Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

## **Electronic Supplementary Information (ESI)**

## Synthesis of Azulene-substituted Benzofurans and Isocoumarins *via* Intramolecular Cyclization of 1-Ethynylazulenes, and their Structural and Optical Properties

Taku Shoji, Miwa Tanaka, Sho Takagaki, Kota Miura, Akira Ohta, Ryuta Sekiguchi, Shunji Ito, Shigeki Mori, and Tetsuo Okujima

## > Contents

| 1. | Experimental details                                                                                 | S2-S27  |
|----|------------------------------------------------------------------------------------------------------|---------|
| 2. | Copies of <sup>1</sup> H NMR, <sup>13</sup> C NMR, COSY and HRMS of new compounds (Figures S1-S102). |         |
|    |                                                                                                      | S28-S79 |
| 3. | ORTEP drawing of <b>3d</b> , <b>8a</b> and <b>8d</b> (Figures S103–S105).                            | S80-S81 |
| 4. | Frontier Kohn–Sham orbitals of compounds <b>3a-3d</b> (Figures S106-S109).                           | S82-S89 |

## 1. Experimental details



Methyl 1-trimethylsilylethynylazulene-3-carboxylate: To a degassed solution of 1a (628 mg, 2.01 mmol), trimethylsilylacetylene (417 mg, 4.25 mmol), and Cul (41 mg, 0.22 mmol) in THF (10 mL) and triethylamine (10 mL) was added tetrakis(triphenylphosphine)palladium(0) (73 mg, 0.063 mmol). The resulting mixture was stirred at 50 °C for 2 h under an Ar atmosphere. The reaction mixture was poured into a 10% NH<sub>4</sub>Cl solution and extracted with hexane. The organic layer was washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The residue was purified column chromatography on CH<sub>2</sub>Cl<sub>2</sub> by silica gel with to give methyl 1-trimethylsilylethynylazulene-3-carboxylate (556 mg, 98%). mp 97-100 °C; IR (AT-IR): v<sub>max</sub> = 2973 (w), 2945 (w), 2137 (m), 1698 (s), 1577 (w), 1536 (w), 1510 (w), 1455 (s), 1442 (m), 1424 (m), 1411 (m), 1384 (w), 1368 (w), 1310 (w), 1296 (w), 1242 (m), 1223 (s), 1205 (s), 1140 (w), 1047 (s), 997 (m), 959 (w), 892 (m), 874 (s), 844 (s), 774 (s), 735 (s), 702 (m) cm<sup>-1</sup>; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): δ<sub>H</sub> = 9.60 (d, 1H, J = 9.7 Hz, H<sub>4</sub>), 8.68 (d, 1H, J = 9.7 Hz, H<sub>8</sub>), 8.44 (s, 1H, H<sub>2</sub>), 7.84 (t, 1H, J = 9.7 Hz, H<sub>6</sub>), 7.60-7.52 (m, 2H, H<sub>5.7</sub>), 3.95 (s, 3H, CO<sub>2</sub>Me), 0.32 (s, 9H, TMS) ppm; <sup>13</sup>C NMR (125) MHz, CDCl<sub>3</sub>):  $\delta_{C}$  = 165.3, 145.4, 143.1, 141.1, 140.3, 138.5, 138.0, 129.2, 127.8, 116.1, 110.4, 100.1, 99.0, 51.4, 0.4 ppm; HRMS (EI-MS, positive): calcd for  $C_{17}H_{18}O_2Si^+$  [M]<sup>+</sup> 282.1071; found: 282.1078.



Methyl 1-ethynylazulene-3-carboxylate То (2a): solution of methyl а 1-trimethylsilylethynylazulene-3-carboxylate (556 mg, 1.97 mmol) in MeOH (30 mL) was added K<sub>2</sub>CO<sub>3</sub> (1.39 g, 10.1 mmol). The resulting mixture was stirred at room temperature for 1 h. The reaction mixture was poured into water and extracted with AcOEt. The organic layer was washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with toluene to give 2a (353 mg, 85%). mp 110-113 °C; IR (AT-IR):  $v_{max} = 3239$  (m), 2950 (w), 2851 (w), 2091 (w), 1692 (m), 1595 (w), 1582 (w), 1538 (w), 1516 (w), 1458 (w), 1437 (m), 1421 (w), 1413 (w), 1392 (w), 1314 (w), 1299 (w), 1261 (w), 1226 (w), 1205 (s), 1183 (w), 1167 (w), 1127 (w), 1045 (m), 985 (w), 962 (w), 948 (w), 887 (w), 870 (w), 777 (w), 741 (m), 712 (w), 661 (w) cm<sup>-1</sup>; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta_{\rm H}$  = 9.63 (d, 1H, J = 10.0 Hz, H<sub>4</sub>), 8.73 (d, 1H, J = 10.0 Hz, H<sub>8</sub>), 8.46 (s, 1H, H<sub>2</sub>), 7.87 (t, 1H, J = 10.0 Hz, H<sub>6</sub>), 7.61 (t, 1H, J = 10.0 Hz, H<sub>5</sub>), 7.55 (t, 1H, J = 10.0 Hz, H<sub>7</sub>), 3.95 (s, 3H, CO<sub>2</sub>Me), 3.45 (s, 1H, C≡CH) ppm; <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta_{C}$  = 165.3, 145.6, 143.2, 141.1, 140.4, 138.7, 137.9, 129.3, 127.9, 116.1, 109.2, 81.7, 79.0, 51.4 ppm; HRMS (EI-MS, positive): calcd for  $C_{14}H_{10}O_2^+$  [M]<sup>+</sup> 210.0676; found: 210.0684.



Methyl 6-isopropyl-1-trimethylsilylethynylazulene-3-carboxylate: To a degassed solution of 1c (357 mg, 1.01 mmol), trimethylsilylacetylene (196 mg, 1.99 mmol), and Cul (20 mg, 0.11 mmol) in THF (5 mL) and triethylamine (5 mL) was added tetrakis(triphenylphosphine)palladium(0) (44 mg, 0.038 mmol). The resulting mixture was stirred at 50 °C for 21 h under an Ar atmosphere. The reaction mixture was poured into a 10% NH<sub>4</sub>Cl solution and extracted with hexane. The organic layer was washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with hexane/AcOEt (5 : 1) to give methyl 6-isopropyl-1-trimethylsilylethynylazulene-3-carboxylate (324 mg, 99%) as purple solid. mp 106-107 °C; IR (AT-IR): v<sub>max</sub> = 2961 (w), 2148 (m), 1695 (s), 1579 (m), 1550 (w), 1508 (w), 1442 (s), 1422 (s), 1403 (m), 1391 (m), 1379 (m), 1365 (m), 1330 (w), 1302 (w), 1250 (s), 1199 (s), 1138 (w), 1125 (w), 1103 (w), 1073 (m), 1055 (s), 1036 (m), 999 (m), 910 (w), 874 (s), 843 (s), 774 (s), 760 (s), 735 (m), 701 (m), 678 (w), 661 (w), 652 (w) cm<sup>-1</sup>; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta_{H}$  = 9.50 (d, 1H, J = 10.3 Hz, H<sub>4</sub>), 8.61 (d, 1H, J = 10.0 Hz, H<sub>8</sub>), 8.34 (s, 1H, H<sub>2</sub>), 7.53-7.48 (m, 2H, H<sub>5.7</sub>), 3.93 (s, 3H, CO<sub>2</sub>Me), 3.15 (sept, 1H, J = 6.9 Hz, *i*-Pr), 1.38 (d, 6H, J = 6.9 Hz, *i*-Pr), 0.32 (s, 9H, TMS) ppm; <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $δ_{C}$  = 165.4, 163.2, 144.2, 141.9, 139.8, 138.2, 137.6, 128.6, 127.1, 115.7, 109.9, 100.4, 98.5, 51.3, 39.9, 24.4, 0.4 ppm; HRMS (EI-MS, positive) calcd for C<sub>20</sub>H<sub>24</sub>O<sub>2</sub>Si<sup>+</sup> [M]<sup>+</sup> 324.1541; found: 324.1558.



1-ethynyl-6-isopropylazulene-3-carboxylate (2c): Methvl То а solution of methyl 6-isopropyl-1-trimethylsilylethynylazulene-3-carboxylate (148 mg, 0.46 mmol) in MeOH (20 mL) was added K<sub>2</sub>CO<sub>3</sub> (323 mg, 2.34 mmol). The resulting mixture was stirred at room temperature for 1 h. The reaction mixture was poured into water and extracted with hexane. The organic layer was washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with hexane/AcOEt (15 : 1) to give 2c (105 mg, 90%) as purple oil. IR (AT-IR): v<sub>max</sub> = 3296 (w), 2962 (w), 2097 (w), 1692 (m), 1583 (w), 1508 (w), 1445 (s), 1424 (m), 1390 (w), 1327 (w), 1307 (w), 1242 (w), 1205 (s), 1129 (w), 1069 (w), 1050 (m), 1030 (w), 980 (w), 847 (m), 773 (w), 726 (w), 681 (w), 665 (w) cm<sup>-1</sup>; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): δ<sub>H</sub> = 9.53 (d, 1H, J = 10.3 Hz, H<sub>4</sub>), 8.64 (d, 1H, J = 10.3 Hz, H<sub>8</sub>), 8.35 (s, 1H, H<sub>2</sub>), 7.54 (dd, 1H, J = 10.3, 1.3 Hz, H<sub>5</sub>), 7.48 (d, 1H, J = 10.3 Hz, H<sub>7</sub>), 3.94 (s, 3H, CO<sub>2</sub>Me), 3.43 (s, 1H, C≡CH), 3.15 (sept, 1H, J = 6.9 Hz, *i*-Pr), 1.38 (d, 6H, J = 6.9 Hz, *i*-Pr) ppm; <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta_{C} = 165.4$ , 163.3, 144.3, 142.0, 139.8, 138.3, 137.4, 128.6, 127.2, 115.7, 108.7, 81.2, 79.2, 51.3, 39.9, 24.3 ppm; HRMS (EI–MS, positive) calcd for  $C_{17}H_{16}O_2^+$  [M]<sup>+</sup> 252.1145; found: 252.1153.



Methyl 5-isopropyl-2-methyl-1-trimethylsilylethynylazulene-3-carboxylate: To a degassed solution of 1d (1.41 g, 3.83 mmol), trimethylsilylacetylene (563 mg, 5.73 mmol), and Cul (73 mg, 0.38 mmol) in THF (10 mL) triethylamine (10 mL) added and was tetrakis(triphenylphosphine)palladium(0) (133 mg, 115 mmol). The resulting mixture was stirred at 50 °C for 12 h under an Ar atmosphere. The reaction mixture was poured into a 10% NH<sub>4</sub>Cl solution and extracted with toluene. The organic layer was washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The residue was purified by column chromatography on silica with hexane/AcOEt (10 1) methyl gel to give 2 5-isopropyl-2-methyl-1-trimethylsilylethynylazulene-3-carboxylate (1.28 g, 99%) as purple solid. mp 125-126°C; IR (AT-IR): v<sub>max</sub> = 2959 (w), 2134 (w), 1686 (s), 1493 (w), 1439 (s), 1422 (m), 1381 (m), 1305 (w), 1249 (m), 1220 (s), 1196 (w), 1173 (w), 1117 (m), 1071 (w), 1033 (w), 1006 (w), 960 (w), 895 (m), 842 (s), 805 (m), 778 (m), 759 (m), 747 (w), 700 (w), 677 (w), 666 (w) cm<sup>-1</sup>; <sup>1</sup>H NMR  $(500 \text{ MHz}, \text{ CDCI}_3)$ :  $\delta_H = 9.59 \text{ (d, 1H, } J = 1.1 \text{ Hz}, \text{ H}_4)$ , 8.46 (d, 1H,  $J = 10.0 \text{ Hz}, \text{ H}_8)$ , 7.69 (d, 1H,  $J = 1.1 \text{ Hz}, \text{ H}_4$ ) 10.0 Hz, H<sub>6</sub>), 7.46 (t, 1H, J = 10.0 Hz, H<sub>7</sub>), 3.97 (s, 3H, CO<sub>2</sub>Me), 3.19 (sept, 1H, J = 6.9 Hz, *i*-Pr), 2.87 (s, 3H, Me), 1.41 (d, 6H, J = 6.9 Hz, *i*-Pr), 0.33 (s, 9H, TMS) ppm; <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta_{\rm C}$  = 166.5, 156.4, 150.6, 144.2, 142.1, 137.4, 136.7, 134.3, 127.9, 113.8, 111.3, 101.3, 100.0, 51.0, 39.5, 24.7, 17.0, 0.5 ppm; HRMS (EI-MS, positive): calcd for C<sub>21</sub>H<sub>26</sub>O<sub>2</sub>Si<sup>+</sup> [M]<sup>+</sup> 338.1697; found: 338.1704.



**Methyl 1-ethynyl-5-isopropyl-2-methylazulene-3-carboxylate (2d):** To a solution of methyl 7-isopropyl-2-methyl-3-trimethylsilylethynylazulene-1-carboxylate (849 mg, 2.51 mmol) in MeOH (30 mL) was added K<sub>2</sub>CO<sub>3</sub> (1.75 g, 12.7 mmol). The resulting mixture was stirred at room temperature for 1 h. The reaction mixture was poured into water and extracted with hexane. The organic layer was washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with hexane/AcOEt (10 : 1) to give **2d** (668 mg, 99%) as purple oil. IR (AT–IR): v<sub>max</sub> = 2959 (w), 2092 (w), 1682 (s), 1578 (w), 1496 (w), 1442 (s), 1420 (s), 1389 (m), 1380 (m),1305 (w), 1221 (s), 1194 (m), 1167 (w), 1135 (m), 1107 (s), 1066 (w), 1029 (w), 1005 (w), 957 (w), 930 (w), 843 (w), 795 (m), 780 (s), 734 (m), 665 (w) cm<sup>-1</sup>; <sup>1</sup>H NMR (500 MHz, CDCI<sub>3</sub>):  $\delta_{H}$  = 9.62 (d, 1H, *J* = 1.4 Hz, H<sub>4</sub>), 8.49 (d, 1H, *J* = 10.3 Hz, H<sub>8</sub>), 7.71 (d, 1H, *J* = 10.3 Hz, H<sub>6</sub>), 7.47 (t, 1H, *J* = 10.0 Hz, H<sub>7</sub>), 3.98 (s, 3H, CO<sub>2</sub>Me), 3.58 (s, 1H, C≡CH), 3.21 (sept, 1H, *J* = 6.9 Hz, *i*-Pr), 2.89 (s, 3H, Me), 1.41 (d, 6H, *J* = 6.9 Hz, *i*-Pr) ppm; <sup>13</sup>C NMR (125 MHz, CDCI<sub>3</sub>):  $\delta_{C}$  = 166.4, 156.5, 150.7, 144.4, 142.0, 137.5, 136.8, 134.1, 127.9, 113.7, 110.0, 83.9, 78.8, 51.0, 39.5, 24.7, 16.9 ppm; HRMS (EI–MS, positive): calcd for C<sub>18</sub>H<sub>18</sub>O<sub>2</sub><sup>+</sup> [M]<sup>+</sup> 266.1302; found: 266.1314.



2-(3-Methoxycarbonylazulen-1-yl)benzofuran (3a): To a degassed solution of 2a (211 mg, 1.00 mmol), 2-iodophenol (335 mg, 1.52 mmol), and Cul (18 mg, 0.095 mmol) in triethylamine (5 mL) and THF (5 mL) was added tetrakis(triphenylphosphine)palladium(0) (34 mg, 0.029 mmol). The resulting mixture was stirred at 50 °C for 21 h under an Ar atmosphere. The reaction mixture was poured into a 10% NH<sub>4</sub>Cl solution and extracted with toluene. The organic layer was washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with  $CH_2CI_2$  to give **3a** (196 mg, 65%) as green crystals. mp 110-111°C; IR (AT-IR): v<sub>max</sub> = 3109 (w), 2959 (w), 1693 (s), 1573 (m), 1524 (w), 1447 (m), 1386 (m), 1303 (w), 1259 (m), 1241 (m), 1237 (m), 1208 (s), 1169 (m), 1125 (m), 1091 (m), 1085 (m), 1047 (w), 1012 (m), 964 (w), 929 (w), 898 (m), 888 (m), 881 (m), 850 (w), 800 (m), 776 (m), 761 (w), 749 (s), 738 (m), 727 (w) cm<sup>-1</sup>; UV/Vis (CH<sub>2</sub>Cl<sub>2</sub>):  $\lambda_{max}$  (log  $\varepsilon$ ) = 277 (4.47), 314 (4.59), 340 sh (4.30), 408 (3.99), 432 sh (3.82), 579 (2.72), 640 sh (2.53) nm; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta_{H}$  = 9.66 (d, 1H, J = 10.0 Hz, H<sub>4</sub>), 9.22 (d, 1H, J = 10.0 Hz, H<sub>8</sub>), 8.74 (s, 1H, H<sub>2</sub>), 7.83 (t, 1H, J = 10.0 Hz, H<sub>6</sub>), 7.61 (d, 1H, J = 7.4 Hz,  $H_{4'}$  or  $H_{7'}$  of benzofuran), 7.58-7.51 (m, 3H,  $H_{5.7}$  and  $H_{4'}$  or  $H_{7'}$  of benzofuran), 7.32 -7.25 (m, 2H,  $H_{5'}$  and  $H_{6'}$  of benzofuran), 7.03 (s, 1H,  $H_{3'}$  of benzofuran), 3.99 (s, 3H, CO<sub>2</sub>Me) ppm; <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta_{C}$  = 165.5, 154.7, 153.6, 142.6, 140.4, 139.5, 139.2, 138.6, 138.0, 129.3, 128.8, 128.0, 123.9, 123.0, 120.6, 118.6, 116.7, 111.0, 102.5, 51.4 ppm; HRMS (FAB-MS, positive): calcd for  $C_{20}H_{14}O_3^+$  [M]<sup>+</sup> 302.0938; found: 302.0943.



2-(6-IsopropyI-3-methoxycarbonylazulen-1-yl)benzofuran (3c): To a degassed solution of 2c (146 mg, 0.579 mmol), 2-iodophenol (192 mg, 0.873 mmol), and Cul (11 mg, 0.058 mmol) in triethylamine (3 mL) and THF (3 mL) was added tetrakis(triphenylphosphine)palladium(0) (23 mg, 0.020 mmol). The resulting mixture was stirred at 50 °C for 18.5 h under an Ar atmosphere. The reaction mixture was poured into a 10% NH<sub>4</sub>Cl solution and extracted with toluene. The organic layer was washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with CH<sub>2</sub>Cl<sub>2</sub> to give **3c** (144 mg, 72%) as green crystals. mp 115–116 °C; IR (AT–IR): v<sub>max</sub> = 2963 (w), 1692 (s), 1580 (m), 1505 (w), 1443 (m), 1430 (w), 1417 (m), 1353 (w), 1308 (w), 1257 (w), 1230 (w), 1204 (s), 1174 (w), 1133 (w), 1102 (w), 1074 (w), 1046 (m), 1023 (w), 953 (m), 910 (w), 881 (w), 863 (w), 844 (w), 772 (m), 757 (w), 744 (s), 729 (w), 669 (w), 664 (w) cm<sup>-1</sup>; UV/Vis (CH<sub>2</sub>Cl<sub>2</sub>):  $\lambda_{max}$  (log  $\epsilon$ ) = 281 (4.47), 319 (4.62), 347 sh (4.36), 408 (4.02), 434 sh (3.82), 564 (2.80), 621 sh (2.61) nm; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta_{\rm H}$  = 9.58 (d, 1H, J = 10.6 Hz, H<sub>4</sub>), 9.15 (d, 1H, J = 10.6 Hz, H<sub>8</sub>), 8.64 (s, 1H, H<sub>2</sub>), 7.61 (d, 1H, J = 10.5 Hz, H<sub>5</sub>), 7.58 (d, 1H, J = 8.0 Hz, H<sub>4</sub>, of benzofuran), 7.57 (d, 1H, J = 10.5 Hz, H<sub>7</sub>), 7.48 (1H, J = 7.7 Hz,  $H_{7'}$  of benzofuran), 7.31-7.25 (m, 2H,  $H_{5',6'}$  of benzofuran), 7.00 (s, 1H,  $H_{3'}$  of benzofuran), 3.99 (s, 3H, CO<sub>2</sub>Me), 3.14 (sept, 1H, J = 6.9 Hz, *i*-Pr), 1.40 (d, 6H, J = 6.9 Hz, *i*-Pr) ppm; <sup>13</sup>C NMR (125) MHz, CDCl<sub>3</sub>):  $\delta_{C}$  = 165.6, 163.1, 154.6, 154.0, 141.2, 138.3, 138.2, 138.0, 137.6, 129.4, 128.0, 127.4, 123.7, 122.9, 120.5, 118.2, 116.4, 110.9, 102.1, 51.3, 39.7, 24.3 ppm; HRMS (FAB-MS, positive): calcd for  $C_{23}H_{20}O_3^+$  [M]<sup>+</sup> 344.1407; found: 344.1399.



2-(5-IsopropyI-3-methoxycarbonyI-2-methylazulen-1-yl)benzofuran (3d): To a degassed solution of 2d (268 mg, 1.01 mmol), 2-iodophenol (335 mg, 1.52 mmol), and Cul (18 mg, 0.095 mmol) in triethylamine (5 mL) and THF (5 mL) was added tetrakis(triphenylphosphine)palladium(0) (16 mg, 0.014 mmol). The resulting mixture was stirred at 50 °C for 16 h under an Ar atmosphere. The reaction mixture was poured into a 10% NH<sub>4</sub>Cl solution and extracted with toluene. The organic layer was washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with CH<sub>2</sub>Cl<sub>2</sub> to give 3d (111 mg, 31%) as green crystals. mp 124–125 °C; IR (AT–IR): v<sub>max</sub> = 2956 (w), 1675 (s), 1589 (w), 1518 (w), 1492 (w), 1455 (s), 1441 (s), 1419 (m), 1379 (m), 1367 (w), 1340 (w), 1307 (w), 1257 (w), 1221 (s), 1205 (w), 1173 (m), 1135 (m), 1106 (w), 1072 (m), 1035 (w), 1011 (w), 955 (w), 924 (w), 886 (w), 841 (w), 810 (m), 780 (m), 755 (s), 710 (w), 685 (w), 661 (w) cm<sup>-1</sup>; UV/Vis (CH<sub>2</sub>Cl<sub>2</sub>):  $\lambda_{max}$  $(\log \epsilon) = 236 (4.37), 287 (4.56), 309 (4.62), 318 sh (4.60), 344 sh (4.22), 392 (3.90), 546 (2.72) nm;$ <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta_{H}$  = 9.69 (s, 1H, H<sub>4</sub>), 8.68 (d, 1H, J = 10.0 Hz, H<sub>8</sub>), 7.72 (d, 1H, J = 10.0 Hz, H<sub>6</sub>), 7.66 (d, 1H, J = 7.7 Hz, H<sub>4</sub> of benzofuran), 7.58 (d, 1H, J = 7.7 Hz, H<sub>7</sub> of benzofuran), 7.45 (t, 1H, J = 10.0 Hz, H<sub>5</sub>), 7.34-7.27 (m, 2H, H<sub>5',6'</sub> of benzofuran), 6.86 (s, 1H, H<sub>3'</sub> of benzofuran), 4.02 (s, 3H, CO<sub>2</sub>Me), 3.23 (sept, 1H, J = 6.9 Hz, *i*-Pr), 2.94 (s, 3H, Me), 1.43 (d, 6H, J = 6.9 Hz, *i*-Pr) ppm; <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta_{\rm C}$  = 166.9, 155.0, 152.9, 152.6, 150.0, 142.4, 141.0, 137.5, 136.8, 134.2, 129.2, 128.0, 123.8, 122.8, 120.6, 118.5, 114.8, 111.2, 106.2, 51.1, 39.4, 24.8, 16.7 ppm; HRMS (FAB-MS, positive): calcd for C<sub>24</sub>H<sub>22</sub>O<sub>3</sub><sup>+</sup> [M]<sup>+</sup> 358.1564; found: 358.1579.



**2,3-Bis(3-methoxycarbonylazulen-1-yl)benzofuran (4a):** To a degassed solution of **1a** (557 mg, 1.78 mmol), 2-ethynylphenol (106 mg, 0.897 mmol), and Cul (26 mg, 0.14 mmol) in THF (5 mL) and triethylamine (5 mL) was added tetrakis(triphenylphosphine)palladium(0) (36 mg, 0.031 mmol). The resulting mixture was stirred at 50 °C for 8.5 h under an Ar atmosphere. The reaction mixture was poured into a 10% NH<sub>4</sub>Cl solution and extracted with toluene. The organic layer was washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with toluene/AcOEt (20 : 1) to give **4a** (82 mg, 19%, purple oil) and **3a** (54 mg, 10%, green crystals).

**4a**: mp 158–159 °C; IR (AT–IR): v<sub>max</sub> = 2952 (w), 1686 (s), 1577 (w), 1529 (w), 1507 (w), 1451 (s), 1420 (s), 1383 (m), 1347 (w), 1291 (w), 1266 (m), 1236 (w), 1200 (s), 1162 (m), 1135 (w), 1091 (w), 1065 (m), 1042 (m), 1028 (m), 968 (w), 917 (w), 877 (m), 862 (w), 822 (w), 806 (w), 779 (s), 744 (s), 712 (w), 687 (w), 679 (w), 667 (m), 659 (m) cm<sup>-1</sup>; UV/Vis (CH<sub>2</sub>Cl<sub>2</sub>): λ<sub>max</sub> (log  $\varepsilon$ ) = 236 (4.77), 292 (4.91), 304 sh (4.86), 342 sh (4.44), 385 (4.27), 415 sh (4.19), 566 (3.11), 597 sh (3.07) nm; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta_{H}$  = 9.70 (d, 1H, *J* = 10.0 Hz, H<sub>4</sub> or H<sub>4</sub>'), 9.59 (d, 1H, *J* = 10.0 Hz, H<sub>4</sub> or H<sub>4</sub>'), 8.86 (d, 1H, *J* = 10.0 Hz, H<sub>8</sub> or H<sub>6</sub>'), 8.49 (s, 1H, H<sub>2</sub> or H<sub>2</sub>'), 8.20 (m, 2H, H<sub>2</sub> or H<sub>2</sub>' and H<sub>4</sub> or H<sub>4</sub>'), 7.75 -7.67 (m, 3H, H<sub>6.6</sub>' and H<sub>4</sub>' of benzofuran), 7.56-7.49 (m, 2H, H<sub>5.5</sub>'), 7.45 (d, 1H, *J* = 7.7 Hz, H<sub>7</sub>' of benzofuran), 7.39 (t, 1H, *J* = 7.7 Hz, H<sub>7</sub> or H<sub>6</sub>' of benzofuran), 7.29-7.24 (m, 2H, H<sub>7</sub> or H<sub>7</sub>' and H<sub>5</sub>' or H<sub>6</sub>' of benzofuran), 7.29-7.24 (m, 2H, H<sub>7</sub> or H<sub>7</sub>' and H<sub>5</sub>' or H<sub>6</sub>' of benzofuran), 7.13 (t, 1H, *J* = 9.7 Hz, H<sub>7</sub> or H<sub>7</sub>'), 3.95 (s, 3H, CO<sub>2</sub>Me), 3.80 (s, 3H, CO<sub>2</sub>Me) ppm; <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta_{C}$  = 165.8, 165.4, 154.7, 149.9, 142.2, 141.8, 141.2, 140.7, 140.5, 140.2, 140.1, 139.7, 138.41, 138.37, 138.1, 137.3, 130.7, 128.8, 128.1, 127.8, 126.8, 124.5, 123.1, 120.7, 120.4, 118.5, 116.8, 116.7, 112.3, 111.2, 51.3, 51.2 ppm; HRMS (FAB–MS, positive): calcd for C<sub>32</sub>H<sub>22</sub>O<sub>5</sub><sup>+</sup> [M]\* 486.1462; found: 486.1470.



**2,3-Bis(5-isopropyl-3-methoxycarbonylazulen-1-yl)benzofuran (4b):** To a degassed solution of **1b** (265 mg, 0.748 mmol), 2-ethynylphenol (57 mg, 0.48 mmol), and Cul (13 mg, 0.068 mmol) in THF (5 mL) and triethylamine (5 mL) was added tetrakis(triphenylphosphine)palladium(0) (26 mg, 0.022 mmol). The resulting mixture was stirred at 50 °C for 8 h under an Ar atmosphere. The reaction mixture was poured into a 10% NH<sub>4</sub>Cl solution and extracted with toluene. The organic layer was washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with  $CH_2Cl_2$  to give **4b** (65 mg, 30 %, purple oil) and **3c** (39 mg, 30 %, green crystals).

**4b**: mp 110 °C; IR (AT–IR): v<sub>max</sub> = 2959 (w), 1693 (m), 1573 (w), 1524 (w), 1447 (m), 1386 (w), 1303 (w), 1259 (w), 1237 (w), 1208 (s), 1169 (w), 1125 (w), 1091 (w), 1012 (w), 964 (w), 929 (w), 898 (m), 800 (m), 776 (m), 749 (m), 738 (m) cm<sup>-1</sup>; UV/Vis (CH<sub>2</sub>Cl<sub>2</sub>):  $\lambda_{max}$  (log ε) = 241 (4.79), 280 sh (4.87), 296 (4.92), 344 sh (4.50), 391 (4.36), 572 (3.23), 591 sh (3.22) nm; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta_{H}$  = 9.81 (s, 1H, H<sub>4</sub> or H<sub>4</sub>), 9.70 (d, 1H, *J* = 1.1 Hz, H<sub>4</sub> or H<sub>4</sub>), 8.82 (d, 1H, *J* = 10.0 Hz, H<sub>8</sub> or H<sub>8</sub>), 8.44 (s, 1H, H<sub>2</sub> or H<sub>2</sub>), 8.16 (s, 1H, H<sub>2</sub> or H<sub>2</sub>), 8.11 (d, 1H, *J* = 10.0 Hz, H<sub>8</sub> or H<sub>8</sub>), 7.70-7.65 (m, 3H, H<sub>6,6</sub> and H<sub>4</sub> of benzofuran), 7.43 (d, 1H, *J* = 7.4 Hz, H<sub>7</sub> of benzofuran), 7.37 (t, 1H, *J* = 7.6 Hz, H<sub>6</sub> of benzofuran), 7.29-7.24 (m, 2H, H<sub>7</sub> or H<sub>7</sub>, H<sub>5</sub> of benzofuran), 7.12 (t, 1H, *J* = 10.0 Hz, H<sub>7</sub> or H<sub>7</sub>), 3.94 (s, 3H, CO<sub>2</sub>Me), 3.79 (s, 3H, CO<sub>2</sub>Me), 3.26-3.16 (m, 2H, *i*-Pr), 1.43 (d, 6H, *J* = 6.9 Hz, *i*-Pr), 1.39 (d, 6H, *J* = 6.9 Hz, *i*-Pr) ppm; <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta_{C}$  = 166.0, 165.7, 154.6, 150.1, 149.3, 142.2, 141.9, 141.3, 140.7, 140.6, 140.1, 139.1, 138.5, 138.2, 137.8, 136.8, 135.7, 130.8, 127.6, 126.6, 124.2, 123.0, 120.4, 119.6, 117.4, 115.6, 115.3, 111.9, 111.1, 51.13, 51.08, 39.2, 39.1, 24.8, 24.6 ppm, one signal is overlapped with the other; HRMS (FAB–MS, positive): calcd for C<sub>38</sub>H<sub>34</sub>O<sub>5</sub> <sup>+</sup> [M]<sup>+</sup> 570.2406; found: 570.2391.



**2,3-Bis(6-isopropyl-3-methoxycarbonylazulen-1-yl)benzofuran (4c):** To a degassed solution of **1c** (510 mg, 1.44 mmol), 2-ethynylphenol (85 mg, 0.72 mmol), and Cul (14 mg, 0.074 mmol) in THF (5 mL) and triethylamine (5 mL) was added tetrakis(triphenylphosphine)palladium(0) (25 mg, 0.022 mmol). The resulting mixture was stirred at 50 °C for 1 h under an Ar atmosphere. The reaction mixture was poured into a 10% NH<sub>4</sub>Cl solution and extracted with toluene. The organic layer was washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with toluene/AcOEt (20 : 1) to give **4c** (108 mg, 27%, purple oil) and **3c** (31 mg, 13%, green crystals).

**4c**: mp 119–121 °C; IR (AT–IR):  $v_{max} = 2962$  (w), 1694 (s), 1581 (m), 1505 (w), 1445 (s), 1420 (m), 1388 (w), 1362 (w), 1329 (w), 1310 (w), 1295 (w), 1267 (w), 1235 (w), 1204 (s), 1168 (w), 1131 (w), 1098 (w), 1071 (m), 1046 (m), 1020 (w), 959 (w), 920 (w), 879 (w), 846 (m), 790 (w), 773 (w), 747 (m), 731 (w), 714 (w), 694 (w), 676 (w), 664 (w), 652 (w) cm<sup>-1</sup>; UV/Vis (CH<sub>2</sub>Cl<sub>2</sub>):  $\lambda_{max}$  (log  $\epsilon$ ) = 236 (4.71), 297 (4.92), 346 sh (4.51), 384 (4.25), 414 sh (4.20), 553 (3.18), 579 sh (3.15) nm; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta_{H} = 9.62$  (d, 1H, J = 10.6 Hz, H<sub>4</sub> or H<sub>4</sub>), 9.50 (d, 1H, J = 10.3 Hz, H<sub>4</sub> or H<sub>4</sub>), 8.84 (d, 1H, J = 10.6 Hz, H<sub>8</sub> or H<sub>8</sub>), 8.41 (s, 1H, H<sub>2</sub> or H<sub>2</sub>), 8.10 (m, 2H, H<sub>8</sub> or H<sub>8</sub> and H<sub>2</sub> or H<sub>2</sub>), 7.67 (d, 1H, J = 7.6 Hz, H<sub>4</sub>° of benzofuran), 7.49-7.43 (m, 3H, H<sub>7,7</sub>° and H<sub>6</sub>° of benzofuran), 7.37 (t, 1H, J = 7.6 Hz, H<sub>5</sub>° of benzofuran), 7.27 (d, 1H, J = 7.6 Hz, H<sub>7</sub>° of benzofuran), 7.21 (d, 1H, J = 10.6 Hz, H<sub>5</sub> or H<sub>5</sub>), 3.95 (s, 3H, CO<sub>2</sub>Me), 3.79 (s, 3H, CO<sub>2</sub>Me), 3.08-3.02 (m, 2H, *i*-Pr), 1.32 (d, 6H, J = 6.9 Hz, *i*-Pr), 1.29 (d, 6H, J = 6.9 Hz, *i*-Pr) ppm; <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta_{C} = 165.9$ , 165.5, 162.9, 162.2, 154.5, 150.2, 140.9, 140.5, 140.0, 139.5, 139.3, 138.8, 138.1, 137.9, 137.6, 137.0, 130.8, 127.9, 127.2, 126.1, 124.2, 123.0, 120.5, 120.4, 118.2, 116.4, 116.3, 112.0, 111.1, 51.13, 51.08, 39.72, 39.66, 24.3, 24.2 ppm, one signal is overlapped with the other; HRMS (FAB–MS, positive): calcd for C<sub>38</sub>H<sub>34</sub>O<sub>5</sub><sup>+</sup> [M]<sup>+</sup> 570.2406; found: 570.2411.



2,3-Bis(5-isopropyl-3-methoxycarbonyl-2-methylazulen-1-yl)benzofuran (4d): To a degassed solution of 1d (825 mg, 2.24 mmol), 2-ethynylphenol (132 mg, 1.12 mmol), and Cul (21 mg, 0.11 mmol) THF (10)mL) triethylamine (10)mL) added in and was tetrakis(triphenylphosphine)palladium(0) (38 mg, 0.034 mmol). The resulting mixture was stirred at 50 °C for 12 h under an Ar atmosphere. The reaction mixture was poured into a 10% NH<sub>4</sub>Cl solution and extracted with toluene. The organic layer was washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with CH<sub>2</sub>Cl<sub>2</sub> to give **4d** (221 mg, 33%, purple oil) and **3d** (185 mg, 23%, green crystals). **4d:** mp 158–159 °C; IR (AT–IR): v<sub>max</sub> = 2959 (w), 1685 (m), 1586 (w), 1520 (w), 1442 (m), 1419 (m), 1379 (w), 1335 (w), 1262 (w), 1219 (s), 1193 (w), 1173 (w), 1119 (w), 1104 (w), 1076 (m), 1035 (w), 1010 (w), 977 (w), 957 (w), 909 (w), 842 (w), 803 (w), 781 (w), 748 (m), 733 (w), 680 (w), 668 (w)  $cm^{-1}$ ; UV/Vis (CH<sub>2</sub>Cl<sub>2</sub>):  $\lambda_{max}$  (log  $\epsilon$ ) = 242 (4.76), 296 (4.91), 310 sh (4.84), 385 (4.21), 544 (3.14), 578 sh (3.09) nm; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta_{H}$  = 9.61 (m, 2H, H<sub>4.4</sub>), 8.28 (d, 1H, J = 10.0 Hz, H<sub>8</sub>) or  $H_{8'}$ ), 8.09 (d, 1H, J = 10.0 Hz,  $H_8$  or  $H_{8'}$ ), 7.67 (d, 1H, J = 8.3 Hz,  $H_{4''}$  of benzofuran), 7.60-7.57 (m, 2H, H<sub>6.6</sub>), 7.39 (td, 1H, J = 8.3, 1.5 Hz, H<sub>5</sub>" of benzofuran), 7.29-7.14 (m, 4H, H<sub>7.7</sub>" and H<sub>6".7</sub>" of benzofuran), 3.90 (s, 3H, CO<sub>2</sub>Me), 3.89 (s, 3H, CO<sub>2</sub>Me), 3.17 (m, 2H, *i*-Pr), 2.45 (s, 3H, Me), 2.38 (s, 3H, Me), 1.40 (d, 6H, J = 6.9 Hz, *i*-Pr), 1.38 (d, 6H, J = 6.9 Hz, *i*-Pr) ppm; <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta_{C}$  = 166.9, 166.7, 155.3, 153.9, 153.1, 150.3, 150.1, 149.1, 142.6, 142.3, 141.3, 140.6, 137.3, 136.7, 136.6, 136.0, 133.8, 133.4, 130.7, 127.8, 126.7, 124.2, 122.8, 120.8, 120.2, 118.8, 114.5, 114.3, 114.0, 111.4, 50.9, 50.8, 39.4, 24.80, 24.76, 24.7, 16.6 ppm, one signal is overlapped with the other; HRMS (FAB-MS, positive): calcd for  $C_{40}H_{38}O_5^+$  [M]<sup>+</sup> 598.2714; found: 598.2742.



(3-Methoxycarbonylazulen-1-yl)(2-methoxycarbonylphenyl)acetylene (5a): To a degassed solution of 1a (174 mg, 0.558 mmol), methyl 2-ethynylbenzoate (139 mg, 0.868 mmol), and Cul (15 0.079 mg, mmol) in THF (5 mL) and triethylamine (5 mL) was added tetrakis(triphenylphosphine)palladium(0) (21 mg, 0.018 mmol). The resulting mixture was stirred at 50 °C for 15.5 h under an Ar atmosphere. The reaction mixture was poured into a 10% NH₄CI solution and extracted with AcOEt. The organic layer was washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with hexane/AcOEt (10 :1) to give 5a (192 mg, 99%) as green crystals. mp 123-124 °C; IR (AT-IR): v<sub>max</sub> = 2954 (w), 2184 (w), 1716 (m), 1687 (s), 1578 (w), 1481 (m), 1450 (m), 1439 (m), 1426 (w), 1382 (m), 1302 (w), 1271 (m), 1249 (s), 1196 (s), 1186 (s), 1165 (w), 1141 (w), 1116 (w), 1081 (s), 1036 (m), 977 (w), 883 (w), 828 (w), 805 (w), 785 (w), 770 (s), 746 (m), 698 (w)  $\text{cm}^{-1}$ ; UV/Vis (CH<sub>2</sub>Cl<sub>2</sub>):  $\lambda_{max}$  (log  $\epsilon$ ) = 237 (4.45), 255 sh (4.41), 308 (4.51), 349 sh (4.24), 398 (4.11), 415 sh (4.07), 525 sh (2.61), 567 (2.72), 613 sh (2.61), 687 sh (1.99) nm; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): δ<sub>H</sub> = 9.63 (d, 1H, J = 9.7 Hz, H<sub>4</sub>), 9.04 (d, 1H, J = 9.7 Hz, H<sub>8</sub>), 8.53 (s, 1H, H<sub>2</sub>), 8.01 (d, 1H, J = 7.7 Hz,  $H_{3'}$  of Ph), 7.87 (t, 1H, J = 9.7 Hz,  $H_6$ ), 7.73 (d, 1H, J = 7.7 Hz,  $H_{6'}$  of Ph), 7.61 (t, 2H, J = 9.7 Hz,  $H_{6'}$ ) H<sub>5.7</sub>), 7.52 (t, 1H, J = 7.7 Hz, H<sub>5</sub>, of Ph), 7.37 (t, 1H, J = 7.7 Hz, H<sub>4</sub>, of Ph), 4.01 (s, 3H, CO<sub>2</sub>Me), 3.97 (s, 3H, CO<sub>2</sub>Me) ppm; <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta_{\rm C}$  = 166.7, 165.4, 145.6, 142.8, 141.4, 140.4, 138.7, 138.6, 133.9, 131.8, 131.2, 130.6, 129.3, 128.1, 127.5, 124.5, 116.6, 110.6, 93.2, 90.2, 52.3, 51.4 ppm; HRMS (FAB-MS, positive): calcd for  $C_{22}H_{16}O_4^+$  [M]<sup>+</sup> 344.1044; found: 344.1056.



(5-lsopropyl-3-methoxycarbonylazulen-1-yl)(2-methoxycarbonylphenyl)acetylene (5b): To a degassed solution of **1b** (360 mg, 1.02 mmol), methyl 2-ethynylbenzoate (238 mg, 1.49 mmol), and Cul (18 mg, 0.095 mmol) in THF (5 mL) and triethylamine (5 mL) was added tetrakis(triphenylphosphine)palladium(0) (34 mg, 0.029 mmol). The resulting mixture was stirred at 50 °C for 18 h under an Ar atmosphere. The reaction mixture was poured into a 10% NH<sub>4</sub>Cl solution and extracted with toluene. The organic layer was washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with hexane/AcOEt (10 :1) to give **5b** (380 mg, 96%) as green crystals. mp 107-108 °C; IR (AT-IR): v<sub>max</sub> = 2964 (w), 2195 (w), 1724 (s), 1683 (s), 1595 (w), 1564 (w), 1524 (w), 1482 (s), 1454 (s), 1425 (s), 1373 (m), 1301 (w), 1272 (s), 1249 (s), 1227 (m), 1212 (s), 1169 (s), 1135 (m), 1126 (m), 1117 (m), 1082 (s), 1048 (s), 967 (w), 919 (w), 876 (m), 820 (w), 811 (m), 780 (m), 757 (s), 743 (w), 732 (w), 694 (m), 681 (w), 654 (w) cm<sup>-1</sup>; UV/Vis (CH<sub>2</sub>Cl<sub>2</sub>):  $\lambda_{max}$  (log  $\epsilon$ ) = 242 (4.43), 261 (4.43), 310 (4.50), 343 (4.28), 359 sh (4.23), 401 (4.21), 420 sh (4.16), 528 sh (2.72), 569 (2.83), 618 sh (2.72), 689 sh (2.11) nm; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta_{\rm H}$  = 9.74 (d, 1H, J = 1.4 Hz, H<sub>4</sub>), 8.92 (d, 1H, J = 9.9 Hz, H<sub>8</sub>), 8.50 (s, 1H, H<sub>2</sub>), 8.01 (d, 1H, J = 7.7 Hz, H<sub>3</sub> of Ph), 7.83 (d, 1H, J = 9.9 Hz,  $H_6$ ), 7.72 (d, 1H, J = 7.7 Hz,  $H_{6'}$  of Ph), 7.58 (t, 1H, J = 9.9 Hz,  $H_7$ ), 7.52 (t, 1H, J = 7.7 Hz,  $H_{5'}$  of Ph), 7.36 (t, 1H, J = 7.7 Hz, H<sub>4</sub>, of Ph), 4.00 (s, 3H, CO<sub>2</sub>Me), 3.96 (s, 3H, CO<sub>2</sub>Me), 3.25 (sept, 1H, J = 6.9 Hz, *i*-Pr), 1.44 (d, 6H, J = 6.9 Hz, *i*-Pr) ppm; <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta_{\rm C}$  = 166.8, 165.6, 150.8, 145.6, 143.0, 141.5, 139.5, 138.4, 136.9, 133.8, 131.8, 131.1, 130.6, 128.0, 127.3, 124.7, 115.3, 109.3, 92.9, 90.5, 52.3, 51.3, 39.4, 24.7 ppm; HRMS (FAB-MS, positive): calcd for C<sub>25</sub>H<sub>22</sub>O<sub>4</sub><sup>+</sup> [M]<sup>+</sup> 386.1513; found: 386.1504.



(6-lsopropyl-3-methoxycarbonylazulen-1-yl)(2-methoxycarbonylphenyl)acetylene (5c): To a degassed solution of 1c (291 mg, 0.822 mmol), methyl 2-ethynylbenzoate (196 mg, 1.22 mmol), and Cul (16 mg, 0.084 mmol) in THF (5 mL) and triethylamine (5 mL) was added tetrakis(triphenylphosphine)palladium(0) (29 mg, 0.025 mmol). The resulting mixture was stirred at 50 °C for 19 h under an Ar atmosphere. The reaction mixture was poured into a 10% NH<sub>4</sub>Cl solution and extracted with toluene. The organic layer was washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with CH<sub>2</sub>Cl<sub>2</sub> to give **5c** (316 mg, 99%) as purple oil. IR (AT-IR): v<sub>max</sub> = 2959 (w), 2196 (w), 1727 (m), 1696 (s), 1579 (m), 1483 (m), 1443 (s), 1402 (w), 1377 (w), 1295 (m), 1272 (m), 1251 (s), 1200 (s), 1129 (m), 1081 (s), 1051 (s), 1027 (w), 963 (w), 910 (w), 879 (w), 848 (m), 756 (s), 728 (m), 698 (m), 674 (w) cm<sup>-1</sup>; UV/Vis (CH<sub>2</sub>Cl<sub>2</sub>):  $\lambda_{max}$  (log  $\epsilon$ ) = 236 (4.44), 265 (4.36), 315 (4.55), 351 sh (4.29), 399 (4.11), 415 sh (4.08), 510 sh (2.67), 550 (2.79), 595 sh (2.68), 662 sh (2.05) nm; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta_{H}$  = 9.53 (d, 1H, J = 10.3 Hz, H<sub>4</sub>), 8.95 (d, 1H, J = 10.3 Hz, H<sub>8</sub>), 8.43 (s, 1H, H<sub>2</sub>), 8.00 (d, 1H, J = 8.0 Hz, H<sub>3</sub>, of Ph), 7.71 (d, 1H, J = 8.0 Hz, H<sub>6</sub> of Ph), 7.55-7.49 (m, 3H, H<sub>5.7</sub> and H<sub>5'</sub> of Ph), 7.35 (t, 1H, J = 8.0 Hz, H<sub>4'</sub> of Ph), 4.01 (s, 3H, CO<sub>2</sub>Me), 3.95 (s, 3H, CO<sub>2</sub>Me), 3.16 (sept, 1H, J = 6.9 Hz, *i*-Pr), 1.39 (d, 6H, J = 6.9 Hz, *i*-Pr) ppm; <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta_{\rm C}$  = 166.8, 165.4, 163.3, 144.3, 141.7, 140.2, 138.22, 138.16, 133.8, 131.8, 131.1, 130.6, 128.6, 127.5, 127.3, 124.7, 116.2, 110.1, 92.8, 90.5, 52.2, 51.3, 39.9, 24.3 ppm; HRMS (FAB-MS, positive): calcd for C<sub>25</sub>H<sub>22</sub>O<sub>4</sub><sup>+</sup> [M]<sup>+</sup> 386.1518; found: 386.1522.



**Reaction of 1-iodoazulene with methyl 2-ethynylbenzoate:** To a degassed solution of **1d** (513 mg, 1.39 mmol), methyl 2-ethynylbenzoate (340 mg, 2.12 mmol), and Cul (30 mg, 0.16 mmol) in THF (8 mL) and triethylamine (8 mL) was added tetrakis(triphenylphosphine)palladium(0) (48 mg, 0.042 mmol). The resulting mixture was stirred at 50 °C for 18.5 h under an Ar atmosphere. The reaction mixture was poured into a 10% NH<sub>4</sub>Cl solution and extracted with toluene. The organic layer was washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with hexane/AcOEt (8 : 1) to give **5d** (323 mg, 58%, green crystals) and **6** (57 mg, 17%, purple crystals).

(5-IsopropyI-3-methoxycarbonyI-2-methylazulen-1-yI)(2-methoxycarbonyIphenyI)acetylene (5d): mp 135–136 °C; IR (AT–IR): v<sub>max</sub> = 3081 (w), 3034 (w), 2959 (w), 2869 (w), 2185 (w), 1723 (s), 1683 (s), 1593 (w), 1562 (w), 1479 (m), 1440 (s), 1425 (m), 1420 (m), 1384 (w), 1380 (w), 1304 (w), 1288 (w), 1277 (m), 1249 (s), 1226 (m), 1216 (s), 1194 (m), 1175 (w), 1168 (m), 1138 (m), 1103 (w), 1079 (s), 1028 (w), 1002 (w), 968 (w), 882 (w), 833 (w), 827 (w), 799 (m), 782 (m), 761 (s), 709 (w), 698 (w) cm<sup>-1</sup>; UV/Vis (CH<sub>2</sub>Cl<sub>2</sub>): λ<sub>max</sub> (log ε) = 241 (4.44), 258 (4.43), 318 (4.57), 359 sh (4.30), 404 (4.18), 421 (4.16), 515 sh (2.67), 555 (2.77), 600 sh (2.66), 670 sh (2.03) nm; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta_{\rm H}$  = 9.63 (s, 1H, H<sub>4</sub>), 8.76 (d, 1H, *J* = 9.7 Hz, H<sub>8</sub>), 8.01 (d, 1H, *J* = 7.7 Hz, H<sub>3</sub><sup>o</sup> of Ph), 7.75-7.71 (m, 2H, H<sub>6</sub> and H<sub>5'</sub> of Ph), 7.54-7.50 (m, 2H, H<sub>7</sub> and H<sub>6'</sub> of Ph), 7.36 (t, 1H, *J* = 7.7 Hz, H<sub>4'</sub> of Ph), 4.00 (s, 6H, CO<sub>2</sub>Me), 3.22 (sept, 1H, *J* = 6.9 Hz, *i*-Pr), 3.00 (s, 3H, Me), 1.42 (d, 6H, *J* = 6.9 Hz, *i*-Pr) ppm; <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta_{\rm C}$  = 166.9, 166.5, 156.3, 150.8, 144.4, 142.5, 137.6, 136.7, 134.7, 133.9, 131.8, 130.9, 130.6, 128.2, 127.2, 124.8, 114.2, 111.4, 95.8, 90.1, 52.3, 51.0, 39.5, 24.7, 17.1 ppm; HRMS (FAB–MS, positive): calcd for C<sub>26</sub>H<sub>24</sub>O<sub>4</sub><sup>+</sup> [M]<sup>+</sup> 400.1670; found: 400.1679.



**5,5'-Diisopropyl-3,3'-dimethoxycarbonyl-2,2'-dimethyl-1,1'-biazulene (6):** mp 179–180°C; IR (AT–IR):  $v_{max} = 2962$  (w), 1670 (m), 1519 (w), 1506 (w), 1488 (w), 1446 (s), 1417 (m), 1388 (m), 1362 (w), 1335 (w), 1300 (w), 1220 (s), 1190 (m), 1122 (w), 1077 (m), 1033 (w), 1011 (w), 980 (w), 934 (w), 842 (w), 813 (w), 797 (w), 780 (w), 737 (w), 709 (w), 672 (w), 661 (w) cm<sup>-1</sup>; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta_{H} = 9.75$  (s, 2H, H<sub>4</sub>), 7.63 (d, 2H, J = 10.0 Hz, H<sub>8</sub>), 7.60 (d, 2H, J = 10.0 Hz, H<sub>6</sub>), 7.18 (t, 2H, J = 9.9 Hz, H<sub>7</sub>), 4.03 (s, 6H, CO<sub>2</sub>Me), 3.24 (sept, 2H J = 6.9 Hz, *i*-Pr), 2.50 (s, 6H, Me), 1.45 (d, 12H, J = 6.9 Hz, *i*-Pr) ppm; <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta_{C} = 167.1$ , 154.2, 149.0, 142.2, 136.5, 136.1, 133.8, 126.7, 124.1, 113.7, 51.0, 39.5, 24.9, 16.7 ppm, one signal is overlapped with the other; HRMS (FAB–MS, positive): calcd for C<sub>32</sub>H<sub>34</sub>O<sub>4</sub><sup>+</sup> [M]<sup>+</sup> 482.2452; found: 482.2443.

**Reaction of 1-ethynylazulene with methyl 2-iodobenzoate:** To a degassed solution of **2d** (32 mg, 0.12 mmol), methyl 2-iodobenzoate (63 mg, 0.24 mmol), and Cul (3 mg, 0.02 mmol) in THF (2 mL) and triethylamine (2 mL) was added tetrakis(triphenylphosphine)palladium(0) (6 mg, 0.005 mmol). The resulting mixture was stirred at 50 °C for 19.5 h under an Ar atmosphere. The reaction mixture was poured into a 10% NH<sub>4</sub>Cl solution and extracted with toluene. The organic layer was washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with toluene to give **5d** (37 mg, 77%) as green crystals.



3-(3-Methoxycarbonylazulen-1-yl)isocoumarin (7a): To a solution of 5a (283 mg, 0.822 mmol) in THF (5 mL) was added CF<sub>3</sub>CO<sub>2</sub>H (1 mL). The resulting mixture was stirred at 50 °C for 23 h. The reaction mixture was poured into K<sub>2</sub>CO<sub>3</sub> aq. and extracted with AcOEt. The organic layer was washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with toluene/AcOEt (5 : 1) to give 7a (216 mg, 80%) as purple crystals. mp 206–207 °C; IR (AT–IR): v<sub>max</sub> = 2958 (w), 1733 (s), 1703 (s), 1621 (s), 1562 (m), 1523 (w), 1483 (m), 1458 (s), 1440 (s), 1415 (m), 1333 (w), 1281 (w), 1219 (s), 1200 (s), 1159 (m), 1095 (m), 1056 (m), 1042 (m), 1015 (s), 975 (w), 915 (m), 874 (m), 827 (m), 775 (s), 746 (s), 685 (s) cm<sup>-1</sup>; UV/Vis (CH<sub>2</sub>Cl<sub>2</sub>):  $\lambda_{max}$  (log  $\epsilon$ ) = 236 (4.45), 271 sh (4.38), 314 (4.52), 341 sh (4.29), 398 (4.12), 440 sh (3.65), 556 (2.76), 617 sh (2.53) nm; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta_{H}$  = 9.73 (d, 1H, J = 10.0 Hz, H<sub>4</sub>), 9.33 (d, 1H, J = 10.0 Hz, H<sub>8</sub>), 8.72 (s, 1H, H<sub>2</sub>), 8.33 (d, 1H, J = 8.0 Hz, H<sub>8</sub>, of isocoumarin), 7.91 (t, 1H, J = 10.0 Hz, H<sub>6</sub>), 7.73 (dd, 1H, J = 8.0, 1.0 Hz, H<sub>6</sub> of isocoumarin), 7.64 (t, 2H, J = 10.0 Hz, H<sub>5,7</sub>), 7.51-7.47 (m, 2H, H<sub>5',7'</sub> of isocoumarin), 6.93 (s, 1H, H<sub>4'</sub> of isocoumarin), 3.98 (s, 3H, CO<sub>2</sub>Me) ppm; <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta_{C}$  = 165.4, 162.6, 152.7, 143.2, 140.8, 140.2, 139.7, 139.0, 138.5, 138.2, 135.0, 129.8, 129.5, 129.0, 127.7, 125.7, 119.9, 119.8, 116.7, 103.6, 51.5 ppm; HRMS (FAB-MS, positive): calcd for  $C_{21}H_{14}O_4^+$  [M]<sup>+</sup> 330.0892; found: 330.0899.



3-(5-IsopropyI-3-methoxycarbonylazulen-1-yl)isocoumarin (7b): To a solution of 5b (190 mg, 0.492 mmol) in THF (3 mL) was added CF<sub>3</sub>CO<sub>2</sub>H (0.5 mL). The resulting mixture was stirred at 50 °C for 22 h. The reaction mixture was poured into K<sub>2</sub>CO<sub>3</sub> ag. and extracted with AcOEt. The organic layer was washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with hexane/AcOEt (5 : 1) to give **7b** (125 mg, 68%) as purple crystals. mp 135–136 °C; IR (AT–IR): v<sub>max</sub> = 2955 (w), 1733 (s), 1694 (s), 1614 (s), 1560 (m), 1523 (m), 1480 (m), 1439 (s), 1417 (m), 1400 (m), 1334 (m), 1283 (w), 1219 (s), 1167 (m), 1111 (m), 1077 (m), 1037 (m), 1011 (m), 980 (m), 957 (w), 903 (m), 877 (m), 812 (s), 778 (m), 749 (s), 722 (m), 702 (w), 682 (s) cm<sup>-1</sup>; UV/Vis (CH<sub>2</sub>Cl<sub>2</sub>):  $\lambda_{max}$  (log ε) = 235 (4.43), 273 sh (4.37), 283 (4.43), 316 (4.52), 343 (4.32), 403 (4.22), 442 sh (3.80), 560 (2.88), 618 sh (2.67) nm; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta_{\rm H}$  = 9.83 (d, 1H, J = 1.7 Hz, H<sub>4</sub>), 9.22 (d, 1H, J = 10.2 Hz, H<sub>8</sub>), 8.69 (s, 1H, H<sub>2</sub>), 8.31 (d, 1H, J = 7.7 Hz, H<sub>8</sub> of isocoumarin), 7.85 (d, 1H, J = 10.2 Hz, H<sub>6</sub>), 7.71 (ddd, 1H, J = 7.7, 7.7, 1.1 Hz, H<sub>6</sub> of isocoumarin), 7.59 (t, 1H, J = 10.2 Hz, H<sub>7</sub>), 7.49-7.45 (m, 2H,  $H_{5'7'}$  of isocoumarin), 6.90 (s, 1H,  $H_{4'}$  of isocoumarin), 3.98 (s, 3H, CO<sub>2</sub>Me), 3.25 (sept, 1H, J = 6.9 Hz, *i*-Pr), 1.44 (d, 6H, J = 6.9 Hz, *i*-Pr) ppm; <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta_{\rm C}$  = 165.5, 162.7, 153.0, 151.0, 143.3, 140.1, 139.8, 139.7, 138.8, 138.4, 136.8, 134.9, 129.7, 128.8, 127.5, 125.6, 119.8, 118.6, 115.5, 102.9, 51.3, 39.1, 24.7 ppm; HRMS (FAB-MS, positive): calcd for C<sub>24</sub>H<sub>20</sub>O<sub>4</sub><sup>+</sup> [M]<sup>+</sup> 372.1357; found: 372.1360.



3-(6-IsopropyI-3-methoxycarbonylazulen-1-yl)isocoumarin (7c): To a solution of 5c (174 mg, 0.450 mmol) in THF (3 mL) was added CF<sub>3</sub>CO<sub>2</sub>H (0.5 mL). The resulting mixture was stirred at 50 °C for 20 h. The reaction mixture was poured into K<sub>2</sub>CO<sub>3</sub> aq. and extracted with AcOEt. The organic layer was washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with toluene/AcOEt (20 : 1) to give **7c** (133 mg, 79%) as purple crystals. mp 187–189 °C; IR (AT–IR): v<sub>max</sub> = 3043 (w), 2958 (w), 1733 (m), 1702 (s), 1622 (m), 1564 (w), 1525 (w), 1482 (w), 1458 (m), 1443 (m), 1420 (m), 1335 (w), 1313 (w), 1281 (w), 1219 (s), 1208 (m), 1165 (w), 1099 (w), 1048 (m), 1018 (m), 977 (w), 916 (w), 877 (w), 825 (w), 772 (w), 746 (m), 742 (m), 681 (w), 659 (w) cm<sup>-1</sup>; UV/Vis (CH<sub>2</sub>Cl<sub>2</sub>):  $\lambda_{\text{max}}$  (log  $\epsilon$ ) = 234 (4.42), 274 sh (4.33), 285 (4.44), 318 (4.56), 342 sh (4.36), 402 (4.15), 440 sh (3.73), 539 (2.87), 595 sh (2.66) nm; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta_{\rm H}$  = 9.62 (d, 1H, J = 10.6 Hz, H<sub>4</sub>), 9.28 (d, 1H, J = 10.6 Hz, H<sub>8</sub>), 8.61 (s, 1H, H<sub>2</sub>), 8.32 (d, 1H, J = 7.6 Hz, H<sub>8</sub> of isocoumarin), 7.71 (t, 1H, J = 7.6 Hz, H<sub>6'</sub> of isocoumarin), 7.57 (t, 2H, J = 10.6 Hz, H<sub>5.7</sub>), 7.49-7.45 (m, 2H, H<sub>5',7'</sub> of isocoumarin), 6.91 (s, 1H, H<sub>4</sub>, of isocoumarin), 3.97 (s, 3H, CO<sub>2</sub>Me), 3.18 (sept, 1H, J = 6.9 Hz, *i*-Pr), 1.40 (d, 6H, J = 6.9 Hz, *i*-Pr) ppm; <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta_{\rm C} = 165.5$ , 163.8, 162.7, 153.0, 141.9, 138.9, 138.7, 138.4, 138.2, 134.9, 129.7, 128.8, 128.4, 127.5, 125.6, 119.8, 119.4, 116.4, 103.0, 51.4, 39.8, 24.3 ppm, one signal is overlapped with the other; HRMS (FAB-MS, positive): calcd for C<sub>24</sub>H<sub>20</sub>O<sub>4</sub><sup>+</sup> [M]<sup>+</sup> 372.1357; found: 372.1360.



3-(5-IsopropyI-3-methoxycarbonyI-2-methylazulen-1-yl)isocoumarin (7d): To a solution of 5d (183 mg, 0.458 mmol) in THF (3 mL) was added CF<sub>3</sub>CO<sub>2</sub>H (0.5 mL). The resulting mixture was stirred at 50 °C for 19 h. The reaction mixture was poured into K<sub>2</sub>CO<sub>3</sub> ag. and extracted with toluene. The organic layer was washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with toluene/AcOEt (5 : 1) to give 7d (168 mg, 95%) as purple crystals. mp 119-120 °C; IR (AT-IR): v<sub>max</sub> = 3078 (w), 2963 (w), 1734 (m), 1702 (s), 1621 (m), 1565 (m), 1526 (m), 1484 (m), 1460 (m), 1444 (m), 1421 (m), 1389 (w), 1335 (w), 1313 (w), 1283 (w), 1220 (s), 1209 (m), 1167 (m), 1101 (m), 1052 (m), 1019 (m), 978 (w), 918 (m), 877 (m), 812 (m), 771 (m), 747 (m), 685 (m) cm<sup>-1</sup>; UV/Vis  $(CH_2CI_2)$ :  $\lambda_{max}$  (log  $\epsilon$ ) = 291 sh (4.53), 310 (4.59), 386 sh (4.03), 530 (2.72), 563 sh (2.66) nm; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta_{H}$  = 9.70 (d, 1H, J = 1.1 Hz, H<sub>4</sub>), 8.52 (d, 1H, J = 10.0 Hz, H<sub>8</sub>), 8.36 (d, 1H, J = 7.7 Hz, H<sub>8</sub>, of isocoumarin), 7.76-7.73 (m, 2H, H<sub>6</sub> and H<sub>5</sub>, of isocoumarin), 7.54 (t, 1H, J = 7.7 Hz,  $H_{7'}$  of isocoumarin), 7.51-7.45 (m, 2H,  $H_5$  and  $H_{6'}$  of isocoumarin), 6.61 (s, 1H,  $H_{4'}$  of isocoumarin), 4.00 (s, 3H, CO<sub>2</sub>Me), 3.23 (t, 1H, J = 6.9 Hz, *i*-Pr), 2.90 (s, 3H, Me), 1.42 (d, 6H, J = 6.9 Hz, *i*-Pr) ppm; <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta_{C}$  = 166.7, 163.2, 152.9, 151.3, 150.6, 142.4, 141.1, 137.7, 137.1, 134.9, 133.6, 129.7, 128.4, 128.2, 125.7, 120.7, 120.4, 114.6, 108.3, 51.2, 39.4, 24.8, 16.7 ppm, one signal is overlapped with the other; HRMS (FAB-MS, positive): calcd for C<sub>25</sub>H<sub>22</sub>O<sub>4</sub><sup>+</sup> [M]<sup>+</sup> 386.1513; found: 386.1522.



3-(3-Methoxycarbonylazulen-1-yl)-4-iodoisocoumarin (8a): To a solution of 5a (327 mg, 0.950 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (20 mL) was added NIS (327 mg, 1.45 mmol). The resulting mixture was stirred at room temperature for 1.5 h. The reaction mixture was poured into Na<sub>2</sub>SO<sub>3</sub> ag. and extracted with CH<sub>2</sub>Cl<sub>2</sub>. The organic layer was washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with CH<sub>2</sub>Cl<sub>2</sub> to give 8a (156 mg, 36%) as purple crystals. mp 202-203 °C; IR (AT-IR): v<sub>max</sub> = 2946 (w), 1730 (s), 1694 (s), 1601 (m), 1536 (w), 1514 (w), 1456 (m), 1437 (w), 1415 (w), 1318 (w), 1267 (w), 1224 (w), 1206 (s), 1167 (m), 1093 (w), 1060 (m), 1045 (w), 1036 (m), 989 (w), 934 (w), 874 (w), 786 (w), 768 (m), 739 (w), 687 (m), 654 (w) cm<sup>-1</sup>; UV/Vis (CH<sub>2</sub>Cl<sub>2</sub>):  $\lambda_{max}$  (log  $\epsilon$ ) = 236 (4.54), 292 (4.46), 305 (4.45), 376 (4.09), 497 sh (2.68), 533 (2.81), 571 sh (2.74), 631 sh (2.19) nm; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta_{H}$  = 9.80 (d, 1H, J = 10.0 Hz, H<sub>4</sub>), 8.72 (s, 1H, H<sub>2</sub>), 8.59 (d, 1H, J = 10.0 Hz, H<sub>8</sub>), 8.34 (d, 1H, J = 8.0 Hz, H<sub>8</sub>, of isocoumarin), 7.99-7.90 (m, 2H, H<sub>6</sub> and H<sub>5</sub>, of isocoumarin), 7.85 (ddd, 1H, J =8.0, 8.0, 1.0 Hz, H<sub>6'</sub> of isocoumarin), 7.72 (t, 1H, J = 10.0 Hz, H<sub>5</sub>), 7.63-7.59 (m, 2H, H<sub>7</sub> and H<sub>7'</sub> of isocoumarin), 3.98 (s, 3H, CO<sub>2</sub>Me) ppm; <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta_{C}$  = 165.4, 162.0, 152.0, 142.9, 142.1, 141.3, 140.5, 139.2, 138.5, 138.0, 135.8, 131.5, 129.9, 129.8, 129.3, 128.6, 122.4, 120.4, 115.8, 79.6, 51.5 ppm; HRMS (FAB-MS, positive): calcd for C<sub>21</sub>H<sub>13</sub>IO<sub>4</sub><sup>+</sup> [M]<sup>+</sup> 455.9854; found: 455.9883.



3-(5-IsopropyI-3-methoxycarbonylazulen-1-yl)-4-iodoisocoumarin (8b): To a solution of 5b (238 mg, 0.616 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (10 mL) was added NIS (280 mg, 1.25 mmol). The resulting mixture was stirred at room temperature for 1.5 h. The reaction mixture was poured into Na<sub>2</sub>SO<sub>3</sub> ag. and extracted with AcOEt. The organic layer was washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with CH<sub>2</sub>Cl<sub>2</sub> to give **8b** (141 mg, 46%) as purple crystals. mp 205-206 °C; IR (AT-IR): v<sub>max</sub> = 2943 (w), 1727 (s), 1687 (s), 1599 (m), 1557 (w), 1527 (w), 1457 (m), 1439 (m), 1430 (m), 1375 (m), 1322 (w), 1288 (w), 1213 (s), 1183 (s), 1127 (w), 1097 (m), 1061 (m), 1021 (m), 992 (w), 939 (w), 916 (w), 874 (w), 807 (m), 787 (w), 777 (m), 759 (s), 687 (m), 683 (m), 661 (w) cm<sup>-1</sup>; UV/Vis  $(CH_2CI_2)$ :  $\lambda_{max}$  (log  $\epsilon$ ) = 293 (4.51), 300 (4.51), 374 sh (4.05), 529 (2.79), 567 sh (2.71), 628 sh (2.13) nm; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta_{H}$  = 9.90 (s, 1H, H<sub>4</sub>), 8.70 (s, 1H, H<sub>2</sub>), 8.50 (d, 1H, J = 10.0 Hz, H<sub>8</sub>), 8.34 (d, 1H, J = 7.7 Hz, H<sub>8</sub>, of isocoumarin), 7.91-7.83 (m, 3H, H<sub>6</sub>, and H<sub>5'.6'</sub> of isocoumarin), 7.61-7.55 (m, 2H, H<sub>7</sub> and H<sub>7</sub> of isocoumarin), 3.98 (s, 3H, CO<sub>2</sub>Me), 3.29 (sept, 1H, J = 6.9 Hz, *i*-Pr), 1.46 (d, 6H, J = 6.9 Hz, *i*-Pr) ppm; <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta_{\rm C} = 165.6$ , 162.0, 152.3, 151.4, 143.1, 142.2, 141.2, 139.5, 139.0, 138.7, 136.4, 135.8, 131.5, 129.9, 129.2, 128.5, 121.2, 120.3, 114.6, 79.1, 51.3, 39.3, 24.8 ppm; HRMS (FAB-MS, positive): calcd for C<sub>24</sub>H<sub>19</sub>IO<sub>4</sub><sup>+</sup> [M]<sup>+</sup> 498.0323; found: 498.0324.



3-(6-IsopropyI-3-methoxycarbonylazulen-1-yl)-4-iodoisocoumarin (8c): To a solution of 5c (137 mg, 0.355 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (15 mL) was added NIS (126 mg, 0.560 mmol). The resulting mixture was stirred at room temperature for 1 h. The reaction mixture was poured into Na<sub>2</sub>SO<sub>3</sub> aq. and extracted with CH<sub>2</sub>Cl<sub>2</sub>. The organic layer was washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with CH<sub>2</sub>Cl<sub>2</sub> to give 8c (100 mg, 57%) as purple crystals. mp 201-202 °C; IR (AT-IR): v<sub>max</sub> = 2956 (w), 1718 (s), 1709 (s), 1688 (s), 1599 (s), 1588 (m), 1582 (m), 1557 (m), 1514 (w), 1470 (m), 1445 (m), 1419 (m), 1313 (w), 1285 (w), 1262 (w), 1203 (s), 1168 (m), 1150 (w), 1106 (w), 1079 (s), 1066 (m), 1050 (m), 1036 (m), 1020 (w), 988 (w), 930 (w), 874 (w), 866 (w), 855 (m), 771 (w), 760 (s), 727 (w), 687 (m), 661 (w) cm<sup>-1</sup>; UV/Vis (CH<sub>2</sub>Cl<sub>2</sub>):  $\lambda_{max}$  (log  $\epsilon$ ) = 295 sh (4.54), 309 (4.58), 344 sh (4.25), 389 sh (3.99), 516 (2.82), 554 sh (2.71), 611 sh (2.08) nm; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta_{H}$  = 9.69 (d, 1H, J = 10.6 Hz, H<sub>4</sub>), 8.64 (s, 1H, H<sub>2</sub>), 8.54 (d, 1H, J = 10.6 Hz, H<sub>8</sub>), 8.33 (d, 1H, J = 8.0 Hz, H<sub>8'</sub> of isocoumarin), 7.91 (d, 1H, J = 8.0 Hz, H<sub>6'</sub> of isocoumarin), 7.84 (ddd, 1H, J =8.0, 8.0, 1.5 Hz, H<sub>5'</sub> of isocoumarin), 7.65 (dd, 1H, J = 10.6, 1.4 Hz, H<sub>5</sub>), 7.60 (t, 1H, J = 8.0 Hz, H<sub>7'</sub> of isocoumarin), 7.54 (dd, 1H, J = 10.6, 1.4 Hz, H<sub>7</sub>), 3.97 (s, 3H, CO<sub>2</sub>Me), 3.20 (sept, 1H, J = 6.9 Hz, *i*-Pr), 1.40 (d, 6H, J = 6.9 Hz, *i*-Pr) ppm; <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta_{\rm C}$  = 165.6, 163.5, 162.0, 152.3, 141.8, 140.8, 140.1, 138.9, 138.7, 137.7, 135.8, 131.5, 129.9, 129.2, 129.1, 128.1, 122.0, 120.3, 115.5, 79.1, 51.4, 40.0, 24.4 ppm; HRMS (FAB-MS, positive): calcd for C<sub>24</sub>H<sub>19</sub>IO<sub>4</sub><sup>+</sup> [M]<sup>+</sup> 498.0323; found: 498.0323.



3-(5-IsopropyI-3-methoxycarbonyI-2-methylazulen-1-yl)-4-iodoisocoumarin (8d): To a solution of 5d (26 mg, 0.065 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (10 mL) was added NIS (25 mg, 0.11 mmol). The resulting mixture was stirred at room temperature for 2.5 h. The reaction mixture was poured into Na<sub>2</sub>SO<sub>3</sub> ag. and extracted with CH<sub>2</sub>Cl<sub>2</sub>. The organic layer was washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with CH<sub>2</sub>Cl<sub>2</sub> to give 8d (14 mg, 42 %) as purple crystals. mp 181-183 °C; IR (AT-IR): v<sub>max</sub> = 2962 (w), 2920 (w), 2874 (w), 2849 (w), 1732 (s), 1683 (s), 1617 (m), 1563 (w), 1499 (w), 1438 (s), 1381 (m), 1321 (w), 1292 (w), 1271 (w), 1226 (m), 1176 (m), 1146 (s), 1115 (w), 1080 (m), 1058 (s), 1029 (m), 964 (m), 940 (w), 893 (w), 839 (w), 806 (m), 782 (m), 756 (s), 712 (w), 686 (m), 668 (m) cm<sup>-1</sup>; UV/Vis (CH<sub>2</sub>Cl<sub>2</sub>):  $\lambda_{max}$  (log  $\epsilon$ ) = 239 (4.62), 298 sh (4.62), 307 (4.66), 344 sh (4.12), 378 (3.97), 521 (2.80), 555 sh (2.73), 613 sh (2.19) nm; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta_{\rm H}$  = 9.78 (d, 1H, J = 1.1 Hz, H<sub>4</sub>), 8.36 (d, 1H, J = 7.7 Hz, H<sub>8</sub>, of isocoumarin), 8.10 (d, 1H, J = 10.0 Hz, H<sub>8</sub>), 7.89-7.84 (m, 2H,  $H_{5',6'}$  of isocoumarin), 7.77 (d, 1H, J = 10.0 Hz,  $H_6$ ), 7.64 (dt, 1H, J = 7.7, 1.5 Hz,  $H_{7'}$  of isocoumarin), 7.47 (t, 1H, J = 10.0 Hz, H<sub>7</sub>), 4.01 (s, 3H, CO<sub>2</sub>Me), 3.26 (sept, 1H, J = 6.9 Hz, *i*-Pr), 2.78 (s, 3H, Me), 1.44 (d, 6H, J = 6.9 Hz, *i*-Pr) ppm; <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta_{\rm C} = 166.7$ , 162.3, 153.4, 152.4, 150.9, 142.3, 140.4, 138.1, 137.6, 137.4, 135.8, 133.5, 131.2, 129.9, 129.5, 128.3, 123.7, 120.6, 113.9, 83.1, 51.1, 39.5, 24.8, 17.0 ppm; HRMS (FAB-MS, positive): calcd for  $C_{25}H_{21}IO_4^+$  [M]<sup>+</sup> 512.0480; found: 512.0483.

2. Copies of <sup>1</sup>H NMR, <sup>13</sup>C NMR, COSY and HRMS of new compounds (Figures S1–S102).



**Figure S1**. <sup>1</sup>H NMR spectrum of methyl 1-trimethylsilylethynylazulene-3-carboxylate in CDCl<sub>3</sub> (500 MHz).



**Figure S2**. <sup>13</sup>C NMR spectrum of methyl 1-trimethylsilylethynylazulene-3-carboxylate in  $CDCI_3$  (125 MHz).



Figure S3. COSY spectrum of methyl 1-trimethylsilylethynylazulene-3-carboxylate in  $CDCI_3$  (500 MHz).





**Figure S5**. <sup>1</sup>H NMR spectrum of methyl 6-isopropyl-1-trimethylsilylethynylazulene-3-carboxylate in CDCl<sub>3</sub> (500 MHz).



**Figure S6**. <sup>13</sup>C NMR spectrum of methyl 6-isopropyl-1-trimethylsilylethynylazulene-3-carboxylate in CDCl<sub>3</sub> (125 MHz).



Figure S7. COSY spectrum of methyl 6-isopropyl-1-trimethylsilylethynylazulene-3-carboxylate in  $CDCI_3$  (500 MHz).





**Figure S10**. <sup>13</sup>C NMR spectrum of meth 5-isopropyl-2-methyl-1-trimethylsilylethynylazulene-3-carboxylate in CDCl<sub>3</sub> (125 MHz).



FigureS11.COSYspectrumofmethyl5-isopropyl-2-methyl-1-trimethylsilylethynylazulene-3-carboxylate in CDCl3 (500 MHz).methyl





Figure S14. <sup>13</sup>C NMR spectrum of **2a** in CDCI<sub>3</sub> (125 MHz).



Figure S15. COSY spectrum of 2a in CDCl<sub>3</sub> (500 MHz).







Figure S18. <sup>13</sup>C NMR spectrum of **2c** in CDCl<sub>3</sub> (125 MHz).








Figure S22. <sup>13</sup>C NMR spectrum of 2d in CDCl<sub>3</sub> (125 MHz).



Figure S23. COSY spectrum of 2d in CDCl<sub>3</sub> (500 MHz).





Figure S26. <sup>13</sup>C NMR spectrum of **3a** in CDCI<sub>3</sub> (125 MHz).



Figure S27. COSY spectrum of 3a in CDCl<sub>3</sub> (500 MHz).





Figure S30. <sup>13</sup>C NMR spectrum of 3c in CDCI<sub>3</sub> (125 MHz).









Figure S34. <sup>13</sup>C NMR spectrum of 3d in CDCl<sub>3</sub> (125 MHz).









Figure S38. <sup>13</sup>C NMR spectrum of **4a** in CDCI<sub>3</sub> (125 MHz).



Figure S39. COSY spectrum of 4a in CDCl<sub>3</sub> (500 MHz).





Figure S42. <sup>13</sup>C NMR spectrum of 4b in CDCl<sub>3</sub> (125 MHz).







Figure S44. HRMS (FAB-MS, positive) of 4b.



Figure S46. <sup>13</sup>C NMR spectrum of 4c in CDCl<sub>3</sub> (125 MHz).



Figure S47. COSY spectrum of 4c in CDCl<sub>3</sub> (500 MHz).





Figure S50. <sup>13</sup>C NMR spectrum of 4d in CDCl<sub>3</sub> (125 MHz).



Figure S51. COSY spectrum of 4d in CDCl<sub>3</sub> (500 MHz).





Figure S52. <sup>13</sup>C NMR spectrum of 5a in CDCl<sub>3</sub> (125 MHz).









Figure S56. <sup>13</sup>C NMR spectrum of **5b** in CDCl<sub>3</sub> (125 MHz).



Figure S57. COSY spectrum of 5b in CDCl<sub>3</sub> (500 MHz).





Figure S60. <sup>13</sup>C NMR spectrum of 5c in CDCI<sub>3</sub> (125 MHz).









Figure S64. <sup>13</sup>C NMR spectrum of 5d in CDCl<sub>3</sub> (125 MHz).



Figure S65. COSY spectrum of 5d in CDCl<sub>3</sub> (500 MHz).





**Figure S68**. <sup>13</sup>C NMR spectrum of **6** in CDCI<sub>3</sub> (125 MHz).



Figure S69. COSY spectrum of 6 in CDCl<sub>3</sub> (500 MHz).





Figure S72. <sup>13</sup>C NMR spectrum of **7a** in CDCI<sub>3</sub> (125 MHz).







gure 374. TRIVIS (FAB-IVIS, positive) of 7



Figure S76. <sup>13</sup>C NMR spectrum of **7b** in CDCl<sub>3</sub> (125 MHz).



Figure S77. COSY spectrum of 7b in CDCl<sub>3</sub> (500 MHz).



Figure S78. HRMS (FAB-MS, positive) of 7b.



Figure S80. <sup>13</sup>C NMR spectrum of **7c** in CDCl<sub>3</sub> (125 MHz).



Figure S81. COSY spectrum of 7c in CDCl<sub>3</sub> (500 MHz).





Figure S84. <sup>13</sup>C NMR spectrum of 7d in CDCl<sub>3</sub> (125 MHz).



Figure S85. COSY spectrum of 7d in CDCI<sub>3</sub> (500 MHz).





Figure S88. <sup>13</sup>C NMR spectrum of 8a in CDCI<sub>3</sub> (125 MHz).


Figure S89. COSY spectrum of 8a in CDCl<sub>3</sub> (500 MHz).





Figure S92. <sup>13</sup>C NMR spectrum of **8b** in CDCl<sub>3</sub> (125 MHz).









Figure S96. <sup>13</sup>C NMR spectrum of 8c in CDCI<sub>3</sub> (125 MHz).



Figure S97. COSY spectrum of 8c in CDCl<sub>3</sub> (500 MHz).





Figure S100. <sup>13</sup>C NMR spectrum of 8d in CDCI<sub>3</sub> (125 MHz).



Figure S101. COSY spectrum of 8d in CDCI<sub>3</sub> (500 MHz).



3. ORTEP drawing of 3d, 8a and 8d (Figures S103-S105).



Figure S103. ORTEP drawing of 3d; ellipsoids are drawn at the 50% probability level.



Figure S104. ORTEP drawing of 8a; ellipsoids are drawn at the 50% probability level.



Figure S105. ORTEP drawing of 8d; ellipsoids are drawn at the 50% probability level.

## 4. Frontier Kohn–Sham orbitals of compounds 3a–3d (Figures S106–S109).

HOMO (-5.07 eV)

HOMO-1 (-6.27 eV)

HOMO-2 (-6.49 eV)

HOMO-3 (-6.92 eV)



LUMO (-2.22 eV)

LUMO+1 (-1.78 eV)



LUMO+2 (-0.74 eV)



LUMO+3 (+0.34 eV)



Figure S106. Frontier Kohn–Sham orbitals of 3a at the B3LYP/6-31G\*\* level.

|    | Table S1. Cartesian coordinates of 3a; absolute energy is −996.236338 au. |      |          |          |          |    |   |      |          |          |          |
|----|---------------------------------------------------------------------------|------|----------|----------|----------|----|---|------|----------|----------|----------|
|    |                                                                           | Atom | Х        | Y        | Z        |    |   | Atom | Х        | Y        | Z        |
| 1  | 0                                                                         | O1   | 4.655879 | 1.069752 | 0.011796 | 20 | С | C12  | 4.367384 | 3.685606 | 0.010456 |
| 2  | 0                                                                         | O2   | 3.225193 | 2.818874 | 0.005525 | 21 | Н | H12A | 4.978535 | 3.517608 | 0.901004 |
| 3  | 0                                                                         | O3   | -2.23971 | -0.71779 | 0.020559 | 22 | Н | H12B | 3.966654 | 4.699411 | 0.008438 |
| 4  | С                                                                         | C1   | 2.286439 | 0.679678 | 0.001596 | 23 | Н | H12C | 4.986215 | 3.517016 | -0.87462 |
| 5  | С                                                                         | C2   | 0.979702 | 1.184637 | -0.00065 | 24 | С | C16  | -1.38725 | 0.374373 | -0.00762 |
| 6  | Н                                                                         | H2   | 0.739154 | 2.239329 | 0.002897 | 25 | С | C17  | -2.10631 | 1.541069 | -0.03156 |
| 7  | С                                                                         | C3   | 0.039003 | 0.13778  | -0.00499 | 26 | Н | H17  | -1.69244 | 2.538514 | -0.05607 |
| 8  | С                                                                         | C4   | 0.765506 | -1.09194 | -0.00611 | 27 | С | C18  | -3.4954  | 1.180893 | -0.01758 |
| 9  | С                                                                         | C5   | 0.2218   | -2.37924 | -0.0138  | 28 | С | C19  | -4.71755 | 1.872708 | -0.02811 |
| 10 | Н                                                                         | H5   | -0.86131 | -2.42377 | -0.01864 | 29 | Н | H19  | -4.74127 | 2.957974 | -0.05195 |
| 11 | С                                                                         | C6   | 0.872005 | -3.61392 | -0.01582 | 30 | С | C20  | -5.89813 | 1.135494 | -0.00629 |
| 12 | Н                                                                         | H6   | 0.217273 | -4.48181 | -0.02304 | 31 | Н | H20  | -6.85201 | 1.65435  | -0.01415 |
| 13 | С                                                                         | C7   | 2.242656 | -3.89218 | -0.00975 | 32 | С | C21  | -5.88412 | -0.27086 | 0.026113 |
| 14 | Н                                                                         | H7   | 2.504563 | -4.94853 | -0.01208 | 33 | Н | H21  | -6.8233  | -0.81505 | 0.042176 |
| 15 | С                                                                         | C8   | 3.318104 | -3.00638 | -0.00149 | 34 | С | C22  | -4.68269 | -0.98131 | 0.037164 |
| 16 | С                                                                         | C9   | 3.301216 | -1.60697 | 0.001717 | 35 | Н | H22  | -4.65368 | -2.06534 | 0.061218 |
| 17 | Н                                                                         | H9   | 4.266674 | -1.10954 | 0.006862 | 36 | С | C23  | -3.51879 | -0.22661 | 0.014645 |
| 18 | С                                                                         | C10  | 2.20945  | -0.74267 | -0.00112 | 37 | Н | H3   | 4.306011 | -3.46015 | 0.00238  |
| 19 | С                                                                         | C11  | 3.508302 | 1.488731 | 0.006959 |    |   |      |          |          |          |



Figure S107. Frontier Kohn–Sham orbitals of 3b at the B3LYP/6-31G\*\* level.

|    | <b>Table S2</b> . Cartesian coordinates of <b>3b</b> ; absolute energy is −1114.1873373 au. |      |          |          |          |    |   |      |          |          |          |  |
|----|---------------------------------------------------------------------------------------------|------|----------|----------|----------|----|---|------|----------|----------|----------|--|
|    |                                                                                             | Atom | Х        | Y        | Z        |    |   | Atom | Х        | Y        | Z        |  |
| 1  | 0                                                                                           | O1   | 3.322418 | 2.740044 | -0.06736 | 24 | С | C13  | 4.817149 | -1.72025 | -0.05227 |  |
| 2  | 0                                                                                           | 02   | 1.440361 | 3.989523 | -0.0538  | 25 | Н | H13  | 5.258969 | -0.71865 | 0.000186 |  |
| 3  | 0                                                                                           | O3   | -2.73185 | -1.00913 | 0.007668 | 26 | С | C14  | 5.320799 | -2.37643 | -1.3518  |  |
| 4  | С                                                                                           | C1   | 1.172888 | 1.668318 | -0.04836 | 27 | Н | H14A | 6.413439 | -2.44969 | -1.34337 |  |
| 5  | С                                                                                           | C2   | -0.22584 | 1.768033 | -0.03593 | 28 | Н | H14B | 5.025384 | -1.79526 | -2.23057 |  |
| 6  | Н                                                                                           | H2   | -0.76414 | 2.706475 | -0.0266  | 29 | Н | H14C | 4.922372 | -3.3903  | -1.47    |  |
| 7  | С                                                                                           | C3   | -0.81747 | 0.492172 | -0.03449 | 30 | С | C15  | 5.301079 | -2.49634 | 1.186885 |  |
| 8  | С                                                                                           | C4   | 0.240222 | -0.46892 | -0.0492  | 31 | Н | H15A | 6.394408 | -2.55743 | 1.194229 |  |
| 9  | С                                                                                           | C5   | 0.109175 | -1.85734 | -0.06607 | 32 | Н | H15B | 4.914802 | -3.52165 | 1.20036  |  |
| 10 | Н                                                                                           | H5   | -0.90814 | -2.23126 | -0.0671  | 33 | Н | H15C | 4.981144 | -2.00706 | 2.111886 |  |
| 11 | С                                                                                           | C6   | 1.110837 | -2.82949 | -0.08347 | 34 | С | C16  | -2.24874 | 0.290044 | -0.0196  |  |
| 12 | Н                                                                                           | H6   | 0.753855 | -3.85659 | -0.09961 | 35 | С | C17  | -3.28676 | 1.18505  | -0.02438 |  |
| 13 | С                                                                                           | C7   | 2.499876 | -2.68571 | -0.0793  | 36 | Н | H17  | -3.19352 | 2.260762 | -0.04591 |  |
| 14 | Н                                                                                           | H7   | 3.047389 | -3.62628 | -0.09164 | 37 | С | C18  | -4.5021  | 0.422368 | 0.002392 |  |
| 15 | С                                                                                           | C8   | 3.29556  | -1.53304 | -0.05989 | 38 | С | C19  | -5.87592 | 0.71323  | 0.012837 |  |
| 16 | С                                                                                           | C9   | 2.8188   | -0.21159 | -0.0546  | 39 | Н | H19  | -6.22622 | 1.740961 | -0.00024 |  |
| 17 | Н                                                                                           | H9   | 3.577033 | 0.566718 | -0.05008 | 40 | С | C20  | -6.77884 | -0.34595 | 0.040652 |  |
| 18 | С                                                                                           | C10  | 1.517047 | 0.284994 | -0.05382 | 41 | Н | H20  | -7.84483 | -0.13869 | 0.048606 |  |
| 19 | С                                                                                           | C11  | 2.101489 | 2.800163 | -0.05699 | 42 | С | C21  | -6.34122 | -1.68266 | 0.058818 |  |
| 20 | С                                                                                           | C12  | 2.279245 | 5.151633 | -0.06809 | 43 | Н | H21  | -7.07257 | -2.48463 | 0.081501 |  |
| 21 | Н                                                                                           | H12A | 2.928268 | 5.173994 | 0.811207 | 44 | С | C22  | -4.98121 | -1.99735 | 0.048658 |  |
| 22 | Н                                                                                           | H12B | 1.599861 | 6.004204 | -0.06188 | 45 | Н | H22  | -4.62569 | -3.02205 | 0.062171 |  |
| 23 | Н                                                                                           | H12C | 2.905181 | 5.167786 | -0.96416 | 46 | С | C23  | -4.09956 | -0.92669 | 0.020875 |  |



Figure S108. Frontier Kohn–Sham orbitals of 3c at the B3LYP/6-31G\*\* level.

|    | <b>Table S3</b> . Cartesian coordinates of <b>3c</b> ; absolute energy is −1114.188295 au. |      |          |          |          |    |   |      |          |          |          |  |
|----|--------------------------------------------------------------------------------------------|------|----------|----------|----------|----|---|------|----------|----------|----------|--|
|    |                                                                                            | Atom | Х        | Y        | Z        |    |   | Atom | Х        | Y        | Z        |  |
| 1  | 0                                                                                          | 01   | 3.14223  | -3.38114 | 0.00277  | 24 | С | C17  | -3.25516 | -1.09226 | -0.05982 |  |
| 2  | 0                                                                                          | 02   | 1.135103 | -4.41993 | 0.006055 | 25 | Н | H17  | -3.28834 | -2.17016 | -0.11929 |  |
| 3  | 0                                                                                          | O3   | -2.44951 | 1.019302 | 0.057756 | 26 | С | C18  | -4.37395 | -0.1935  | -0.03024 |  |
| 4  | С                                                                                          | C1   | 1.12278  | -2.08316 | -0.00033 | 27 | С | C19  | -5.7723  | -0.32048 | -0.05891 |  |
| 5  | С                                                                                          | C2   | -0.27897 | -2.02402 | 0.000968 | 28 | Н | H19  | -6.23962 | -1.29886 | -0.11535 |  |
| 6  | Н                                                                                          | H2   | -0.9204  | -2.89507 | 0.005826 | 29 | С | C20  | -6.54521 | 0.836494 | -0.01435 |  |
| 7  | С                                                                                          | C3   | -0.72111 | -0.68936 | -0.00099 | 30 | Н | H20  | -7.62801 | 0.756446 | -0.03589 |  |
| 8  | С                                                                                          | C4   | 0.440711 | 0.14487  | -0.00336 | 31 | С | C21  | -5.95441 | 2.111053 | 0.058396 |  |
| 9  | С                                                                                          | C5   | 0.470226 | 1.540344 | -0.01107 | 32 | Н | H21  | -6.58719 | 2.992415 | 0.092667 |  |
| 10 | Н                                                                                          | H5   | -0.50129 | 2.02149  | -0.01299 | 33 | С | C22  | -4.56725 | 2.263484 | 0.087994 |  |
| 11 | С                                                                                          | C6   | 1.558262 | 2.414717 | -0.01545 | 34 | Н | H22  | -4.09524 | 3.23837  | 0.144322 |  |
| 12 | Н                                                                                          | H6   | 1.282668 | 3.467174 | -0.02144 | 35 | С | C23  | -3.81703 | 1.097684 | 0.041863 |  |
| 13 | С                                                                                          | C7   | 2.939569 | 2.161928 | -0.01243 | 36 | Н | H3   | 4.624846 | 0.887879 | -0.00573 |  |
| 14 | С                                                                                          | C8   | 3.537706 | 0.893492 | -0.00674 | 37 | С | C13  | 3.86765  | 3.379893 | -0.01672 |  |
| 15 | С                                                                                          | C9   | 2.962558 | -0.3783  | -0.00335 | 38 | Н | H7   | 3.226544 | 4.270161 | -0.01746 |  |
| 16 | Н                                                                                          | H9   | 3.654438 | -1.21561 | -0.00154 | 39 | С | C14  | 4.731763 | 3.439799 | -1.2902  |  |
| 17 | С                                                                                          | C10  | 1.618605 | -0.74898 | -0.00246 | 40 | Н | H1   | 5.327268 | 4.358876 | -1.30165 |  |
| 18 | С                                                                                          | C11  | 1.922352 | -3.31024 | 0.002919 | 41 | Н | H8   | 4.111362 | 3.424817 | -2.19151 |  |
| 19 | С                                                                                          | C12  | 1.841296 | -5.66735 | 0.008624 | 42 | Н | H10  | 5.425809 | 2.59506  | -1.34768 |  |
| 20 | Н                                                                                          | H12A | 2.475919 | -5.75655 | -0.87729 | 43 | С | C15  | 4.735041 | 3.446467 | 1.253957 |  |
| 21 | Н                                                                                          | H12B | 1.072576 | -6.44081 | 0.006636 | 44 | Н | H4   | 5.327478 | 4.367401 | 1.259985 |  |
| 22 | Н                                                                                          | H12C | 2.470361 | -5.75542 | 0.898569 | 45 | Н | H11  | 5.432454 | 2.604461 | 1.313145 |  |
| 23 | С                                                                                          | C16  | -2.12005 | -0.32582 | -0.005   | 46 | Н | H12  | 4.11697  | 3.432731 | 2.156797 |  |



Figure S109. Frontier Kohn–Sham orbitals of 3d at the B3LYP/6-31G\*\* level.

| Table S4. Cartesian coordinates of 3d; absolute energy is -1153.233945 au. |   |      |          |          |          |    |   |      |          |          |          |
|----------------------------------------------------------------------------|---|------|----------|----------|----------|----|---|------|----------|----------|----------|
|                                                                            |   | Atom | Х        | Y        | Z        |    |   | Atom | Х        | Y        | Z        |
| 1                                                                          | 0 | 04   | 3.578747 | 2.141427 | 0.299824 | 26 | Н | H37C | -1.823   | 2.841509 | 0.539006 |
| 2                                                                          | 0 | O5   | 1.940842 | 3.672895 | 0.115151 | 27 | С | C38  | -2.22053 | 0.248392 | -0.10251 |
| 3                                                                          | 0 | O6   | -2.76221 | -0.87995 | 0.50589  | 28 | С | C39  | -3.21168 | 0.997351 | -0.67776 |
| 4                                                                          | С | C25  | 1.301524 | 1.401961 | 0.115184 | 29 | Н | H39  | -3.0653  | 1.901449 | -1.24925 |
| 5                                                                          | С | C26  | -0.09799 | 1.645749 | 0.102255 | 30 | С | C40  | -4.45677 | 0.325333 | -0.42243 |
| 6                                                                          | С | C27  | -0.7796  | 0.409581 | -0.02403 | 31 | С | C41  | -5.80784 | 0.553223 | -0.72829 |
| 7                                                                          | С | C28  | 0.184481 | -0.63547 | -0.07955 | 32 | Н | H41  | -6.10976 | 1.431324 | -1.2912  |
| 8                                                                          | С | C29  | -0.08278 | -1.99627 | -0.24104 | 33 | С | C42  | -6.75195 | -0.37246 | -0.29282 |
| 9                                                                          | Н | H29  | -1.13194 | -2.26235 | -0.31428 | 34 | Н | H42  | -7.80179 | -0.21148 | -0.51921 |
| 10                                                                         | С | C30  | 0.813979 | -3.0599  | -0.30825 | 35 | С | C43  | -6.37623 | -1.5151  | 0.43715  |
| 11                                                                         | Н | H30  | 0.359667 | -4.03918 | -0.44032 | 36 | Н | H43  | -7.13902 | -2.21563 | 0.762875 |
| 12                                                                         | С | C31  | 2.209733 | -3.05982 | -0.22352 | 37 | С | C44  | -5.03985 | -1.76459 | 0.750969 |
| 13                                                                         | Н | H31  | 2.666839 | -4.0454  | -0.29216 | 38 | Н | H44  | -4.73217 | -2.63916 | 1.313857 |
| 14                                                                         | С | C32  | 3.105246 | -1.9964  | -0.07016 | 39 | С | C45  | -4.11536 | -0.82875 | 0.307344 |
| 15                                                                         | С | C33  | 2.758887 | -0.63656 | 0.022062 | 40 | С | C46  | 4.598869 | -2.33281 | -0.00094 |
| 16                                                                         | Н | H33  | 3.583802 | 0.060343 | 0.12134  | 41 | Н | H46  | 4.686713 | -3.42265 | -0.09188 |
| 17                                                                         | С | C34  | 1.516213 | -0.00763 | 0.018457 | 42 | С | C47  | 5.385936 | -1.70971 | -1.16912 |
| 18                                                                         | С | C35  | 2.383872 | 2.387755 | 0.19362  | 43 | Н | H47A | 5.358175 | -0.61591 | -1.13301 |
| 19                                                                         | С | C36  | 2.96727  | 4.672943 | 0.169589 | 44 | Н | H47B | 4.978599 | -2.02489 | -2.13492 |
| 20                                                                         | Н | H36A | 3.666595 | 4.55534  | -0.66195 | 45 | Н | H47C | 6.436316 | -2.01656 | -1.12632 |
| 21                                                                         | Н | H36B | 3.526245 | 4.607419 | 1.106406 | 46 | С | C48  | 5.207884 | -1.93342 | 1.356337 |
| 22                                                                         | Н | H36C | 2.447784 | 5.628948 | 0.099787 | 47 | Н | H48A | 4.676822 | -2.41242 | 2.184934 |
| 23                                                                         | С | C37  | -0.77754 | 2.973295 | 0.256166 | 48 | Н | H48B | 5.162675 | -0.85039 | 1.510368 |
| 24                                                                         | Н | H37A | -0.74452 | 3.545914 | -0.6786  | 49 | Н | H48C | 6.260053 | -2.23355 | 1.407112 |
| 25                                                                         | Н | H37B | -0.27431 | 3.585145 | 1.005858 |    |   |      |          |          |          |