Supporting Information

A mild method for synthesizing carboxylic acids by oxidation of aldoximes using hypervalent iodine reagents

Akira Nakamura,^a Hodaka Kanou,^a Junki Tanaka,^a Akira Imamiya,^a Tomohiro Maegawa^{*a} and Yasuyoshi Miki^{*a,b}

^{a.} School of Pharmaceutical Sciences, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan.

^{b.} Research Organization of Science and Technology, Research Center for Drug Discovery and pharmaceutical Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan.

General	S2
General Oxidation Procedure	S2
Preparation of rhodamine-hydroxamic acid	
Signaling experiment	
NMR data	S3-S6
NMR spectrum	S7-S18
References	

Experimental Section

General. ¹H NMR spectra were recorded on the JEOL JMN-400 spectrometer in CDCl₃ or DMSO- d_6 with tetramethylsilane as an internal standard. Data are reported as follows: chemical shift in ppm (δ), integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), and coupling constant (Hz).

Materials: Unless otherwise noted, all reagents, including $PhI(OCOCH_3)_2$, PhI(OH)OTs and $PhI(OCOCF_3)_2$, and solvents were purchased from commercial suppliers and used without further purification.

General Oxidation Procedure: To a DMSO-H₂O (50:1, 2 mL) solution of aldoxime **1** (0.2 mmol) was added PhI(OH)OTs (0.21 mmol) at room temperature, and another amount of PhI(OH)OTs (0.21 mmol) was added in 30 min. After completion of the reaction as indicated by TLC monitoring, the reaction mixture was poured into 10% aq. Na₂CO₃ and then EtOAc was added. The organic layer was extracted with 10% aq. Na₂CO₃. The combined aqueous layers were acidified by addition of aq. HCl, and then extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and then concentrated *in vacuo* to afford pure carboxylic acid **2** with no need for further purification.

Preparation of rhodamine-hydroxamic acid¹

To a solution of rhodamine B base (221 mg, 0.5 mmol) and hydroxylamine hydrochloride (0.347 g, 5 mmol) in EtOH (5 mL) was added NaOH (200 mg, 5 mmol) dissolved in water (2 mL). The reaction mixture was refluxed for 10 h, and then poured into water (20 mL). The solution was extracted with CH₂Cl₂. The combined organic layers were dried over anhydrous Na₂SO₄ and then concentrated *in vacuo*. The crude was purified by column chromatography (silica gel, ethyl acetate) to give product (208 mg, 91%) as a beige colored solid. ¹H NMR (400 MHz, CDCl₃) : δ 7.84 (dd, *J* = 6.0, 1.6 Hz, 1H), 7.44–7.40 (m, 2H), 7.07 (d, *J* = 6.8 Hz, 1H), 6.51 (d, *J* = 8.8 Hz, 2H), 6.40 (d, *J* = 2.4 Hz, 2H), 6.27 (dd, *J* = 8.8 Hz, 2H), 3.32 (q, *J* = 7.2 Hz, 8H), 1.15 (t, *J* = 7.2 Hz, 12H).

Signaling experiment¹

Solution of rhodamine-hydroxamic acid (5.0×10^{-4} M) and PhI(OH)OTs (5.0×10^{-2} M) were prepared in DMSO. The solution of rhodamine-hydroxamic acid (30μ L) was diluted to 3.0 mL with DMSO and pH 4.8 acetate buffer solution to make a composition of 1:9, v/v (colorless solution). The solution of PhI(OH)OTs (30μ L) was added and the resulting solution was fluoresced in a second.

NMR data

3-Methoxybenzoic acid (2b)³

¹H NMR (400 MHz, CDCl₃): δ 7.71 (d, *J* = 8.0 Hz, 1H), 7.61 (s, 1H), 7.37 (dd, *J* = 8.4, 7.6 Hz, 1H), 7.14 (dd, *J* = 8.4, 2.4 Hz, 1H), 3.85 (s, 3H).

Ο

`OMe 2c

O

OH

2-Methoxybenzoic acid (2c)³

OH ¹H NMR (400 MHz, CDCl₃): δ 8.18 (dd, J = 7.6, 2.0 Hz, 1H), 7.57 (ddd, J = 8.4, 7.6, 1.6 Hz, 1H), 7.13 (ddd, J = 8.8, 7.6, 0.8 Hz, 1H), 7.05 (d, J = 8.8 Hz, 1H), 4.07 (s, 3H).

The hybrid of the second seco

2g

HO

4-Bromobenzoic acid (2h)³

¹H NMR (400 MHz, DMSO-*d*₆): δ 13.14 (brs, 1H), 7.81 (d, *J* = 8.8 Hz, 2H), 7.71 (d, *J* = 8.0 Hz, 2H).

4-Chlorobenzoic acid (2i)² ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.93 (d, *J* = 11.6 Hz, 2H), 7.57 (d, *J* = 8.4 Hz, 2H).

4-Nitrobenzoic acid (2j)³ ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.32 (d, *J* = 8.8 Hz, 2H), 8.16 (d, *J* = 8.0 Hz, 2H).

2-Naphthoic acid (2l)²
 OH
 ¹H NMR (400 MHz, DMSO-d₆): δ 8.61 (s, 1H), 8.12 (d, J = 8.0 Hz, 1H), 7.97-8.02 (m, 3H), 7.59-7.68 (m, 2H).
 2I

4-Cyanobenzoic acid (2m)² ¹H NMR (400 MHz, CDCl₃): δ 8.20 (d, *J* = 8.8 Hz, 1H), 7.78 (d, *J* = 8.0 Hz, 1H).

2m

NC

4-Acetoxybenzoic acid (2n)⁵
⁵OH ¹H NMR (400 MHz, CDCl₃): δ 8.13 (d, J = 8.8 Hz, 1H), 7.19 (d, J = 8.8 Hz, 1H), 2.32 (s, 3H).

Thiophene-2-carboxylic acid (20)⁶ ¹H NMR (400 MHz, CDCl₃): δ 7.89-7.88 (m, 1H), 7.64-7.63 (m, 1H), 7.14-7.12 (m, 1H).

1-Tosyl-1*H***-indole-3-carboxylic acid (2p)⁷** ¹H NMR (400 MHz, CDCl₃): δ 8.38 (s, 1H), 8.15-8.13 (m, 1H), 7.97-7.95 (m, 1H), 7.83 (d, *J* = 8.4 Hz, 2H), 7.38-7.34 (m, 2H), 7.27 (d, *J* = 8.4 Hz, 1H), 2.35 (s, 3H).

Rhodamine-hydroxamic acid ¹H NMR

2a¹H NMR

2c ¹H NMR

2e ¹H NMR

2d ¹H NMR

2g ¹H NMR

S10

$2f^{1}HNMR$

2i ¹H NMR

2h ¹H NMR

2k ¹H NMR

2m ¹H NMR

20 ¹H NMR

2q¹H NMR

S15

2p ¹H NMR

2s ¹H NMR

2r¹H NMR

2u¹H NMR

$2v {}^{1}H NMR$

References

- T. Sun, J. O. Moon, M. G. Choi, Y. Cho, S. W. Ham and S. K. Chang, *Sensors Actuators B Chem.*, 2013, 182, 755.
- 2. Z.-B. Chen, K. Liu, F.-L. Zhang, Q. Yuan and Y.-M. Zhu, Org. Biomol. Chem., 2017, 15, 8078
- 3. A. K. Shil, S. Kumar, C. B. Reddy, S. Dadhwal, V. Thakur and P. Das, Org. Lett., 2015, 17, 5352.
- 4. P. Pahari, U. P. Saikia, T. P. Das, C. Damodaran and J. Rohr, Tetrahedron, 2016, 72, 3324.
- 5. J. N. Moorthy and K. N. Parida, J. Org. Chem., 2014, 79, 11431.
- 6. N. Jiang and A. J. Ragauskas, J. Org. Chem., 2007, 72, 7030.
- 7. G. J. P. Perry, J. M. Quibell, A. Panigrahi and I. Larrosa, J. Am. Chem. Soc., 2017, 139, 11527.
- 8. A. C. Schmidt and C. B. W. Stark, Org. Lett., 2011, 13, 4164.
- 9. M. Prashad, Y. Lu, H.-Y. Kim, B. Hu, O. Repic and T. J. Blacklock, Synth. Commun., 1999, 29, 2937.
- 10. M. Zeng and S. B. Herzon, J. Org. Chem., 2015, 80, 8604.
- 11. M. Trincado, H. Grtzmacher, F. Vizza and C. Bianchini, Chem. Eur. J., 2010, 16, 2751.
- 12. C. K. Savile and R. J. Kazlauskas, J. Am. Chem. Soc., 2005, 127, 12228.