⁴ Kovalenko, O. O.; Volkov, A.; Adolfsson, H. Org. Lett. 2015, 17, 446.

¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, J = 4.7 Hz, 2H), 7.24 (d, J = 7.9 Hz, 2H), 7.14 (d, J = 7.9 Hz, 2H), 6.45 (t, J = 4.7 Hz, 1H), 3.83 (t, J = 5.0 Hz, 4H), 3.51 (s, 2H), 2.50 (t, J = 5.0 Hz, 4H), 2.35 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 161.7, 157.8, 136.8, 134.9, 129.3, 129.1, 109.8, 62.9, 53.0, 43.8, 21.2.

HRMS: Calculated for C₁₆H₂₁N₄ (M+H)⁺: 269.1761: found: 269.1764

4-(pyrrolidin-1-ylmethyl)benzonitrile (11)

A dry Schlenk tube with a magnetic stirrer was flashed with argon. Pyrrolidine (346 μ L, 300 mol %, 4.22 mmol) and *p*-cyanobenzaldehyde (184 mg, 100 mol %, 1.41 mmol) were added, reaction flask was placed into the ice bath and iron pentacarbonyl (568 μ L, 300 mol %, 4.22 mmol) was added drop wise. Caution: addition of Fe(CO)₅ initiates exothermic reaction! Schlenk tube was allowed to warm to room temperature, and stirring was continued overnight (actually, 2-3 hours should be enough). Schlenk tube was opened to air, and reaction mixture was transferred to the round bottom flask. Volatile components were evaporated in the vacuum. 3 ml of triethylamine were added, and the volatile components were removed again. The residue was purified by column chromatography (eluent: hexane : ethyl acetate 2 : 1; Rf=0.3) to afford 187 mg (72 %) of the product as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 7.7 Hz, 2H), 7.43 (d, *J* = 7.7 Hz, 2H), 3.64 (s, 2H), 2.54 – 2.39 (m, 4H), 1.84 – 1.69 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 145.4, 132.1, 129.4, 119.1, 110.7, 60.3, 54.3, 23.6.

NMR spectra are in agreement with the literature data.¹⁵

1-benzhydrylpyrrolidine (1m)

A dry Schlenk tube with a magnetic stirrer was flashed with argon. Pyrrolidine (346 μ L, 300 mol %, 4.22 mmol), benzophenone (256 mg, 100 mol %, 1.41 mmol) and iron pentacarbonyl (569 μ L, 300 mol %, 4.22 mmol) were added, the Schlenk tube was sealed and placed into an oil bath preheated to 90 °C. After 4 hours of heating, the Schlenk tube was opened to air, and the reaction mixture was transferred to a round-bottom flask. Volatile components were evaporated in vacuum. 3 ml of triethylamine were added, and the volatile components were removed again. The residue was purified by column chromatography (eluent: hexane : ethyl acetate 9 : 1; Rf=0.4) to afford 230 mg (69 %) of the product as a white solid. Melting point 75-76°C is in agreement with the literature data (76-78°C).¹⁶

¹⁵ Chusov, D.; List, B.; Angew. Chemie Int. Ed. 2014, 53, 5199.

¹⁶ Le Gall, E.; Haurena, C.; Sengmany, S.; Martens, T.; Troupel, M. J. Org. Chem. 2009, 74, 7970.

¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 7.1 Hz, 4H), 7.29 (t, *J* = 7.5 Hz, 4H), 7.23 – 7.16 (m, 2H), 4.19 (s, 1H), 2.50 – 2.40 (m, 4H), 1.83 – 1.77 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 144.4, 128.5, 127.6, 126.9, 76.7, 53.8, 23.7.

NMR spectra are in agreement with the literature data.¹⁸

1-(3-vinylbenzyl)pyrrolidine (1n)

A dry Schlenk tube with a magnetic stirrer was flashed with argon. Pyrrolidine (346 μ L, 300 mol %, 4.22 mmol) and 3-vinylbenzaldehyde (179 μ L, 100 mol %, 1.41 mmol) were added, the reaction flask was placed into an ice bath and iron pentacarbonyl (568 μ L, 300 mol %, 4.22 mmol) was added dropwise. CAUTION: addition of Fe(CO)₅ initiates exothermic reaction! The Schlenk tube was allowed to warm to room temperature, and stirring was continued overnight (actually, 2-3 hours should be enough). The Schlenk tube was opened to air, and the reaction mixture was transferred to a round-bottom flask. Volatile components were evaporated in vacuum. 3 ml of triethylamine were added, and the volatile components were removed again. The residue was purified by column chromatography (eluent: hexane : ethyl acetate : triethylamine 3 : 1 : 0.1; Rf=0.3) to afford 184 mg (70 %) of the product as a colorless oil. Usage of triethylamine in eluent composition is very important, it prevents decomposition of the product on silica gel.

¹H NMR (400 MHz, CDCl₃) δ 7.38 (s, 1H), 7.35 – 7.20 (m, 3H), 6.72 (dd, J = 17.5, 10.9 Hz, 1H), 5.77 (d, J = 17.5 Hz, 1H), 5.24 (d, J = 10.9 Hz, 1H), 3.62 (s, 2H), 2.58 – 2.44 (m, 4H), 1.85 – 1.74 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 139.7, 137.6, 136.9, 128.6, 128.5, 126.9, 124.8, 113.8, 60.8, 54.3, 23.5.

HRMS: Calculated for C₁₃H₁₈N⁺ (M+H)⁺: 188.1434: found: 188.1437

1-(adamantan-2-yl)pyrrolidine (10)

A dry Schlenk tube with a magnetic stirrer was flashed with argon. Pyrrolydine (2.31 ml, 300 mol %, 28.12 mmol), adamantanone (1.41 g, 100 mol %, 9.37 mmol) were added, the reaction flask was placed into an ice bath and iron pentacarbonyl (3.80 ml, 300 mol %, 28.12 mmol) was added dropwise. CAUTION: addition of $Fe(CO)_5$ initiates exothermic reaction! The Schlenk tube was allowed to warm to room temperature, and stirring was continued for two hours. The Schlenk tube was opened to air, and the reaction mixture was transferred to a round-bottom flask. Volatile components were evaporated in vacuum. The residue was dissolved in 10 ml of methanol, and concentrated solution of 4 g of NaOH in water was added. The solvents were

removed in vacuum. The residue was suspended in DCM, sonicated for 5 minutes and filtered via a celite pad. The resulting solution was concentrated, and the crude product was purified by short distillation in vacuum. The target amine was isolated as colorless oil, 1.71 g, 89%.

¹H NMR (400 MHz, CDCl₃) δ 2.50 – 2.40 (m, 4H), 2.14 – 2.01 (m, 3H), 1.96 – 1.89 (m, 2H), 1.84 – 1.63 (m, 12H), 1.42 (d, *J* = 12.1 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 70.5, 51.6, 38.2, 37.4, 31.7, 31.7, 27.8, 27.7, 23.5.

HRMS: Calculated for C₁₄H₂₄N⁺ (M+H)⁺: 206.1903: found: 206.1903

4. ¹H, ¹³C NMR and mass spectra of obtained compounds

4-(4-methylbenzyl)morpholine (1a) ¹H NMR, CDCl₃, 300 MHz

4-(4-(benzyloxy)benzyl)morpholine (1b) ¹H NMR, CDCl₃, 400 MHz

4-(4-(benzyloxy)benzyl)morpholine (1b) ¹³C NMR, CDCl₃, 101 MHz

4-(4-(benzyloxy)benzyl)morpholine (1b), HRMS spectrum

		Display	Report			
Analysis Info Analysis Name Method Sample Name Comment	D:\Data\Chizhov\INEC tune_low.m /CHIZ AF-1014 CH3CN 100 %, dil. 20	DS\Chusov\May_19_201 1000, calibrant added	7∖af-1014_&c	Acquisition Date Iblow.d Operator Instrument / Ser#	19.05.2017 12:47:22 BDAL@DE micrOTOF 1024	18
Acquisition Par Source Type Focus Scan Begin Scan End	ameter ESI Not active 50 m/z 3000 m/z	Ion Polarity Set Capillary Set End Plate Offset	Positive 4500 V -500 V	Set Nebulizer Set Dry Heats Set Dry Gas Set Divert Va	- 0.4 Bar er 180 ℃ 4.0 l/min tve Waste	
Intens. x105-284 1.0- 0.8- 0.6- 0.4- 0.2- 0.0-	622.0277 gg 500	22.0077 15 1000 1	21.9706	2121.9454	+MS, 0.0-1.0min #	(2-59) m/z
Intens. x10 ⁵ 1.00	284.1646				+MS, 0.0-1.0min#	(2-59)
0.75 0.50 0.25		285.1680	296.17	18		
2000	284.1645				C18H21NO2, M+nH ,2	284.17
1500- 1000-						
500		285.1678	296 17	12		
0 283.5	284.0 284.5	285.0 285.5	286.0	286.5 287.0	287.5 288.0	m/z
Bruker Compass	DataAnalysis 4.0	printed:	19.05.2017	13:13:47	Page 1 of 1	

4-(3-bromo-4-methoxybenzyl)morpholine (1c) ¹H NMR, CDCl₃, 400 MHz

4-(3-bromo-4-methoxybenzyl)morpholine (1c) ¹³C NMR, CDCl₃, 101 MHz

4-(3-bromo-4-methoxybenzyl)morpholine (1c), HRMS spectrum

		Display	/ Report		
Analysis Info Analysis Name Method Sample Name Comment	D:\Data\Chizhov\II tune_low.m /CHIZ AF-1030 CH3CN 100 %, dil	NEOS\Chusov\May_19_20 . 20000, calibrant added	017\af-1030_&clt	Acquisition Date blow.d Operator Instrument / Ser#	19.05.2017 12:54:09 BDAL@DE micrOTOF 10248
Acquisition Par Source Type Focus Scan Begin Scan End	ameter ESI Not active 50 m/z 3000 m/z	Ion Polarity Set Capillary Set End Plate Offset	Positive 4500 V -500 V	Set Nebulizer Set Dry Heate Set Dry Gas Set Divert Val	0.4 Bar r 180 ℃ 4.0 l/min ve Waste
Intens. x104 4 3 2 2 1 0	622.0290 622.0290 764. 500	922.0098 5787 1194.8162 1000	1521.9718	2121.9472	+MS, 0.0-1.0min #(1-59) 2721.9451 2500 m/z
1.5 1.0 0.5	286.0433	287.0467	288.0420	289.0451	-+NIS, 0.0-1.0min #(1-59)
2000 1500 1000 500	296.0437	287.0471	288.0417	289.0450	290.0484
285.5 Bruker Compass	286.0 286.5 DataAnalysis 4.0	287.0 287.5 printed:	288.0 2 19.05.2017	13:16:24	289.5 290.0 m/z Page 1 of 1

4-(2-phenylpropyl)morpholine (1d) ¹H NMR, CDCl₃, 300 MHz

4-(2-phenylpropyl)morpholine (1d) ¹³C NMR, CDCl₃, 101 MHz

4-(1,3-diphenylpropan-2-yl)morpholine (1e) ¹H NMR, CDCl₃, 300 MHz

4-(1,3-diphenylpropan-2-yl)morpholine (1e) ¹³C NMR, CDCl₃, 101 MHz

4-(4-phenylbutan-2-yl)morpholine (1f) ¹H NMR, CDCl₃, 400 MHz

4-(4-phenylbutan-2-yl)morpholine (1f) ¹³C NMR, CDCl₃, 101 MHz

4-(adamantan-2-yl)morpholine (1g) ¹H NMR, CDCl₃, 400 MHz

4-(adamantan-2-yl)morpholine (1g) ¹³C NMR, CDCl₃, 101 MHz

4-(1-phenylethyl)morpholine (1h) ¹H NMR, CDCl₃, 400 MHz

4-(1-phenylethyl)morpholine (1h) ¹³C NMR, CDCl₃, 101 MHz

N-(4-methylbenzyl)-1-phenylethan-1-amine (1i) ¹³C NMR, CDCl₃, 101 MHz

4-methoxy-N-(4-methylbenzyl)aniline (1j) ¹³C NMR, CDCl₃, 101 MHz

1-(4-methylbenzyl)pyrrolidine (1j) ¹H NMR, CDCl₃, 400 MHz

1-(4-methylbenzyl)pyrrolidine (1j) ¹³C NMR, CDCl₃, 101 MHz

2-(4-(4-methylbenzyl)piperazin-1-yl)pyrimidine (1k) ¹H NMR, CDCl₃, 400 MHz

2-(4-(4-methylbenzyl)piperazin-1-yl)pyrimidine (1k), HRMS spectrum

		Displa	y Report			
Analysis Info Analysis Name Method Sample Name Comment	D:\Data\Chizhov\II tune_low.m /CHIZ AF-1036 CH3CN 100 %, di	NEOS\Chusov\May_19_2 I. 20000, calibrant added	2017\af-1036_&	Acquisition Date clblow.d Operator Instrument / Ser#	19.05.2017 13:01: BDAL@DE micrOTOF 10	:47)248
Acquisition Par Source Type Focus Scan Begin Scan End	ameter ESI Not active 50 m/z 3000 m/z	Ion Polarity Set Capillary Set End Plate Offset	Positive 4500 V t -500 V	Set Nebulizer Set Dry Heate Set Dry Gas Set Divert Val	0.4 Bar r 180 ℃ 4.0 l/min ve Waste	
Intens. x10 ⁵ 1.50 1.25	.1764				+MS, 0.0-1.0m	in #(1-59)
1.00						
0.75 0.50	Ĩ.					
0.25	622.0270	922.0069	1521.9694	2121.9450		
0.00-	500	1000	1500	2000	2500	m/z
Intens. x10 ⁵ 1.0			269.1764		+MS, 0.0-1.0m	in #(1-59)
0.5	267 1610			270.1793		
0.0 2000 1500	201,1010	268.1639	269.1761	A	271.1823 C16H20N4, M+nl	H ,269.18
500 2508	007.1004		1	270.1794	271.1828 C16H20N4, M-nl	H ,267.16
2000 1500 1000 500	267.1004	268.1637	260 1671			
0	267	268 2	69	270	271	m/z
Bruker Compass	267 DataAnalysis 4.0	268 2 printed	69 d: 19.05.201	270 7 13:19:40	271 Page 1 o	f 1

4-(pyrrolidin-1-ylmethyl)benzonitrile (11) ¹H NMR, CDCl₃, 400 MHz

4-(pyrrolidin-1-ylmethyl)benzonitrile (11) ¹³C NMR, CDCl₃, 101 MHz

1-benzhydrylpyrrolidine (1m) ¹H NMR, CDCl₃, 400 MHz

1-benzhydrylpyrrolidine (1m) ¹³C NMR, CDCl₃, 101 MHz

1-(3-vinylbenzyl)pyrrolidine (1n) ¹H NMR, CDCl₃, 400 MHz

1-(3-vinylbenzyl)pyrrolidine (1n) ¹³C NMR, CDCl₃, 101 MHz

1-(3-vinylbenzyl)pyrrolidine (1n) HRMS spectrum

1-(adamantan-2-yl)pyrrolidine (10) ¹H NMR, CDCl₃, 400 MHz

1-(adamantan-2-yl)pyrrolidine (10) ¹³C NMR, CDCl₃, 101 MHz

1-(adamantan-2-yl)pyrrolidine (10) HRMS spectrum

Display Report Analysis Info Acquisition Date 14.11.2017 18:06:41 D:\Data\Chizhov\INEOS\Chusov\af-1086_&clblow.d Analysis Name Method tune_low.m Operator BDAL@DE /CHIZ Af-1086 Sample Name Instrument maXis 43 CH3CN 100 %, dil. 2000, calibrant added Comment Acquisition Parameter Source Type 0.4 Bar 180 ℃ 4.0 I/min Ion Polarity Positive Set Nebulizer ESI 4500 V Set Dry Heater Set Dry Gas Not active Focus Set Capillary Scan Begin 50 m/z 1500 m/z Set End Plate Offset -500 V Set Collision Cell RF Scan End 300.0 Vpp Set Divert Valve Source Intens. +MS, 0.0-1.0min #(1-58) x105 206.1903 2.0 1.5 1.0 0.5 393.2973 659,9853 959.9664 0.0 1200 200 400 600 800 1000 1400 m/z Intens. x10⁵ +MS, 0.0-1.0min #(1-58) 206.1903 2.0 1.5 1.0 0.5 207.1936 0.0 C14H23N, M+nH ,206.19 2500 206.1903 2000 1500 1000 500 207.1937 0 206.00 206.25 206.50 206.75 207.00 207.25 207.50 207.75 208.00 208.25 m/z Bruker Compass DataAnalysis 4.0 printed: 14.11.2017 18:22:39 Page 1 of 1