Conformational stabilization of a β-hairpin through a triazole-tryptophan interaction

Donatella Diana¹, Claudia Di Salvo^{1,2}, Veronica Celentano¹, Lucia De Rosa¹, Alessandra

Romanelli³, Roberto Fattorusso⁴, Luca D. D'Andrea^{1*}

Experimental procedure

- Figure S1: Schematic representation of DNHB peptides.
- **Figure S2**: Chromatographic RP-HPLC profile revealing at 210 nm and ESI-MS spectrum of the linear DNHB peptides.
- **Figure S3:** Chromatographic RP-HPLC profile revealing at 210 nm and ESI-MS spectrum of the cyclic DNHB peptides.
- **Figure S4:** Far-UV circular dichroism spectra of linear DNHB peptides in 10 mM phosphate buffer pH 6.6. Spectra are reported as molar ellipticity ([θ]).
- **Figure S5:** Far-UV circular dichroism spectra of DNHB peptides in 10 mM phosphate buffer pH 6.6. Spectra are reported as molar ellipticity ([θ]).
- Figure S6: Far-UV circular dichroism spectra of linear (black line) and cyclized (red line) DNHB2.2W3 peptides in 10 mM phosphate buffer pH 6.6. Spectra are reported as molar ellipticity ($[\theta]$).
- Figure S7 :One-dimensional proton spectra of linear and cyclized DNHB peptides
- **Table S1**. Chemical shift difference of diasteretopic H α protons of Gly7 and the root mean square
deviation (RMSD) of $\Delta\delta$ H α values for the cyclized peptides.
- Table S2. : Nonsequential NOEs contacts involving backbone protons of cyclic DNHB 2.2 peptide.
- **Table S3:** Temperature dependence of the amide protons for cyclic DNHB 2.2 peptide.
- Table S4. : Nonsequential NOEs contacts involving backbone protons of cyclic DNHB 2.2W3 peptide.

Figure S1: Schematic representation of DNHB peptides. The key elements, Trp and triazole bridge, are reported. The figure was prepared using Pymol software.

DNHB 1.1 linear

DNHB 1.2 linear

DNHB 1.3 linear

DNHB 2.1 linear

DNHB 2.2 linear

DNHB 2.3 linear

DNHB 3.1 linear

DNHB 3.2 linear

Figure S2: Chromatographic RP-HPLC profile revealing at 210 nm and ESI-MS spectrum of the linear DNHB peptides.

DNHB 1.1

DNHB 1.2

DNHB 1.3

DNHB 2.1

DNHB 2.3

DNHB 3.1

DNHB 3.2

Figure S3: Chromatographic RP-HPLC profile revealing at 210 nm and ESI-MS spectrum of the cyclic DNHB peptides.

Figure S4: Far-UV circular dichroism spectra of linear DNHB peptides in 10 mM phosphate buffer pH 6.6. Spectra are reported as molar ellipticity ($[\theta]$).

Figure S5: Far-UV circular dichroism spectra of DNHB peptides in 10 mM phosphate buffer pH 6.6. Spectra are reported as molar ellipticity ($[\theta]$).

Figure S6: Far-UV circular dichroism spectra of linear (black line) and cyclized (red line) DNHB2.2W3 peptides in 10 mM phosphate buffer pH 6.6. Spectra are reported as molar ellipticity ($[\theta]$).

Figure S7 :One-dimensional proton spectra of linear and cyclized DNHB peptides.

Dontido	Gly splitting	DMSD
i epide	(ppm)	NNISD
DNHB 1.1	0.20 (±0.02)	0.17 (±0.04)
DNHB 1.2	0.20 (±0.02)	0.15 (±0.02)
DNHB 1.3	0.29 (±0.02)	0.27 (±0.05)
DNHB 2.1	0.25 (±0.03)	0.14 (±0.05)
DNHB 2.2	0.48 (±0.02)	0.38 (±0.03)
DNHB 2.3	0.43 (±0.03)	0.35 (±0.02)
DNHB 3.1	0.33 (±0.04)	0.28 (±0.03)
DNHB 3.2	0.45 (±0.02)	0.41 (±0.07)
DNHB 3.3	0.46 (±0.03)	0.41 (±0.05)

Table S1. Chemical shift difference of diasteretopic H α protons of Gly7 and the root mean square deviation (RMSD) of $\Delta\delta$ H α values for the cyclized peptides.

Table S2. : Nonsequential NOEs contacts involving backbone protons of cyclic DNHB 2.2 peptide.

Residue	Proton	Proton	Residue
Hpg ²	HA	HN	Lys ¹²
Thr ³	HN	HA	Val ¹¹
Thr ³	HN	HN	Thr ¹⁰
Trp ⁴	HA	HN	Thr ¹⁰
Trp ⁴	HA	HA	Dab ⁹
Glu ⁵	HN	Нα	Dab ⁹
Glu ⁵	HN	HN	Lys ⁸

Residue	$\Delta\delta$ (ppb)/ Δ T (K)	
Ser1	-9.8	
Hpg2	-9	
Thr3	-3.9	
Trp4	-11	
Glu5	-4.1	
Asn6	-9.8	
Gly7	-8.7	
Lys8	-3.8	
Dab9	-11	
Thr10	-4.5	
Val11	-9	
Lys12	-4.6	

Table S3: Temperature dependence of the amide protons for cyclic DNHB 2.2 peptide.

Table S4. : Nonsequential NOEs contacts involving backbone protons of cyclic DNHB 2.2W3 peptide.

Residue	Proton	Proton	Residue
Trp ³	HN	HA	Val ¹¹
Trp ³	HN	HN	Thr ¹⁰
Thr ⁴	HA	HN	Thr ¹⁰
Glu ⁵	HN	HN	Lys ⁸