Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Synthesis and characterization of water-soluble macrocyclic peptides stabilizing protein α-turn

Lei Wang,^a Pascale Coric,^b Kexin Zhu,^a Wang-Qing Liu,^a Michel Vidal,^{a,c} Serge Bouaziz,^{b,*} Sylvain Broussy^{a,*}

[a] UMR COMETE 8638 CNRS, Université Paris Descartes, Faculté de Pharmacie de Paris, Sorbonne Paris Cité, 4 av. de l'Observatoire, Paris 75006, France

E-mail: <u>sylvain.broussy@parisdescartes.fr</u>

[b] UMR 8015 CNRS, Université Paris Descartes, Faculté de Pharmacie de Paris, Sorbonne Paris Cité 4 av. de l'Observatoire, Paris 75006, France

E-mail: <u>serge.bouaziz@parisdescartes.fr</u>

[c] UF Pharmacocinétique et Pharmacochimie Hôpital Cochin, AP-HP 27 rue du Faubourg Saint Jacques, Paris 75014, France

Table of Contents

HPLC chromatograms of peptides 1-8, 9a and 10a-c	2
CD spectra of 10a and 11 with and without added TFE	4
NMR spectra and attribution tables of peptides 9a, 10a-c and 11	5
Variable temperature ¹ H NMR data for peptides 10a-c and 11	15
NOE distance restraints	18
NOE connectivity and CSI for 10a and 10c	26
Overlap of 10c_down with the NMR structure of 10c	26
Catalyst parameters input file	26
Molecular modeling of 10a-c_cis conformers	27

HPLC chromatograms of peptides 1-8a (AA₁ = AA₃ = Gly).

See the experimental section for details. Gradient conditions: 30-100% B in 30 min for **1-7** and 15-50% B in 30 min for **8a**.

*Denotes a non-peptide side product.

HPLC chromatograms of peptides 9a, 10a, 10b and 10c.

See the experimental section for details. Gradient conditions: 30-100% in 30 min for **9a**, **10b** and **10c**; 15-50% B in 30 min for **10a**.

A and **B** are crude chromatograms of cyclization reactions of 10 mM solutions of 7 and 8 respectively. d: dimer; t: trimer.

CD spectra of peptides **10a** and **11** in 10 mM phosphate buffer pH 7.4 without (blue and black) and with (red and green) 30% TFE, at 293 K.

COSY spectrum of peptide 9a (¹H, 400 MHz, *d6*-DMSO).

ROESY spectrum of peptide 9a (¹H, 400 MHz, *d6*-DMSO).

	NH	Hα	$\mathbf{H}_{\boldsymbol{\beta}}$	Harom	Cter-NH ₂	1,1'	2,2'	3,3'
G1 (o-Ns)	-	3.66 4.05	-	7.86 7.91 8.00 8.14	-	-	-	-
A2	8.72	4.50	1.20	-	-	-	-	-
G3	8.58	3.41 4.35	-	-	-	-	-	-
A4	-	3.92	1.22	-	-	2.89 3.28	1.55 1.74	2.95 3.02
F5	7.64	4.26	2.88 3.06	7.13-7.26	7.09	-	-	-

Attribution table for peptide **9a** (chemical shifts extracted from the ROESY spectrum).

TOCSY spectrum of peptide 10a (¹H, 400 MHz, H₂O/D₂O 9:1).

NOESY spectrum of peptide 10a (¹H, 400 MHz, H₂O/D₂O 9:1).

	NH	Hα	$\mathbf{H}_{\boldsymbol{\beta}}$	Harom	Cter-NH ₂	1,1'	2,2'	3,3'
G1	-	3.60 3.89	-	-	-	-	-	-
A2	9.09	4.31	1.30	-	-	-	-	-
G3	8.47	3.84	-	-	-	-	-	-
A4	-	3.89	1.29	-	-	2.85- 3.25	1.75 1.86	2.95- 3.15
F5	7.71	4.48	2.91 3.16	7.21- 7.33	7.04 7.42	-	-	-

Attribution table for peptide **10a** (major rotamer, chemical shifts extracted from the NOESY spectrum).

NMR spectra of peptide 10b.

¹H NMR spectrum of peptide **10b** (400 MHz, H_2O/D_2O 9:1).

TOCSY spectrum of peptide 10b (1 H, 400 MHz, H₂O /D₂O 9:1).

NOESY spectrum of peptide **10b** (¹H, 400 MHz, H₂O/D₂O 9:1).

	NH	Hα	$\mathbf{H}_{\boldsymbol{\beta}}$	\mathbf{H}_{γ}	Hδ	Harom	Cter-NH ₂	1,1'	2,2'	3,3'
G1	-	3.58 3.88	-	-	-	-	-	-	-	-
A2	8.84	4.09	1.33	-	-	-	-	-	-	-
L3	7.56	4.47	1.39	1.27	0.78	-	-	-	-	-
A4	-	3.83	1.30	-	-	-	-	2.14 ?	1.81 2.03	2.88- 3.36
F5	7.89	4.36	3.01 3.09	-	-	7.21- 7.34	7.02 7.59	-	-	-

Attribution table for peptide 10b (major rotamer, chemical shifts extracted from the NOESY spectrum).

TOCSY spectrum of peptide 10c (¹H, 400 MHz, H₂O/D₂O 9:1).

NOESY spectrum of peptide **10c** (¹H, 400 MHz, H₂O/D₂O 9:1).

	NH	Hα	$\mathbf{H}_{\boldsymbol{\beta}}$	\mathbf{H}_{γ}	\mathbf{H}_{δ}	Harom	Cter-NH ₂	1,1'	2,2'	3,3'
L1	-	4.05	1.66 1.75	?	0.94	-	-	-	-	-
A2	8.30	4.24	1.47	-	-	-	-	-	-	-
L3	8.67	4.58	1.57 1.63	1.46	0.88	-	-	-	-	-
A4	-	4.01	1.33	-	-	-	-	3.10 4.05	1.84 2.10	2.38 2.85
F5	7.78	4.58	3.02 3.24	-	-		7.34 7.52	-	-	-

Attribution table for peptide **10c** (major rotamer, chemical shifts extracted from the NOESY spectrum).

NMR spectra of peptide 11.

¹H NMR spectrum of peptide **11** (400 MHz, H_2O/D_2O 9:1).

TOCSY spectrum of peptide 11 (¹H, 400 MHz, H₂O/D₂O 9:1).

NOESY spectrum of peptide 11 (¹H, 400 MHz, H₂O/D₂O 9:1).

Attribution table for peptide 11, Ac-GAGAF- NH_2 (chemical shifts extracted from the NOESY spectrum).

	NH	Ηα	$\mathbf{H}_{\boldsymbol{\beta}}$	Harom	Cter-NH ₂	N _{ter} -Ac
G1	8.18	3.85	-	-	-	1.96
A2	8.30	4.24	1.32	-	-	-
G3	8.34	3.80	-	-	-	-
A4	7.99	4.13	1.13	-	-	-
F5	8.03	4.50	2.93 3.12	7.20-7.31	7.01	-

Variable temperature ¹H NMR data for peptides **10a-c** and **11**.

Amide region of the ¹H NMR spectra of peptide **10a** at the indicated temperatures (400 MHz, H_2O/D_2O 9:1).

Amide region of the ¹H NMR spectra of peptide **11** at the indicated temperatures (400 MHz, H_2O/D_2O 9:1).

Amide region of the ¹H NMR spectra of peptide **10b** at the indicated temperatures (400 MHz, H_2O/D_2O 9:1).

Amide region of the ¹H NMR spectra of peptide **10c** at the indicated temperatures (400 MHz, H_2O/D_2O 9:1).

Graphical representation of the dependence of amide protons chemical shifts on temperature for peptides **11** (left) and **10a** (right, major rotamer only).

Corresponding slope values with standard errors:

Peptide 11	Slope (ppb/K)
G1	-7.6 ± 0.2
A2	-8.4 ± 0.2
G3	-7.6 ± 0.2
A4	-6.8 ± 0.2
F5	-7.4 ± 0.2
Cter-NH ₂	-5.7 ± 0.2

Peptide 10a	Slope (ppb/K)
A2	-7.6 ± 0.2
G3	-8.4 ± 0.2
F5	-7.4 ± 0.3
Cter-NH ₂	-6.0 ± 0.1

NOE derived distance restraints used for calculating the solution structure of the major rotamer of **10a**. Values were calculated using the CcpNmr software.^[1]

GAGAF_RS5modif_run4A1		Distances (lower and upper
		distance errors)
4ha	4hg1	3.5 1.0 0.7
4ha	4hd1	3.3 0.8 0.7
4ha	4he1	4.2 0.8 0.8
4ha	4hd2	3.2 0.6 0.6
4ha	4hb#	3.4 0.7 0.7
1ha2	1ha1	3.3 1.4 0.7
5hn	4ha	3.1 0.6 0.6
4ha	4hg2	3.3 0.7 0.7
4ha	4he2	4.1 0.8 0.8
5hb1	5hb2	2.2 0.4 0.4
5hn	5hb2	3.0 0.6 0.6
5h1	5hb2	2.7 0.2 2.3
5hb2	4hd1	3.9 0.8 1.1
5hb2	4hd2	4.4 0.9 0.9
5hn	5hb1	3.5 0.7 0.7
5hb1	4hd1	4.3 0.9 0.9
5h1	5hb1	2.7 0.2 2.3
5hb1	4hd2	3.9 0.8 1.1
5h1	5ha	2.8 0.6 0.6
5hn	5ha	3.1 0.6 0.6
5h2	5ha	3.2 0.7 1.8
4hd2	4hb#	4.4 0.9 0.9
5hn	4hb#	3.3 0.7 0.7
4hd1	4hb#	4.4 0.9 0.9
5hn	5h2	3.8 0.8 1.2
5hn	5h1	3.5 0.7 0.7
1ha1	4hd1	4.6 0.9 0.9
4hg1	4hd1	4.5 1.8 0.9
3hn	4hd1	3.8 0.8 0.8
4hg2	4hd1	4.7 2.0 0.9
4hg1	4hd2	2.8 0.6 0.6
1ha1	4hd2	5.1 1.0 0.9
4hg2	4hd2	3.6 0.7 0.7
1ha1	4he2	4.2 0.8 0.8
3hn	4he2	4.6 0.9 0.9
5hn	2hb#	4.1 0.7 0.7
3hn	4hg2	4.0 0.8 0.8
3hn	4hg1	3.7 0.8 0.8
2hn	1ha2	3.4 0.7 0.7
2hn	2hb#	3.2 0.7 0.7
2hn	2ha	3.3.0.7.0.7
2hn	1ha1	290606
2hn	3hn	341007
3hn	2ha	340707
JIII	2110	J.4 U.7 U.7

2ha	2hb#	3.5 0.8 0.8
3hn	2hb#	4.1 0.8 0.8
3hn	3ha*	3.5 0.7 0.7
3ha2	4hg2	1.8 0.0 0.0 ^{\$}

Methyl groups with degenerated protons.

* Not stereospecifically assigned protons.

^{\$} The analysis of structures indicated the presence of a steric clash between these hydrogen atoms. Therefore, a distance of 1.8 Å was imposed for the final calculation.

Numbering of the hydrogen atoms of the covalent linker for XPLOR-NIH calculations:

NOE derived distance restraints used for calculating the solution structure of the major rotamer of **10a**. Values were set according to the NOE intensity as strong (2.6 Å), medium (3.5 Å), weak (5.0 Å) and very weak (6.0 Å).

distance errors) 4ha 4hg1 5.0 3.2 0.0 4ha 4hd1 5.0 3.2 0.0 4ha 4he1 5.0 3.2 0.0 4ha 4hd2 5.0 3.2 0.0 4ha 4hd2 5.0 3.2 0.0 4ha 4hd2 5.0 3.2 0.0 1ha2 1ha1 5.0 3.2 0.0 5hn 4ha 4hg2 4ha 4hg2 5.0 3.2 0.0 4ha 4hg2 5.0 3.2 0.0 5hn 4ha 4he2 5.0 3.2 0.0 5hb1 5hb2 5hb1 5hb2 5.0 3.2 0.0 5hb1 5hb2 5.0 3.2 0.0 5hb1 5hb2 5.0 3.2 0.0 5hb1 5hb1 5.0 3.2 0.0 5hb1 4hd1 6.0 4.2 0.0 5h1 5.0 3.2 0.0 5hb1 5h1 5.0 3.2 0.0 5hb1 4hd2 5.0 3.2 0.0 5hb1 5h1 5.0 3.2 0.0 5hb1 5ha 5.0 3.2 0.0 5hn <th>GAGAF RS5modif run4A1</th> <th></th> <th>Distances (lower and upper</th>	GAGAF RS5modif run4A1		Distances (lower and upper
4ha 4hg1 5.0 3.2 0.0 4ha 4hd1 5.0 3.2 0.0 4ha 4hd1 5.0 3.2 0.0 4ha 4hd2 5.0 3.2 0.0 4ha 4hd2 5.0 3.2 0.0 4ha 4hd2 5.0 3.2 0.0 1ha 5.0 3.2 0.0 1ha 4ha 4hg2 5.0 3.2 0.0 4ha 4hg2 5.0 3.2 0.0 4ha 4hg2 5.0 3.2 0.0 5hn 4ha 4hg2 5hn 5.0 3.2 0.0 5hn 5hb2 5.0 3.2 0.0 5hn 5hb2 5.0 3.2 0.0 5h1 5hb2 5.0 3.2 0.0 5hb1 5hb2 4hd2 6.0 4.2 0.0 5hb1 5hb1 5.0 3.2 0.0 5h1 5ha 5.0 3.2 0.0 5h1 5ha 5.0 3.2 0.0 5hn 5ha 5.0 3.2 0.0 5hn 5ha 5.0 3.2 0.0			distance errors)
Aha Ahd1 5.03.20.0 Aha Ahe1 5.03.20.0 Aha Ahb4 5.03.20.0 Aha Ahb# 5.03.20.0 Iha2 Iha1 5.03.20.0 Son 20.0 Son 20.0 Son 20.0 Son 4 Ana 5.03.20.0 Aha Ahg2 5.03.20.0 Aha Ahg2 5.03.20.0 Aha Ahg2 5.03.20.0 Aha Ahg2 5.03.20.0 Shb1 Shb2 5.03.20.0 Sh1 Shb2 5.03.20.0 Sh1 Shb2 5.03.20.0 Shb1 S.03.20.0 Shb2 Shn Shb1 S.03.20.0 Shb1 S.03.20.0 Shb1 Shb1 S.03.20.0 Shb1 Shb1 S.03.20.0 Shb1 Sha 3.51.70.0 Shn Sha S.03.20.0 Shh Sha S.03.20.0 Shn Sha S.03.20.0 Shn </td <td>4ha</td> <td>4hg1</td> <td>5.0 3.2 0.0</td>	4ha	4hg1	5.0 3.2 0.0
Aha Ahe1 5.03.20.0 Aha Ahd2 5.03.20.0 Aha Ahb# 5.03.20.0 Iha2 Iha1 5.03.20.0 Shn Aha 4.02 Aha 4.02 5.03.20.0 Shn Aha 4.02 Aha Ahe2 5.03.20.0 Shb1 Shb2 5.03.20.0 Shb1 Shb2 5.03.20.0 Sh1 Shb2 5.03.20.0 Sh1 Shb2 5.03.20.0 Sh1 Shb2 5.03.20.0 Shb2 Ahd1 5.03.20.0 Shb2 Ahd1 5.03.20.0 Shb1 Shb1 S.03.20.0 Sh1 S.03.20.0 Sh1 Sh1 S.03.20.0 Sh1 Sh1 Sh1 S.03.20.0 Sh1 Sh3 S.03.20.0 Sh1 Sh3 S.03.20.0 Sh1 Sha S.03.20.0 Sh1 Sha S.03.20.0	4ha	4hd1	5.0 3.2 0.0
Aha Ahd2 5.03.20.0 Aha Ahb# 5.03.20.0 Iha2 Iha1 5.03.20.0 Shn Aha 5.03.20.0 Aha 4ha 5.03.20.0 Aha Aha 5.03.20.0 Aha Aha2 5.03.20.0 Aha Ahe2 5.03.20.0 Shb1 Shb2 5.03.20.0 Shn Shb2 5.03.20.0 Shn Shb2 5.03.20.0 Sh1 Shb2 5.03.20.0 Sh1 Shb2 5.03.20.0 Shn Shb1 5.03.20.0 Shn Shb1 5.03.20.0 Shn Shb1 5.03.20.0 Sh1 Sha3 5.17.0 Sh1 Sha3 3.51.70 Sh1 Sha 3.51.70 Shn Sha 5.03.20.0 Shn Sha S.03.20.0 Ahd2 Sha S.03.20.0 Shn Shb1 S.03.20.0	4ha	4he1	5.0 3.2 0.0
Aha Ahb# 5.03.20.0 1ha2 1ha1 5.03.20.0 Shn 4ha 5.03.20.0 Aha 4hg2 5.03.20.0 Aha 4hg2 5.03.20.0 Aha 4hg2 5.03.20.0 Shu 5hb2 2.60.80.0 Shn 5hb2 5.03.20.0 Shb1 5.03.20.0 5hb2 Sh1 5hb2 5.03.20.0 Shb2 4hd1 5.03.20.0 Shb2 4hd1 5.03.20.0 Shb1 5.03.20.0 5hb1 Shb1 5.03.20.0 5hb1 Sh1 5.03.20.0 5hb1 Sh1 5.03.20.0 5h1 Sh1 5.03.20.0 5h1 Sh1 5.03.20.0 5h1 Sh1 5.03.20.0 5h1 Sh1 5.03.20.0 5h2 Sh1 5.03.20.0 5h1 Sh1 5.03.20.0 5h1 Sh1 5.03.20.0 5h1	4ha	4hd2	5.0 3.2 0.0
1ha2 1ha1 5.0 3.2 0.0 Shn 4ha 5.0 3.2 0.0 4ha 4hg2 5.0 3.2 0.0 4ha 4hg2 5.0 3.2 0.0 Shb1 Shb2 2.6 0.8 0.0 Shn Shb2 5.0 3.2 0.0 Sh1 Shb2 5.0 3.2 0.0 Sh1 Shb2 5.0 3.2 0.0 Sh1 Shb2 4.0 Sol 3.2 0.0 Shb1 5.0 3.2 0.0 Shb2 4.01 S.0 3.2 0.0 Shb1 Shb1 S.0 3.2 0.0 Shn Shb1 S.0 3.2 0.0 Sh1 Shb1 S.0 3.2 0.0 Sh1 Shb1 S.0 3.2 0.0 Sh1 Sha 3.5 1.7 0.0 Sh1 Sha S.0 3.2 0.0 Sh1 Sha S.0 3.2 0.0 Sh1 Sha S.0 3.2 0.0 Shn Sha S.0 3.2 0.0 Shn Sha S.0 3.2 0.0 Shn Sh1 S.0 3.2 0.0 Shn Sh1<	4ha	4hb#	5.0 3.2 0.0
Shn 4ha 5.0 3.2 0.0 4ha 4hg2 5.0 3.2 0.0 4ha 4he2 5.0 3.2 0.0 Shb1 Shb2 2.6 0.8 0.0 Shn Shb2 5.0 3.2 0.0 Shn Shb2 2.6 0.8 0.0 Shn Shb2 5.0 3.2 0.0 Shb1 Shb2 4.0 Shb2 4.0 5.0 3.2 0.0 Shb2 4.0 6.0 4.2 0.0 Shn Shb1 5.0 3.2 0.0 Shb1 5.0 3.2 0.0 Shb1 Shb1 Shb1 S.0 3.2 0.0 Shb1 Shb1 S.0 3.2 0.0 Sh1 Sha 3.5 1.7 0.0 Shn Sha S.0 3.2 0.0 Sh1 Sha S.0 3.2 0.0 Sh1 Sha S.0 3.2 0.0 Sh1 Sha S.0 3.2 0.0 Shn Sha S.0 3.2 0.0 Shn Sh2 So 3.2 0.0 Shn Sh1 S.0 3.2 0.0 Shn Sh2	1ha2	1ha1	5.0 3.2 0.0
4ha 4hg2 5.03.20.0 4ha 4he2 5.03.20.0 Shb1 Shb2 2.60.80.0 Shn Shb2 5.03.20.0 Sh1 Shb2 5.03.20.0 Sh1 Shb2 5.03.20.0 Shb2 4hd1 5.03.20.0 Shb2 4hd2 6.04.20.0 Shn Shb1 5.03.20.0 Shb1 4hd2 6.04.20.0 Shn Shb1 5.03.20.0 Sh1 Shb1 5.03.20.0 Sh1 Shb1 5.03.20.0 Sh1 Sha 3.51.70.0 Shn Sha S.03.20.0 Sh1 Sha S.03.20.0 Sh1 Sha S.03.20.0 Sha S.03.20.0 Sha Sha S.03.20.0 Shn Shn Sh2 Sha Sha S.03.20.0 Shn Shn Sh1 S.03.20.0 Shn Sh1 S.03.20.0 S	5hn	4ha	5.0 3.2 0.0
4ha 4he2 5.03.20.0 Shb1 Shb2 2.60.80.0 Shn Shb2 5.03.20.0 Sh1 Shb2 5.03.20.0 Shb2 4hd1 5.03.20.0 Shb2 4hd1 5.03.20.0 Shb2 4hd1 6.04.20.0 Shn Shb1 5.03.20.0 Shb1 4hd2 6.04.20.0 Sh1 Shb1 5.03.20.0 Sh1 Shb1 4.4d2 5.03.20.0 Sh1 Shb1 4.4d2 5.03.20.0 Sh1 Sha 3.51.70.0 Shn Shn Sha S.03.20.0 Sh1 Shn Sha S.03.20.0 Sh1 Shn Sha S.03.20.0 Sh1 Shn Sha S.03.20.0 Sh1 Shn Sh2 So.3.20.0 Sh1 Shn Sh1 So.3.20.0 Sh1 Shn Sh2 So.3.20.0 Sh1 Sha So.3.20.0 </td <td>4ha</td> <td>4hg2</td> <td>5.0 3.2 0.0</td>	4ha	4hg2	5.0 3.2 0.0
Shb1 Shb2 2.6 0.8 0.0 Shn Shb2 S.0 3.2 0.0 Sh1 Shb2 4.01 Shb2 4.01 S.0 3.2 0.0 Shb2 4.01 S.0 3.2 0.0 Shb2 4.02 6.0 4.2 0.0 Shn Shb1 S.0 3.2 0.0 Shb1 4.02 S.0 3.2 0.0 Shb1 4.041 6.0 4.2 0.0 Sh1 Shb1 S.0 3.2 0.0 Sh1 Shb1 Sh0 S.0 3.2 0.0 Sh1 Sha 3.5 1.7 0.0 Sh1 Sha S.0 3.2 0.0 Shn Sh1 S.0 3.2 0.0 Shn	4ha	4he2	5.0 3.2 0.0
Shn Shb2 5.0.3.2.0.0 Sh1 Shb2 4.01 5.0.3.2.0.0 Shb2 4.01 5.0.3.2.0.0 Shb2 4.02 6.0.4.2.0.0 Shn Shb1 5.0.3.2.0.0 Shn Shb1 5.0.3.2.0.0 Shn Shb1 6.0.4.2.0.0 Sh1 Shb1 6.0.4.2.0.0 Sh1 Shb1 4.02 5.0.3.2.0.0 Sh1 Shb1 4.042 5.0.3.2.0.0 Sh1 Sha 3.5.1.7.0.0 5.0.3.2.0.0 Sh1 Sha S.0.3.2.0.0 5.0.3.2.0.0 Sh1 Sha S.0.3.2.0.0 5.0.3.2.0.0 Shn Sha S.0.3.2.0.0 5.0.3.2.0.0 Shn Sh1 S.0.3.2.0.0 5.0.3.2.0.0 Shn Sh2 S.0.3.2.0.0 5.0.3.2.0.0 Shn Sh1 S.0.3.2.0.0 5.0.3.2.0.0 Shn Sh1 S.0.3.2.0.0 5.0.3.2.0.0 Shn Ahd1 6.0.4.2.0.0 4.02	5hb1	5hb2	2.6 0.8 0.0
Sh1 Shb2 5.0.3.2.0.0 Shb2 4hd1 5.0.3.2.0.0 Shb2 4hd2 6.0.4.2.0.0 Shn Shb1 5.0.3.2.0.0 Shb1 4hd1 6.0.4.2.0.0 Shn Shb1 5.0.3.2.0.0 Shb1 4hd1 6.0.4.2.0.0 Sh1 Shb1 5.0.3.2.0.0 Sh1 Shb1 4hd2 Sh1 Sha 3.5.1.7.0.0 Shn Sha 5.0.3.2.0.0 Sh1 Sha S.0.3.2.0.0 Sh1 Sha S.0.3.2.0.0 Sh1 Sha S.0.3.2.0.0 Sh1 Sha S.0.3.2.0.0 Ahb# 6.0.4.2.0.0 Shn Shn Sh1 S.0.3.2.0.0 Shn 4hd1 6.0.4.2.0.0 Ahg1 Ahd2	5hn	5hb2	5.0 3.2 0.0
Shb2 4hd1 5.03.20.0 Shb2 4hd2 6.04.20.0 Shn Shb1 5.03.20.0 Shb1 4hd1 6.04.20.0 Shb1 4hd1 6.04.20.0 Shb1 Shb1 5.03.20.0 Shb1 Shb1 5.03.20.0 Sh1 Sha 3.51.70.0 Shn Sha 5.03.20.0 Sh1 Sha 5.03.20.0 Sh1 Sha 5.03.20.0 Shn Sha 5.03.20.0 Shn Sha 5.03.20.0 Shn Sha 5.03.20.0 Ahd2 4hb# 6.04.20.0 Shn Abb# 5.03.20.0 Ahd1 4hb# 6.04.20.0 Shn Sh1 5.03.20.0 Shn Sh1 5.03.20.0 Shn Sh1 6.04.20.0 Ahg1 4hd1 6.04.20.0 Ahg1 4hd1 6.04.20.0 Ahg1 4hd2 5.03.20.0 </td <td>5h1</td> <td>5hb2</td> <td>5.0 3.2 0.0</td>	5h1	5hb2	5.0 3.2 0.0
Shb2 4hd2 6.0.4.2.0.0 Shn Shb1 5.0.3.2.0.0 Shb1 4hd1 6.0.4.2.0.0 Sh1 Shb1 5.0.3.2.0.0 Sh1 Shb1 4hd2 5.0.3.2.0.0 Sh1 Sha 3.5.1.7.0.0 Sh1 Sha 3.5.1.70.0 Sh1 Sha 5.0.3.2.0.0 Ahd2 Ahb# 6.0.4.2.0.0 Shn Sh2 S.0.3.2.0.0 Shn Sh1 S.0.3.2.0.0 Shn Sh2 S.0.3.2.0.0 Shn Sh1 S.0.3.2.0.0 Shn Sh1 S.0.3.2.0.0 Shn Sh1 S.0.3.2.0.0 Shn S.0.3.2.0.0 Sh1 Abd1 6.0.4.2.0.0 Sh1 Abd2 S.0.3.2.0.0 Ahd1 A.0.4.2.0.	5hb2	4hd1	5.0 3.2 0.0
Shn Shb1 5.0 3.2 0.0 Shb1 4hd1 6.0 4.2 0.0 Sh1 Shb1 5.0 3.2 0.0 Shb1 4hd2 5.0 3.2 0.0 Sh1 Sha 3.5 1.7 0.0 Shn Sha 3.5 1.7 0.0 Shn Sha 5.0 3.2 0.0 Sh1 Sha 5.0 3.2 0.0 Add2 Abb# 6.0 4.2 0.0 Shn Sha 5.0 3.2 0.0 Ahd2 Abb# 6.0 4.2 0.0 Shn Sh1 S.0 3.2 0.0 Shn Sh2 S.0 3.2 0.0 Shn Sh1 S.0 3.2 0.0 Ahd1 6.0 4.2 0.0 Ahd1 Ahd1 S.0 3.2 0.0 Ahd1 Ahd2 S.0 3.2 0.0 Ahd2 Ahd1 Ahd2 S.0 3.2 0.0 Ahg2 Ahd2 S.0 3.2 0.0 Ahg2 A	5hb2	4hd2	6.0 4.2 0.0
Shb1 4hd1 6.0 4.2 0.0 Sh1 Shb1 S.0 3.2 0.0 Shb1 4hd2 S.0 3.2 0.0 Sh1 Sha 3.5 1.7 0.0 Shn Sha S.0 3.2 0.0 Sh2 Sha S.0 3.2 0.0 Sh2 Sha S.0 3.2 0.0 Sh2 Sha S.0 3.2 0.0 Ahd2 Ahb# 6.0 4.2 0.0 Shn Sh2 0.0 Ahb# Shn Sh2 0.0 Ahb# Shn Sh2 0.0 Shn Shn Sh1 S.0 3.2 0.0 Shn Sh2 S.0 3.2 0.0 Shn Sh2 S.0 3.2 0.0 Shn Sh1 S.0 3.2 0.0 Iha1 4hd1 6.0 4.2 0.0 Ahg1 4hd1 S.0 3.2 0.0 Jhn 4hd1 S.0 3.2 0.0 Ahg1 4hd2 S.0 3.2 0.0 Jha1 4hd2 S.0 3.2 0.0 Jha1 4hd2 S.0 3.2 0.0 Jhn Ahd2	5hn	5hb1	5.0 3.2 0.0
Sh1 Shb1 S.0.3.2.0.0 Shb1 4hd2 S.0.3.2.0.0 Sh1 Sha 3.5.1.7.0.0 Shn Sha S.0.3.2.0.0 Sh2 Sha S.0.3.2.0.0 4hd2 4hb# 6.0.4.2.0.0 Shn 4hb# S.0.3.2.0.0 4hd1 4hb# S.0.3.2.0.0 4hd1 4hb# S.0.3.2.0.0 4hd1 4hb# S.0.3.2.0.0 5hn Sh1 S.0.3.2.0.0 Shn Sh1 S.0.3.2.0.0 Shn Sh1 S.0.3.2.0.0 1ha1 4hd1 6.0.4.2.0.0 3hn Sh1 S.0.3.2.0.0 4hg1 4hd1 6.0.4.2.0.0 4hg2 4hd1 6.0.4.2.0.0 4hg1 4hd2 3.5.1.7.0.0 1ha1 4hd2 S.0.3.2.0.0 1ha1 4hd2 S.0.3.2.0.0 3hn 4he2 S.0.3.2.0.0 3hn 4he2 S.0.3.2.0.0 3hn	5hb1	4hd1	6.0 4.2 0.0
Shb1 4hd2 5.0 3.2 0.0 Sh1 Sha 3.5 1.7 0.0 Shn Sha 5.0 3.2 0.0 Sh2 Sha 5.0 3.2 0.0 4hd2 4hb# 6.0 4.2 0.0 Shn 4hb# 5.0 3.2 0.0 4hd1 4hb# 6.0 4.2 0.0 Shn 4hb# 6.0 4.2 0.0 Shn Sh2 5.0 3.2 0.0 4hd1 4hb# 6.0 4.2 0.0 Shn Sh1 5.0 3.2 0.0 Ha1 4hd1 6.0 4.2 0.0 4hg1 4hd1 5.0 3.2 0.0 3hn 4hd2 3.5 1.7 0.0 1ha1 4hd2 6.0 4.2 0.0 4hg2 4hd2 5.0 3.2 0.0 1ha1 4hd2 6.0 4.2 0.0 3hn 4hd2 5.0 3.2 0.0 3hn 4hg2 5.0 3.2 0.0 3hn 4hg2 5.0 3.2 0.0 <	5h1	5hb1	5.0 3.2 0.0
Sh1 Sha 3.5 1.7 0.0 Shn Sha 5.0 3.2 0.0 Sh2 Sha 5.0 3.2 0.0 4hd2 4hb# 6.0 4.2 0.0 Shn 4hb# 5.0 3.2 0.0 4hd1 4hb# 5.0 3.2 0.0 4hd1 4hb# 6.0 4.2 0.0 Shn Sh2 S.0 3.2 0.0 Shn Sh2 S.0 3.2 0.0 Shn Sh1 S.0 3.2 0.0 Iha1 4hd1 6.0 4.2 0.0 4hg1 4hd1 6.0 4.2 0.0 4hg2 4hd1 6.0 4.2 0.0 4hg2 4hd2 3.5 1.7 0.0 1ha1 4hd2 6.0 4.2 0.0 4hg2 4hd2 S.0 3.2 0.0 1ha1 4hd2 6.0 4.2 0.0 4hg2 4hd2 S.0 3.2 0.0 3hn 4he2 S.0 3.2 0.0 3hn 4hg2 S.0 3.2 0.0 3hn 4hg2 S.0 3.2 0.0	5hb1	4hd2	5.0 3.2 0.0
Shn Sha 5.0 3.2 0.0 Sh2 Sha 5.0 3.2 0.0 4hd2 4hb# 6.0 4.2 0.0 Shn 4hb# 5.0 3.2 0.0 4hd1 4hb# 6.0 4.2 0.0 Shn 4hb# 6.0 4.2 0.0 Shn Sh2 5.0 3.2 0.0 4hd1 4hb# 6.0 4.2 0.0 Shn Sh1 5.0 3.2 0.0 Shn Sh1 5.0 3.2 0.0 1ha1 4hd1 6.0 4.2 0.0 4hg1 4hd1 6.0 4.2 0.0 3hn 4hd1 5.0 3.2 0.0 4hg2 4hd1 6.0 4.2 0.0 4hg1 4hd2 3.5 1.7 0.0 1ha1 4hd2 5.0 3.2 0.0 1ha1 4hd2 5.0 3.2 0.0 1ha1 4he2 5.0 3.2 0.0 3hn 4he2 5.0 3.2 0.0 3hn 4he2 5.0 3.2 0.0 3hn 4hg1 5.0 3.2 0.0 3hn 4hg1 5.0 3.2 0.0 3hn	5h1	5ha	3.5 1.7 0.0
Sh2 Sha 5.0 3.2 0.0 4hd2 4hb# 6.0 4.2 0.0 Shn 4hb# 5.0 3.2 0.0 4hd1 4hb# 6.0 4.2 0.0 Shn Sh2 5.0 3.2 0.0 Shn Sh1 5.0 3.2 0.0 Shn Sh1 5.0 3.2 0.0 Shn Sh1 5.0 3.2 0.0 Iha1 4hd1 6.0 4.2 0.0 4hg1 4hd1 6.0 4.2 0.0 3hn 4hd1 6.0 4.2 0.0 3hn 4hd1 6.0 4.2 0.0 4hg2 4hd1 6.0 4.2 0.0 4hg2 4hd1 6.0 4.2 0.0 4hg1 4hd2 3.5 1.7 0.0 1ha1 4hd2 5.0 3.2 0.0 4hg2 4hd2 5.0 3.2 0.0 4hg2 4hd2 5.0 3.2 0.0 3hn 4he2 5.0 3.2 0.0 3hn 4hg2 5.0 3.2 0.0 3hn 4hg1 5.0 3.2 0.0 3hn 4hg1 5.0 3.2 0.0 3hn 4hg1 5.0 3.2 0.0 2hn 2ha 5.0 3.2 0.0	5hn	5ha	5.0 3.2 0.0
4hd2 $4hb#$ $6.04.20.0$ $5hn$ $4hb#$ $5.03.20.0$ $4hd1$ $4hb#$ $6.04.20.0$ $5hn$ $5h2$ $5.03.20.0$ $5hn$ $5h1$ $5.03.20.0$ $1ha1$ $4hd1$ $6.04.20.0$ $4hg1$ $4hd1$ $6.04.20.0$ $3hn$ $4hd1$ $6.04.20.0$ $4hg2$ $4hd1$ $6.04.20.0$ $4hg2$ $4hd1$ $6.04.20.0$ $4hg2$ $4hd2$ $3.51.70.0$ $1ha1$ $4hd2$ $5.03.20.0$ $4hg2$ $4hd2$ $5.03.20.0$ $3hn$ $4he2$ $5.03.20.0$ $3hn$ $4he2$ $5.03.20.0$ $3hn$ $4hg2$ $5.03.20.0$ $3hn$ $4hg2$ $5.03.20.0$ $3hn$ $4hg1$ $5.03.20.0$ $3hn$ $4hg1$ $5.03.20.0$ $3hn$ $4hg1$ $5.03.20.0$ $2hn$ $2hb#$ $5.03.20.0$ $2hn$ $2hb#$ $5.03.20.0$	5h2	5ha	5.0 3.2 0.0
Shn 4hb# 5.0 3.2 0.0 4hd1 4hb# 6.0 4.2 0.0 Shn 5h2 5.0 3.2 0.0 Shn Sh1 5.0 3.2 0.0 1ha1 4hd1 6.0 4.2 0.0 4hg1 4hd1 6.0 4.2 0.0 3hn 4hd1 6.0 4.2 0.0 4hg2 4hd1 6.0 4.2 0.0 4hg2 4hd1 6.0 4.2 0.0 4hg1 4hd2 3.5 1.7 0.0 1ha1 4hd2 6.0 4.2 0.0 4hg2 4hd2 3.5 1.7 0.0 1ha1 4hd2 6.0 4.2 0.0 4hg2 4hd2 5.0 3.2 0.0 1ha1 4hd2 6.0 4.2 0.0 4hg2 4hd2 5.0 3.2 0.0 3hn 4he2 5.0 3.2 0.0 3hn 4hg2 5.0 3.2 0.0 3hn 4hg1 5.0 3.2 0.0 3hn 2hb# 5.0 3.2 0.0	4hd2	4hb#	6.0 4.2 0.0
4hd1 4hb# 6.0 4.2 0.0 5hn 5h2 5.0 3.2 0.0 5hn 5h1 5.0 3.2 0.0 1ha1 4hd1 6.0 4.2 0.0 4hg1 4hd1 6.0 4.2 0.0 3hn 4hd1 5.0 3.2 0.0 4hg2 4hd1 6.0 4.2 0.0 4hg2 4hd1 6.0 4.2 0.0 4hg1 4hd2 3.5 1.7 0.0 1ha1 4hd2 6.0 4.2 0.0 4hg1 4hd2 3.5 1.7 0.0 1ha1 4hd2 5.0 3.2 0.0 1ha1 4hd2 5.0 3.2 0.0 1ha1 4hd2 5.0 3.2 0.0 3hn 4he2 5.0 3.2 0.0 3hn 4he2 5.0 3.2 0.0 3hn 4hg2 5.0 3.2 0.0 3hn 4hg1 5.0 3.2 0.0 2hn 2hb# 5.0 3.2 0.0<	5hn	4hb#	5.0 3.2 0.0
Shn Sh2 5.0 3.2 0.0 Shn Sh1 5.0 3.2 0.0 1ha1 4hd1 6.0 4.2 0.0 4hg1 4hd1 6.0 4.2 0.0 3hn 4hd1 5.0 3.2 0.0 4hg2 4hd1 6.0 4.2 0.0 4hg2 4hd1 6.0 4.2 0.0 4hg2 4hd1 6.0 4.2 0.0 4hg1 4hd2 3.5 1.7 0.0 1ha1 4hd2 6.0 4.2 0.0 4hg2 4hd2 3.5 1.7 0.0 1ha1 4hd2 5.0 3.2 0.0 1ha1 4hd2 5.0 3.2 0.0 1ha1 4he2 5.0 3.2 0.0 3hn 4he2 5.0 3.2 0.0 3hn 4hg2 5.0 3.2 0.0 3hn 4hg1 5.0 3.2 0.0 2hn 1ha2 5.0 3.2 0.0 2hn 2ha 5.0 3.2 0.0	4hd1	4hb#	6.0 4.2 0.0
Shn 5h1 5.0 3.2 0.0 1ha1 4hd1 6.0 4.2 0.0 4hg1 4hd1 6.0 4.2 0.0 3hn 4hd1 5.0 3.2 0.0 4hg2 4hd1 6.0 4.2 0.0 4hg1 4hd1 5.0 3.2 0.0 4hg2 4hd1 6.0 4.2 0.0 4hg1 4hd2 3.5 1.7 0.0 1ha1 4hd2 6.0 4.2 0.0 4hg2 4hd2 5.0 3.2 0.0 1ha1 4hd2 5.0 3.2 0.0 3hn 4he2 5.0 3.2 0.0 3hn 4he2 5.0 3.2 0.0 3hn 4hg2 5.0 3.2 0.0 3hn 4hg1 5.0 3.2 0.0 3hn 4hg1 5.0 3.2 0.0 3hn 4hg1 5.0 3.2 0.0 2hn 1ha2 5.0 3.2 0.0 2hn 2hb# 5.0 3.2 0.0	5hn	5h2	5.0 3.2 0.0
1ha1 4hd1 6.0 4.2 0.0 4hg1 4hd1 6.0 4.2 0.0 3hn 4hd1 5.0 3.2 0.0 4hg2 4hd1 6.0 4.2 0.0 4hg1 6.0 4.2 0.0 4hg2 4hg1 6.0 4.2 0.0 4hg1 4hg2 4hd2 3.5 1.7 0.0 1ha1 4hd2 6.0 4.2 0.0 4hg2 4hd2 5.0 3.2 0.0 1ha1 4he2 5.0 3.2 0.0 3hn 4hg2 5.0 3.2 0.0 3hn 4hg2 5.0 3.2 0.0 3hn 4hg1 5.0 3.2 0.0 3hn 4hg1 5.0 3.2 0.0 3hn 4hg1 5.0 3.2 0.0 2hn 1ha2 5.0 3.2 0.0 2hn 2hb# 5.0 3.2 0.0 2hn 2ha 5.0 3.2 0.0	5hn	5h1	5.0 3.2 0.0
4hg1 4hd1 6.0 4.2 0.0 3hn 4hd1 5.0 3.2 0.0 4hg2 4hd1 6.0 4.2 0.0 4hg1 4hd2 3.5 1.7 0.0 1ha1 4hd2 6.0 4.2 0.0 4hg2 4hd2 3.5 1.7 0.0 1ha1 4hd2 6.0 4.2 0.0 4hg2 4hd2 5.0 3.2 0.0 1ha1 4he2 5.0 3.2 0.0 3hn 4he2 5.0 3.2 0.0 3hn 4he2 5.0 3.2 0.0 3hn 4hg2 5.0 3.2 0.0 3hn 4hg1 5.0 3.2 0.0 3hn 4hg2 5.0 3.2 0.0 3hn 4hg1 5.0 3.2 0.0 3hn 4hg1 5.0 3.2 0.0 3hn 4hg1 5.0 3.2 0.0 2hn 1ha2 5.0 3.2 0.0 2hn 2hb# 5.0 3.2 0.0 2hn 2hb# 5.0 3.2 0.0	1ha1	4hd1	6.0 4.2 0.0
3hn 4hd1 5.0 3.2 0.0 4hg2 4hd1 6.0 4.2 0.0 4hg1 4hd2 3.5 1.7 0.0 1ha1 4hd2 6.0 4.2 0.0 4hg2 4hd2 5.0 3.2 0.0 1ha1 4hd2 5.0 3.2 0.0 1ha1 4he2 5.0 3.2 0.0 1ha1 4he2 5.0 3.2 0.0 3hn 4he2 5.0 3.2 0.0 3hn 4he2 5.0 3.2 0.0 3hn 4hg2 5.0 3.2 0.0 3hn 4hg2 5.0 3.2 0.0 3hn 4hg2 5.0 3.2 0.0 3hn 4hg1 5.0 3.2 0.0 2hn 1ha2 5.0 3.2 0.0 2hn 2hb# 5.0 3.2 0.0 2hn 2ha 5.0 3.2 0.0	4hg1	4hd1	6.0 4.2 0.0
4hg2 4hd1 6.0 4.2 0.0 4hg1 4hd2 3.5 1.7 0.0 1ha1 4hd2 6.0 4.2 0.0 4hg2 4hd2 5.0 3.2 0.0 1ha1 4he2 5.0 3.2 0.0 1ha1 4he2 6.0 4.2 0.0 3hn 4he2 6.0 4.2 0.0 3hn 4he2 5.0 3.2 0.0 3hn 4hg2 5.0 3.2 0.0 3hn 4hg2 5.0 3.2 0.0 3hn 4hg1 5.0 3.2 0.0 3hn 4hg1 5.0 3.2 0.0 3hn 4hg1 5.0 3.2 0.0 2hn 1ha2 5.0 3.2 0.0 2hn 2hb# 5.0 3.2 0.0 2hn 1ha2 5.0 3.2 0.0 2hn 2hb# 5.0 3.2 0.0 2hn 2hb# 5.0 3.2 0.0	3hn	4hd1	5.0 3.2 0.0
4hg1 4hd2 3.5 1.7 0.0 1ha1 4hd2 6.0 4.2 0.0 4hg2 4hd2 5.0 3.2 0.0 1ha1 4he2 5.0 3.2 0.0 1ha1 4he2 5.0 3.2 0.0 3hn 4he2 6.0 4.2 0.0 3hn 4he2 5.0 3.2 0.0 3hn 4hg2 5.0 3.2 0.0 3hn 4hg2 5.0 3.2 0.0 3hn 4hg2 5.0 3.2 0.0 3hn 4hg1 5.0 3.2 0.0 3hn 4hg1 5.0 3.2 0.0 3hn 4hg1 5.0 3.2 0.0 2hn 1ha2 5.0 3.2 0.0 2hn 2hb# 5.0 3.2 0.0 2hn 2hb# 5.0 3.2 0.0 2hn 2hb# 5.0 3.2 0.0	4hg2	4hd1	6.0 4.2 0.0
1ha1 4hd2 6.0 4.2 0.0 4hg2 4hd2 5.0 3.2 0.0 1ha1 4he2 5.0 3.2 0.0 3hn 4he2 6.0 4.2 0.0 3hn 4he2 6.0 4.2 0.0 3hn 4he2 5.0 3.2 0.0 3hn 4hg2 5.0 3.2 0.0 3hn 4hg2 5.0 3.2 0.0 3hn 4hg1 5.0 3.2 0.0 3hn 4hg1 5.0 3.2 0.0 2hn 1ha2 5.0 3.2 0.0 2hn 2hb# 5.0 3.2 0.0 2hn 2hb# 5.0 3.2 0.0 2hn 2hb# 5.0 3.2 0.0 2hn 2ha 5.0 3.2 0.0	4hg1	4hd2	3.5 1.7 0.0
4hg2 4hd2 5.0 3.2 0.0 1ha1 4he2 5.0 3.2 0.0 3hn 4he2 6.0 4.2 0.0 5hn 2hb# 5.0 3.2 0.0 3hn 4hg2 5.0 3.2 0.0 3hn 4hg2 5.0 3.2 0.0 3hn 4hg1 5.0 3.2 0.0 3hn 4hg1 5.0 3.2 0.0 2hn 1ha2 5.0 3.2 0.0 2hn 2hb# 5.0 3.2 0.0	1ha1	4hd2	6.0 4.2 0.0
1ha1 4he2 5.0 3.2 0.0 3hn 4he2 6.0 4.2 0.0 5hn 2hb# 5.0 3.2 0.0 3hn 4hg2 5.0 3.2 0.0 3hn 4hg1 5.0 3.2 0.0 3hn 4hg1 5.0 3.2 0.0 2hn 1ha2 5.0 3.2 0.0 2hn 2hb# 5.0 3.2 0.0	4hg2	4hd2	5.0 3.2 0.0
3hn 4he2 6.0 4.2 0.0 5hn 2hb# 5.0 3.2 0.0 3hn 4hg2 5.0 3.2 0.0 3hn 4hg1 5.0 3.2 0.0 3hn 4hg1 5.0 3.2 0.0 2hn 1ha2 5.0 3.2 0.0 2hn 2hb# 5.0 3.2 0.0	1ha1	4he2	5.0 3.2 0.0
5hn 2hb# 5.0 3.2 0.0 3hn 4hg2 5.0 3.2 0.0 3hn 4hg1 5.0 3.2 0.0 3hn 4hg1 5.0 3.2 0.0 2hn 1ha2 5.0 3.2 0.0 2hn 2hb# 5.0 3.2 0.0	3hn	4he2	6.0 4.2 0.0
3hn 4hg2 5.0 3.2 0.0 3hn 4hg1 5.0 3.2 0.0 2hn 1ha2 5.0 3.2 0.0 2hn 2hb# 5.0 3.2 0.0 2hn 2ha 5.0 3.2 0.0	5hn	2hb#	5.0 3.2 0.0
3hn 4hg1 5.0 3.2 0.0 2hn 1ha2 5.0 3.2 0.0 2hn 2hb# 5.0 3.2 0.0 2hn 2hb# 5.0 3.2 0.0 2hn 2ha 5.0 3.2 0.0 2hn 2ha 5.0 3.2 0.0	3hn	4hg2	5.0 3.2 0.0
2hn 1ha2 5.0 3.2 0.0 2hn 2hb# 5.0 3.2 0.0 2hn 2hb# 5.0 3.2 0.0 2hn 2ha 5.0 3.2 0.0 2hn 2ha 5.0 3.2 0.0	3hn	4hg1	5.0 3.2 0.0
2hn 2hb# 5.0 3.2 0.0 2hn 2ha 5.0 3.2 0.0 2hn 2ha 5.0 3.2 0.0	2hn	1ha2	5.0 3.2 0.0
2hn 2ha 5.0 3.2 0.0 2hn 1ha1 3.5 1 7 0.0	2hn	2hb#	5.0 3.2 0.0
2 5 1 7 0 0	2hn	2ha	5.0 3.2 0.0
2 1 d1 3.3 1.7 U.U	2hn	1ha1	3.5 1.7 0.0

2hn	3hn	5.0 3.2 0.0
3hn	2ha	5.0 3.2 0.0
2ha	2hb#	5.0 3.2 0.0
3hn	2hb#	5.0 3.2 0.0
3hn	3ha*	5.0 3.2 0.0

Methyl groups with degenerated protons.

* Not stereospecifically assigned protons.

NOE derived distance restraints used for calculating the solution structure of the major rotamer of **10c**. Values were calculated using the CcpNmr software.^[1]

LALAF_R1_run7A4		Distances (lower and upper		
		distance errors)		
4hg2	4he1	2.8 0.6 0.6		
4hg2	4hd2	2.6 0.5 0.5		
4hg2	4hd1	2.6 0.5 0.5		
4hg2	4hg1	2.8 1.0 0.6		
4he1	4hg1	3.2 0.6 0.6		
1ht2	1ha or 4he1	2.9 0.6 0.6		
1ha	1hd#*	2.5 0.5 0.5		
4hd1	1hd#*	2.3 0.5 0.7		
1hb2	1hd#*	2.3 0.5 0.7		
1hb1	1hd#*	2.3 0.2 1.7		
5hb2	5ha	2.4 0.5 0.5		
5hn	5hb2	2.2 0.4 2.5		
5hb1	5hb2	1.8 0.0 0.4		
5h1	5hb2	2.1 0.3 0.4		
1ha	1hb2	2.5 0.5 0.5		
1ha	1hb1	2.0 0.2 0.4		
2hb#	5ha	2.1 0.3 0.4		
5hn	5ha	2.3 0.5 0.5		
5hb1	5ha	2.6 0.5 0.5		
5h1	5hb1	1.9 0.1 0.4		
5hb1	2hb#	4.0 0.7 0.7		
5hn	5hb1	2.5 0.5 2.0		
5h2	5hb1	2.9 0.6 0.6		
3hb1	3ha	2.4 0.5 0.5		
3hn	3hb1	2.8 0.6 1.1		
4hd2	4hd1	2.3 0.5 0.5		
4he2	4hd2	2.9 0.6 0.6		
4he1	4hd2	2.5 0.5 0.5		
2hn	1ha	3.2 0.6 0.6		
2hn	2ha	2.8 0.6 0.6		
2hn	2hb#	2.3 0.5 0.5		
3hn	2hn	3.0 0.6 0.6		
2ha	2hb#	2.7 0.5 0.5		
5hn	2hb#	2.8 0.6 0.6		
3hb2	3hg	2.0 0.2 0.4		
3hb2	3ha	2.4 0.5 0.5		
5hn	5h2	3.1 0.6 0.6		
5hn	4hb#	2.3 0.5 0.5		
5hn	5h1	2.1 0.3 0.4		
3hn	3hg	2.5 0.5 0.5		
3hn	3ha	3.0 0.6 0.6		
3hg	3ha	2.0 0.2 0.4		
	3ha	2.0 0.2 0.4		
4he2	4he1	1.8 0.0 0.4		

4he1	4hd1	2.5 0.4 0.4
4he2	4hd1	2.5 0.4 0.4
5h2	5h1	1.9 0.1 0.4
4ha	4hb#	2.7 0.5 0.5
4he1	2hn	2.0 0.2 0.2 ^{\$}
4he2	3hn	2.0 0.2 0.2 ^{\$}
1n	1hd22	2.0 0.2 0.2 ^{\$}
4hg2	3ha	2.0 0.2 0.2 ^{\$}
4he1	1hd21	2.0 0.2 0.2 ^{\$}

Methyl groups with degenerated protons.

* Not stereospecifically assigned methyl groups.

^s The analysis of structures indicated the presence of steric clashes between these hydrogen atoms. Therefore, distances of 2.0 ± 0.2 Å were imposed for the final calculation.

Numbering of the hydrogen atoms of the covalent linker for XPLOR-NIH calculations:

NOE derived distance restraints used for calculating the solution structure of the major rotamer of **10c**. Values were set according to the NOE intensity as strong (2.7 Å), medium (3.5 Å), weak (5.0 Å) and very weak (6.0 Å).

LALAF_R1_run7B3		Distances (lower and upper		
		distance errors)		
4hg2	4he1	3.5 1.7 0.0		
4hg2	4hd2	3.5 1.7 0.0		
4hg2	4hd1	3.5 1.7 0.0		
4hg2	4hg1	3.5 1.7 0.0		
4he1	4hg1	5.0 3.2 0.0		
1ht2	1ha or 4he1	3.5 1.7 0.0		
1ha	1hd#*	3.5 1.7 0.0		
4hd1	1hd#*	3.5 1.7 0.0		
1hb2	1hd#*	5.0 3.2 0.0		
1hb1	1hd#*	5.0 3.2 0.0		
5hb2	5ha	3.5 1.7 0.0		
5hn	5hb2	5.0 3.2 0.0		
5hb1	5hb2	2.7 0.9 0.0		
5h1	5hb2	2.7 0.9 0.0		
1ha	1hb2	3.5 1.7 0.0		
1ha	1hb1	2.7 0.9 0.0		
2hb#	5ha	2.7 0.9 0.0		
5hn	5ha	3.5 1.7 0.0		
5hb1	5ha	3.5 1.7 0.0		
5h1	5hb1	2.7 0.9 0.0		
5hb1	2hb#	5.0 3.2 0.0		
5hn	5hb1	5.0 3.2 0.0		
5h2	5hb1	3.5 1.7 0.0		
3hb1	3ha	3.5 1.7 0.0		
3hn	3hb1	5.0 3.2 0.0		
4hd2	4hd1	3.5 1.7 0.0		
4he2	4hd2	3.5 1.7 0.0		
4he1	4hd2	3.5 1.7 0.0		
2hn	1ha	5.0 3.2 0.0		
2hn	2ha	3.5 1.7 0.0		
2hn	2hb#	3.5 1.7 0.0		
3hn	2hn	5.0 3.2 0.0		
2ha	2hb#	3.5 1.7 0.0		
5hn	2hb#	3.5 1.7 0.0		
3hb2	3hg	2.7 0.9 0.0		
3hb2	3ha	3.5 1.7 0.0		
5hn	5h2	5.0 3.2 0.0		
5hn	4hb#	3.5 1.7 0.0		
5hn	5h1	2.7 0.9 0.0		
3hn	3hg	3.5 1.7 0.0		
3hn	3ha	5.0 3.2 0.0		
3hg	3ha	2.7 0.9 0.0		
3hd1# ou 3hd2#	3ha	2.7 0.9 0.0		

4he2	4he1	2.7 0.9 0.0
4he1	4hd1	3.5 1.7 0.0
4he2	4hd1	3.5 1.7 0.0
5h2	5h1	2.7 0.9 0.0
4ha	4hb#	3.5 1.7 0.0
4he1	2hn	1.8 0.0 0.0 ^{\$}
4he2	3hn	1.8 0.0 0.0 ^{\$}
1n	1hd22	2.0 0.2 0.2 ^{\$}

Methyl groups with degenerated protons.

* Not stereospecifically assigned methyl groups.

[§] The analysis of structures indicated the presence of steric clashes between these hydrogen atoms.

Therefore, distances of 1.8 Å and 2.0 ± 0.2 Å were imposed for the final calculation.

Comparison of the sequential and short-range NOE connectivity and chemical shift indexes (CSI) of the major rotamers of the two cyclic peptides **10a** (left) and **10c** (right).

Overlap of backbone heavy atoms of the center member of cluster I of **10c_down** with the NMR structure of **10c**. A RMSD of 0.55 Å was calculated. Only the 14 heavy atoms constituting the turn, used for superposition and RMSD calculation, are shown.

Catalyst parameter input for conformational search:

```
// Catalyst parameter file
confAnalysis.best.max.successive.failures=1000
confAnalysis.best.torsion.factor=10
sysSearch.sp3sp3SearchOffset=10
sysSearch.sp3sp2SearchIncrement=10
sysSearch.sp3sp2SearchIncrement=10
confAnalysis.fast.systematic.upperbound=10000
confAnalysis.fast.random.nAttempt=1000
confAnalysis.systematicFlipAxialEquatorialMaxRingSize=50
```


Molecular modeling of **10a-c_cis** isomers.

RMSD (Å) versus the first conformation of 10,000 conformations from 100 ns molecular dynamic simulations for macrocyclic peptides **10a-c_cis**.

Dihedral angles measured in center members of clusters of macrocyclic peptides 10a-c_cis .								
	Cluster ^[a]	${\pmb \phi}_{i+1}$	$\psi_{_{i+1}}$	${\pmb \Phi}_{i+2}$	$\Psi_{\text{i+2}}$	${\pmb \phi}_{{\sf i}+3}$	$\psi_{\text{i+3}}$	<i>d</i> (Å) ^[b]
10a	l (71)	157	-153	-68	-47	-81	-136	4.5
	II (17)	117	-127	-71	-48	-81	-147	4.8
	III (12)	152	-127	-66	-63	-96	-176	4.8
10b	l (66)	71	-155	-68	-64	-95	134	5.1
	II (16)	93	-175	-65	-46	-94	141	4.9
	III (9)	72	-153	-55	-38	-133	111	5.2
	IV (3)	99	160	-61	-39	-107	121	4.7
	V (2)	77	-172	-69	-44	-114	151	4.7
	VI (2)	72	-152	-64	-61	-122	106	5.4
10c	I (51)	-55	-91	-81	-60	-87	136	5.2
	II (25)	-97	-98	-50	-52	-99	140	5.1
	III (9)	74	-132	-71	-64	-102	113	5.6
	IV (3)	67	-146	-64	-77	-91	125	5.4
	V (3)	-75	-87	-66	-64	-82	141	5.3
	VI (2)	45	-92	-74	-106	-74	126	5.9

[a] The cluster size in % is given in parenthesis; [b] d: distance from $C\alpha_{i+1}$ to $C\alpha_{i+3}.$

Conformations of the center members of the two major clusters of **10a-c_cis** identified by molecular dynamic simulations. Cluster sizes are given in %. For clarity, only polar hydrogen atoms are shown, and the phenylalanine 5 amino acid is not represented.

[1] W. F. Vranken, W. Boucher, T. J. Stevens, R. H. Fogh, A. Pajon, M. Llinas, E. L. Ulrich, J. L. Markley, J. Ionides and E. D. Laue, *Proteins* **2005**, *59*, 687-696.