Supporting Information

Convenient, Functional Group-Tolerant, Transition Metal-Free Synthesis of Aryl

and Heteroaryl Trifluoromethyl Ketones with the Use of Methyl Trifluoroacetate

Kazumasa Funabiki,^{*a} Ayaka Hayakawa,^a and Toshiyasu Inuzuka^b

^a Department of Chemsitry and Biomolecular Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.

^b Division of Instrumental Analysis, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.

(Contents)

Detailed procedures and characterization of all of the compounds	р. 3 - 11
¹ H and ¹³ C NMR for compounds 4a and 4a -hydrate	p. 12
¹ H and ¹³ C NMR for compounds 4b and 4b -hydrate	p. 13
¹ H and ¹³ C NMR for compound 5	p. 14
¹ H and ¹³ C NMR for compounds 4c and 4c -hydrate	р. 15
¹ H and ¹³ C NMR for compound 4d	р. 16
¹ H and ¹³ C NMR for compound 4e	p. 17
¹ H and ¹³ C NMR for compounds 4f and 4f -hydrate	р. 18
¹ H and ¹³ C NMR for compounds 4g and 4g -hydrate	р. 19
¹ H and ¹³ C NMR for compounds 4h -hemiacetal and 4d -hydrate	р. 20
¹ H and ¹³ C NMR for compounds 4i and 4i -hydrate	p. 21
¹ H and ¹³ C NMR for compound 4j	p. 22
¹ H and ¹³ C NMR for compound 6	p. 23
¹ H and ¹³ C NMR for compound 6 -hydrate	<u>p</u> . 24
¹ H and ¹³ C NMR for compounds 7 and 7-hydrate	p. 25
¹ H and ¹³ C NMR for compounds 8 and 8 -hydrate	р. 26
¹ H and ¹³ C NMR for compound 9a	p. 27
¹ H and ¹³ C NMR for compound 10a	p. 28

Measurement. ¹H NMR spectra were measured at 392, 400, 500 or 600 MHz in deuterochloroform (CDCl₃), tetradeuteromethanol (CD₃OD) or hexadeuteroacetone ((CD₃)₂CO) solutions with tetramethylsilane (Me₄Si) as an internal standard using a JEOL ECS-400, ECX-400P, ECA-500 or ECA-600 FT-NMR spectrometer. ¹³C NMR spectra were obtained at 99, 101, 126 or 151 MHz in CDCl₃, CD₃OD or (CD₃)₂CO solution with Me₄Si as an internal standard using a JEOL ECS-400, ECX-400P, ECA-500 or ECA-600 FT-NMR spectrometer. ¹⁹F NMR spectra were recorded at 369, 376, 470 or 564 MHz in CDCl₃, CD₃OD or (CD₃)₂CO solutions using CFCl₃ as an external standard using a JEOL ECS-400, ECX-400P, ECA-500 or ECA-600 FT-NMR spectrometer. The data are reported as (s = singlet, t = triplet, q = quartet, m = multiplet, br s = broad singlet, coupling constant(s), integration). Melting points were obtained on a Yanagimoto MP-S3 micro melting point apparatus and are uncorrected. IR spectra were recorded on a Shimadzu IR Affinity-1. Electrospray ionization mass spectroscopy (ESI-MS) analysis using MeOH was performed with a Waters Xevo QTof mass spectrometer or JEOL JMS-T100LP (Accu TOF LC-plus).

Materials. Turbo Grignard reagent (*i*-PrMgCl·LiCl complex), *i*-PrMgCl, *i*-PrMgBr, and MeMgCl were purchased from Aldrich Co. Various iodoarenes, iodoheteroarenes, methyl trifluoroacetate, methyl difluoroacetate, methyl chlorodifluoroacetate, methyl pentafluoropropionate, and sodium trifluoroacetate were purchased from TCI Fine Chemicals, Wako Pure Chemicals, and Sigma-Aldrich Co. Pure products were isolated by column chromatography using Silica Gel 60 (spherical, 270–325 mesh, KANTO CHEMICAL CO., INC.). Analytical TLC was performed on Merck precoated (0.25 mm) silica gel 60 F₂₅₄ plates. All chemicals were of reagent grade and, if necessary, purified in the usual manner prior to use. Aryl trifluoromethyl ketones **4a**, **4b**, **4g**, **4h**, **4i**, and **7**, are not new compounds and commercially available from Fluorochem, Matrix Scientitic, Oakwood Chemical, Enamine Building Blocks, Rieke Metals NCS Brand, Aurora Fine Chemicals, and UkrOrgSyntez Led.

Typical procedure for in situ generation of functionalized aromatic Grignard reagents and trifluoroacetylation with methyl trifluoroacetate (2a).

To a THF solution of *i*-PrMgCl·LiCl (1.3 M) (1.05 mmol, 0.81 ml) was added ethyl 4-iodobenzoate (1a) (0.294 g, 1.0 mmol) at -25 °C under an argon atmosphere. After the reaction mixture stirred at that temperature for 30 min, methyl trifluoroacetate (2a) (0.395 g, 3.1 mmol) was added. The resultant mixture was warmed to 0 °C and stirred for 30 min. The reaction mixture was quenched with NH₄Cl aq solution (20 ml), extracted with diethyl ether (30 ml X 3), dried over anhydrous Na₂SO₄, and concentrated under vacuum to give the residue. After the yields were measured by ¹⁹F NMR with benzotrifluoride, the residue was purified by silica gel chromatography (hexane/ethyl acetate = 5/1) to give ethyl 4-(2,2,2-trifluoroacetyl)benzoate (4a) and ethyl 4-(2,2,2-trifluoro-1,1-dihydroxyethyl)benzoate (4a-hydrate) (0.185 g, k/hyd = 99/1, 71%).

The mixture of ethyl 4-(2,2,2-trifluoroacetyl)benzoate (4a) and 4a-hydrate (4a/4a-hydrate = 99/1)¹

Yield = 71%; $R_f 0.23$ (hexane/ethyl acetate = 5/1); mp = 76.2-78.2 °C; IR (KBr) 1694 (ketone C=O, ester C=O), 3229 (OH) cm⁻¹; ethyl 4-(2,2,2-trifluoroacetyl)benzoate (4a); ¹H NMR (CDCl₃) δ 1.39 (t, J = 6.97 Hz, 3H, OCH₂CH₃), 4.39 (q, J = 6.97 Hz, 2H, OCH₂CH₃), 8.08 (d, J = 8.30 Hz, 2H, aryl H), 8.15 (d, J = 8.30 Hz, 2H, aryl H); ¹³C NMR (CDCl₃) δ 14.2 (s), 61.9 (s), 116.5 (q, J = 291.1 Hz), 130.0 (s), 130.1 (s), 132.9 (s), 136.4 (s), 165.2 (s), 180.2 (q, J = 36.0 Hz); ¹⁹F NMR (CDCl₃) δ -71.7 (s, 3F); ethyl 4-(2,2,2-trifluoro-1,1-dihydroxyethyl)benzoate (4a-hydrate); ¹⁹F NMR (CDCl₃) δ -84.5 (s, 3F).

The mixture of ethyl 3-(2,2,2-trifluoroacetyl)benzoate (4b) and 4b-hydrate (4b/4b-hydrate = 91/9)¹

Yield = 72%; $R_f 0.28$ (hexane/ethyl acetate = 5/1); IR (KBr) 1724 (ketone C=O, ester C=O), 3429 (OH) cm⁻¹; ethyl 3-(2,2,2-trifluoroacetyl)benzoate (4b); ¹H NMR (CDCl₃) δ 1.39 (t, J = 6.99 Hz, 3H, OCH₂CH₃), 4.39 (q, J = 6.99 Hz, 2H, OCH₂CH₃), 7.61 (t, J = 8.02 Hz, 1H, aryl H), 8.20 (d, J = 8.02 Hz,

¹ Ketones **4a** and **4b** are commercially available from Fluorochem Ltd., Matrix Scientific and Oakwood Chemical.

1H, aryl H), 8.33 (d, J = 8.02 Hz, 1H, aryl H), 8.67 (s, 1H, aryl H); ¹³C NMR (CDCl₃) δ 14.2 (s), 61.9 (s), 116.6 (q, J = 291.6 Hz), 129.5 (s), 130.2 (s), 131.1 (s), 131.8 (s), 133.9 (s), 136.2 (s), 165.2 (s), 180.0 (q, J = 35.4 Hz); ¹⁹F NMR (CDCl₃) δ -71.5 (s, 3F); ethyl 3-(2,2,2-trifluoro-1,1-dihydroxyethyl)benzoate (4b-hydrate); ¹H NMR (CDCl₃) δ 1.34 (t, J = 7.11 Hz, 3H, OCH₂CH₃), 4.31 (q, J = 7.11 Hz, 2H, OCH₂CH₃), 5.12 (br s, 2H, OH), 7.40 (t, J = 7.72 Hz, 1H, aryl H), 7.87 (d, J = 7.72 Hz, 1H, aryl H), 7.98 (t, J = 7.72 Hz, 1H, aryl H), 8.67 (s, 1H, aryl H); ¹³C NMR (CDCl₃) δ 14.2 (s), 61.4 (s), 93.4 (q, J = 32.8 Hz), 122.8 (q, J = 287.5 Hz), 128.3 (s), 128.4 (s), 130.5 (s), 130.8 (s), 131.8 (s), 137.2 (s), 166.4 (s); ¹⁹F NMR (CDCl₃) δ -84.5 (s, 3F).

3-Methoxy-3-(trifluoromethyl)isobenzofuran-1(3H)-one (5)

Yield = 66%; R_f 0.33 (hexane/diethyl ether = 10/1); IR 1797 (C=O) cm⁻¹; HRMS (ESI) found: m/z 233.0443. Calcd for C₁₀H₈F₃O₃: [M+H]⁺, 233.0426; ¹H NMR (CDCl₃) δ 3.20 (s, 3H, OCH₃), 7.68 (d, J = 7.63 Hz, 1H, aryl H), 7.74 (t, J = 7.63 Hz, 1H, aryl H), 7.83 (t, J = 7.63 Hz, 1H, aryl H), 7.96 (t, J = 7.63 Hz, 1H, aryl H); ¹³C NMR (CDCl₃) δ 52.0 (s), 103.5 (q, J = 34.8 Hz), 121.2 (q, J = 284.7 Hz), 124.3 (s), 126.3 (s), 128.0 (s), 132.7 (s), 135.5 (s), 139.7 (s); ¹⁹F NMR (CDCl₃) δ -81.5 (s, 3F).

The mixture of 4-(2,2,2-trifluoroacetyl)benzonitrile (4c) and 4c-hydrate (4c/4c-hydrate = 89/11)²

Yield = 82%; R_f 0.15 (dichloromethane); mp = 76.2-78.2 °C; IR (KBr) 1728 (C=O), 2241 (C=N), 3379 (OH) cm⁻¹; **4-(2,2,2-trifluoroacetyl)benzonitrile (4c)**; ¹H NMR ((CD₃)₂CO) δ 8.09 (d, *J* = 8.30 Hz, 2H, aryl H), 8.26 (d, *J* = 8.30 Hz, 2H, aryl H); ¹³C NMR ((CD₃)₂CO) δ 117.3 (q, *J* = 290.3 Hz), 118.1 (s), 119.4 (s), 131.2 (s), 133.8 (s), 134.0 (s), 180.4 (q, *J* = 36.0 Hz); ¹⁹F NMR ((CD₃)₂CO) δ -72.6 (s, 3F); **4-(2,2,2-trifluoro-1,1-dihydroxyethyl)benzonitrile (4c-hydrate**); ¹H NMR ((CD₃)₂CO) δ 6.91 (s, 2H, OH), 7.84 (d, *J* = 8.30 Hz, 2H, aryl H), 7.93 (d, *J* = 8.30 Hz, 2H, aryl H); ¹³C NMR ((CD₃)₂CO) δ 93.8

² W. Wu, Q. Tian, T. Chen and Z. Weng, *Chem. Eur. J.*, **2016**, *22*, 16455–16458.

 $(q, J = 32.4 \text{ Hz}), 113.9 \text{ (s)}, 119.0 \text{ (s)}, 124.1 \text{ (q}, J = 286.7 \text{ Hz}), 129.4 \text{ (s)}, 132.6 \text{ (s)}, 144.0 \text{ (s)}; {}^{19}\text{F} \text{ NMR}$ ((CD₃)₂CO) δ -84.5 (s, 3F).

1-Trifluoroacetylnaphthalene (4d)³

Yield = 63%; R_f 0.25 (hexane); IR (KBr) 1708 (C=O) cm⁻¹; ¹H NMR (CDCl₃) δ 7.46 (t, J = 8.07 Hz, 1H, aryl H), 7.52-7.60 (m, 1H, aryl H), 7.61-7.70 (m, 1H, aryl H), 7.83 (d, J = 8.07 Hz, 1H, aryl H), 8.02 (d, J = 8.07 Hz, 1H, aryl H), 8.17-8.25 (m, 1H, aryl H), 8.88 (d, J = 8.07 Hz, 1H, aryl H); ¹³C NMR (CDCl₃) δ 116.8 (q, J = 293.1 Hz), 124.0 (s), 125.1 (s), 126.1 (s), 127.0 (s), 129.0 (s), 129.4 (s), 131.1 (s), 131.7 (q, J = 3.8 Hz), 133.9 (s), 136.2 (s), 182.2 (q, J = 33.8 Hz); ¹⁹F NMR (CDCl₃) δ -69.9 (s, 3F).

9,9-Dimethyl-2-trifluoroacetylfluorene (4e)

Yield = 68%; R_f 0.35 (hexane/dichloromethane = 10/1); IR (KBr) 1709 (C=O) cm⁻¹; HRMS (ESI) found: m/z 291.0982. Calcd for C₁₇H₁₄F₃O: [M+H]⁺, 291.0997; ¹H NMR (CDCl₃) δ 1.56 (s, 6H, CH₃ X 2), 7.39–7.50 (m, 2H, aryl H), 7.52 (d, J = 7.40 Hz, 1H, aryl H), 7.85 (t, J = 7.40 Hz, 2H, aryl H), 8.13 (d, J = 7.40 Hz, 1H, aryl H), 8.21 (s, 1H, aryl H); ¹³C NMR (CDCl₃) δ 26.8 (s), 47.3 (s), 117.1 (q, J = 291.7 Hz), 120.4 (s), 121.7 (s), 123.1 (s), 124.4 (s), 127.6 (s), 128.7 (s), 129.7 (s), 130.2 (s), 137.3 (s), 146.9 (s), 154.3 (s), 155.3 (s), 180.3 (q, J = 34.5 Hz); ¹⁹F NMR (CDCl₃) δ –70.6 (s, 3F).

The mixture of 2,4-dimethoxy-5-trifluoroacetylpyrimidine (4f) and 4f-hydrate (4f/4f-hydrate = 80/20)

Yield = 67%; $R_f 0.30$ (hexane/diethyl ether = 3/2); mp = 68.9-70.6 °C; IR (KBr) 1721 (C=O), 3283 (OH) cm⁻¹; HRMS (ESI) found: m/z 237.0465. Calcd for C₈H₈F₃N₂O₃: [M+H]⁺, 237.0487; **2,4-dimethoxy-5-trifluoroacetylpyrimidine (4f)**; ¹H NMR ((CD₃)₂CO) δ 4.09 (s, 3H, OCH₃), 4.13 (s, 3H, OCH₃), 8.81 (br s, 1H, aryl H); ¹³C NMR ((CD₃)₂CO) δ 55.4 (s), 56.3 (s), 108.8 (s), 117.1 (q, *J* = 290.3 Hz), 164.7 (s), 168.7 (s), 170.8 (s), 178.0 (q, *J* = 36.6 Hz); ¹⁹F NMR δ -74.7 (s, 3F); **1-(2,4-**

³ T. Konno, T. Takehana, M. Mishima and T. Ishihara, J. Org. Chem., 2006, 71, 3545–3550.

dimethoxypyrimidin-5-yl)-2,2,2-trifluoroethane-1,1-diol (4f-hydrate); ¹H NMR ((CD₃)₂CO) δ 3.96 (s, 1H, OCH₃), 4.04 (s, 3H, OCH₃), 8.57 (br s, 1H, aryl H), Signal derived from OH was not able to be assigned; ¹³C NMR ((CD₃)₂CO) δ 54.6 (s), 55.3 (s), 93.0 (q, *J* = 33.8 Hz), 111.9 (s), 124.4 (q, *J* = 288.4 Hz), 160.8 (s), 166.8 (s), 169.4 (s); ¹⁹F NMR ((CD₃)₂CO) δ -85.1 (s, 3F).

The mixture of 1,3-dimethyl-5-(2,2,2-trifluoroacetyl)pyrimidine-2,4(1*H*,3*H*)-dione (4g) and 4ghydrate $(4g/4g-hydrate = 4/96)^4$

Yield = 48%; $R_f 0.54$ (hexane/ethyl acetate = 1/1); mp = 107.0-108.7 °C; IR (KBr) 1624 (amido C=O), 1724 (ketone C=O), 3522 (OH) cm⁻¹; **1,3-dimethyl-5-(2,2,2-trifluoroacetyl)pyrimidine-2,4(1H,3H)dione (4g)**; ¹⁹F NMR ((CD₃)₂CO) δ -74.7 (s, 3F); **1,3-dimethyl-5-(2,2,2-trifluoro-1,1dihydroxyethyl)pyrimidine-2,4(1H,3H)-dione (4g-hydrate)**: ¹H NMR ((CD₃)₂CO) δ 3.28 (s, 3H, CH₃), 3.54 (s, 3H, CH₃), 7.35 (s, 2H, OH), 7.98 (s, 1H, aryl H); ¹³C NMR ((CD₃)₂CO) δ 28.0 (s), 37.7 (s), 93.1 (q, *J* = 33.5 Hz), 106.7 (s), 124.4 (q, *J* = 288.8 Hz), 147.2 (s), 151.5 (s), 165.7 (s); ¹⁹F NMR ((CD₃)₂CO) δ -86.8 (s, 3F).

The mixture of 2,2,2-trifluoro-1-methoxy-1-(pyridin-4-yl)ethan-1-ol (4h-hemiacetal) and 2,2,2trifluoro-1-(pyridin-4-yl)ethane-1,1-diol (4h-hydrate) (4h-hemiacetal/4h-hydrate = 96/4)⁵

Yield = 47%; R_f 0.23 (dichloromethane/methaol = 20/1); mp = 110-120 °C (sublimation); IR (KBr) 3271 (OH) cm⁻¹; **2,2,2-trifluoro-1-methoxy-1-(pyridin-4-yl)ethan-1-ol (4h-hemiacetal)**; ¹H NMR (CD₃OD) δ 3.24 (s, 3H, OCH₃), 7.66 (d, J = 6.30 Hz, 2H, aryl H), 8.64 (d, J = 6.30 Hz, 2H, aryl H); ¹³C NMR (CD₃OD) δ 50.2 (s), 97.0 (d, J = 32.0 Hz), 124.0 (q, J = 287.5 Hz), 124.7 (s), 146.5 (s), 150.3 (s); ¹⁹F NMR (CD₃OD) δ -84.2 (s, 3F); **2,2,2-trifluoro-1-(pyridin-4-yl)ethane-1,1-diol (4h-hydrate)** ; ¹⁹F NMR (CD₃OD) δ -85.5 (s, 3F).

⁴ Ketone **4g** is commercially available from Aurora Fine Chemicals and UkrOrgSyntez Led.

⁵ Ketone **4h** is commercially available from Enamine Building Blocks.

The mixture of 1-(3,5-dimethylisoxazol-4-yl)-2,2,2-trifluoroethan-1-one (4i) and 4i-hydrate (4i/4ihydrate = 42/58)

Yield = 55%; R_f 0.13 (hexane/diethyl ether = 1/1); mp = 170.8-172.2 °C; IR (KBr) 1709 (C=O), 3260 (OH) cm⁻¹; HRMS (ESI) found: m/z 226.0691. Calcd for C₈H₁₁F₃NO₃; [M+MeOH+H]⁺, 226.0691; **1**- (3,5-dimethylisoxazol-4-yl)-2,2,2-trifluoroethan-1-one (4i); ¹H NMR ((CD₃)₂CO) δ 2.28 (s, 3H, CH₃), 2.47 (s, 3H, CH₃); ¹³C NMR ((CD₃)₂CO) δ 11.7 (s), 12.8 (s), 72.1 (q, J = 32.0 Hz), 113.0 (s), 126.2 (q, J = 284.7 Hz), 159.8 (s), 170.2 (s); ¹⁹F NMR ((CD₃)₂CO) δ -77.9 (s, 3F); **1-(3,5-dimethylisoxazol-4-yl)-**2,2,2-trifluoroethane-1,1-diol (4i-hydrate); ¹H NMR ((CD₃)₂CO) δ 2.01 (s, 3H, CH₃), 2.37 (s, 3H, CH₃), Signal derived from OH was not able to be assigned; ¹³C NMR ((CD₃)₂CO) δ 11.6 (s), 12.6 (s), 92.2 (q, J = 33.9 Hz), 112.4 (s), 124.7 (q, J = 286.6 Hz), 160.0 (s), 167.7 (s); ¹⁹F NMR ((CD₃)₂CO) δ -86.0 (s, 3F).

2,2,2-Trifluoro-1-(1-methyl-1*H*-pyrazol-4-yl)ethan-1-one (4j)⁶

Yield = 50%; R_f 0.44 (dichloromethane); mp = 76.2-78.2 °C; IR (KBr) 1709 (C=O) cm⁻¹; ¹H NMR (CDCl₃) δ 3.96 (s, 3H, CH₃), 8.01 (s, 1H, aryl H), 8.04 (s, 1H, aryl H); ¹³C NMR (CDCl₃) δ 39.6 (s), 116.49 (q, J = 290.3 Hz), 116.53 (s), 135.1 (s), 142.0 (s), 174.5 (q, J = 37.6 Hz); ¹⁹F NMR (CDCl₃) δ -75.0 (s, 3F).

Ethyl 4-(2,2-difluoroacetyl)benzoate (6)⁷

Yield = 19%; R_f 0.63 (dichloromethane); mp = 58.3-59.5 °C; IR (KBr) 1713 (ketone C=O and ester C=O) cm⁻¹; ¹H NMR (CDCl₃) δ 1.41 (t, J = 7.11 Hz, 3H, OCH₂CH₃), 4.41 (q, J = 7.11 Hz, 2H, OCH₂CH₃), 6.29 (t, J = 53.40 Hz, 1H, CHF₂), 8.12 (d, J = 8.95 Hz, 2H, aryl H), 8.17 (d, J = 8.95 Hz,

⁶ D. V. Yarmoliuk, V. V. Arhipov, M. V. Stambirskyi, Y. V. Dmytriv, O. V. Shishkin, A. A. Tolmachev and Mykhailiuk, *Synthesis*, **2014**, *46*, 1254–1260.

⁷ W. Peng and J. M. Shreeve, J. Org. Chem., **2005**, 70, 5760–5763.

2H, aryl H); ¹³C NMR (CDCl₃) δ 14.4 (s), 61.8 (s), 111.2 (t, J = 253.7 Hz), 129.7 (s), 130.1 (s), 134.5 (s), 135.9 (s), 165.4 (s), 187.4 (t, J = 25.8 Hz); ¹⁹F NMR (CDCl₃) δ –121.9 (d, J = 53.4 Hz, 2F).

Ethyl 4-(2,2-difluoro-1,1-dihydroxyethyl)benzoate (6-hydrate)

Yield = 46%; *R_f* 0.24 (dichloromethane); IR (KBr) 1724 (ketone C=O, ester C=O), 3343 (OH) cm⁻¹; ¹H NMR (CDCl₃) δ 1.35 (t, *J* = 7.18 Hz, 3H, OCH₂CH₃), 3.92 (br s, 2H, OH), 4.32 (q, *J* = 7.18 Hz, 2H, OCH₂CH₃), 6.22 (t, *J* = 54.95 Hz, 1H, CHF₂), 7.51 (d, *J* = 8.50 Hz, 2H, aryl H), 7.95 (d, *J* = 8.50 Hz, 2H, aryl H); ¹³C NMR (CDCl₃) δ 14.3 (s), 61.3 (s), 78.0 (t, *J* = 21.6 Hz), 116.6 (t, *J* = 250.9 Hz), 127.2 (s), 129.6 (s), 130.4 (s), 144.9 (s), 166.3 (s); ¹⁹F NMR (CDCl₃) δ -127.1 (d, *J* = 55.0 Hz, 2F).

The mixture of ethyl 4-(2-chloro-2,2-difluoroacetyl)benzoate (7) and 7-hydrate (7/7-hydrate = $94/6)^8$

Yield = 71%; R_f 0.30 (hexane/dichloromethane = 2/3); mp = 57.0-58.0 °C; IR (KBr) 1724 (ketone C=O, ester C=O) cm⁻¹; ethyl 4-(2-chloro-2,2-difluoroacetyl)benzoate (7); ¹H NMR (CDCl₃) δ 1.38 (t, J = 7.11 Hz, 3H, OCH₂CH₃), 4.39 (q, J = 7.11 Hz, 2H, OCH₂CH₃), 8.12 (s, 4H, aryl H); ¹³C NMR (CDCl₃) δ 14.2 (s), 61.8 (s), 120.0 (t, J = 304.9 Hz), 129.9 (s), 130.4 (s), 132.5 (s), 136.0 (s), 165.2 (s), 180.7 (t, J = 29.2 Hz); ¹⁹F NMR (CDCl₃) δ -61.3 (s, 2F); ethyl 4-(2-chloro-2,2-difluoro-1,1-dihydroxyethyl)benzoate (7-hydrate); ¹⁹F NMR (CDCl₃) δ -67.8 (s, 2F).

The mixture of ethyl 4-(2,2,3,3,3-pentafluoropropanoyl)benzoate (8) and 8-hydrate (8/8-hydrate = 94/6)

Yield = 51%; R_f 0.43 (hexane/dichloromethane = 1/1); IR (KBr) 1713 (ketone C=O, ester C=O) cm⁻¹; HRMS (ESI) found: m/z 329.0813. Calcd for C₁₃H₁₄F₅O₄; [M+MeOH+H]⁺, 329.0812; ethyl 4-(2,2,3,3,3-pentafluoropropanoyl)benzoate (8); ¹H NMR (CDCl₃) δ 1.40 (t, J = 7.08 Hz, 3H,

⁸ Ketone 7 is commercially available from UkrOrgSyntez Led.

OCH₂C*H*₃), 4.41 (q, *J* = 7.08 Hz, 2H, OC*H*₂CH₃), 8.11 (d, *J* = 8.55 Hz, 2H, aryl H), 8.17 (d, *J* = 8.55 Hz, 2H, aryl H); ¹³C NMR (CDCl₃) δ 14.3 (s), 61.9 (s), 108.6 (tq, *J* = 269.0, 37.3 Hz), 61.9 (s), 118.0 (qt, *J* = 286.5, 33.4 Hz), 130.0 (t, *J* = 2.9 Hz), 130.1 (s), 136.4 (s), 165.2 (s), 183.0 (t, *J* = 12.8 Hz); ¹⁹F NMR (CDCl₃) δ -81.6 (s, 3F), -115.8 (s, 2F); ethyl 4-(2,2,3,3,3-pentafluoro-1,1-dihydroxypropyl)benzoate (8-hydrate); ¹⁹F NMR (CDCl₃) δ -78.5 (s, 3F), -125.4 (s, 2F).

Typical procedure for *in situ* generation of functionalized aromatic Grignard reagents and successive reaction with methyl trifluoroacetate (2a) and acetone.

To a THF solution of *i*-PrMgCl·LiCl (1.3 M) (1.05 mmol, 0.81 ml) was added ethyl 4-iodobenzoate (**1a**) (0.293 g, 1.0 mmol) at -25 °C under an argon atmosphere. After the reaction mixture stirred at that temperature for 30 min, methyl trifluoroacetate (**2a**) (0.389 g, 3.0 mmol) was added. The mixture was warmed to 0 °C and stirred for 5 min. Then, to the reaction mixture was added acetone (0.294 g, 5.0 mmol) and stirred at 23 °C for overnight. The reaction mixture was quenched with NH4Cl aq solution (20 ml), extracted with diethyl ether (30 ml X 3), dried over anhydrous Na₂SO₄, and concentrated under vacuum to give the residue. After the yields were measured by ¹⁹F NMR with benzotrifluoride, the residue was purified by silica gel chromatography (hexane/ethyl acetate = 3/1) to give diethyl 4,4'-(1,1,1,7,7,7-hexafluoro-2,6-dihydroxy-4-oxoheptane-2,6-diyl)dibenzoate (**9a**) (0.182 g, 71%).

Diethyl 4,4'-(1,1,1,7,7,7-hexafluoro-2,6-dihydroxy-4-oxoheptane-2,6-diyl)dibenzoate (9a)

Yield = 71%; $R_f 0.31$ (hexane/ethyl acetate = 3/1); IR (KBr) 1717 (ketone C=O, ester C=O), 3437 (OH) cm⁻¹; HRMS (ESI⁺) found: m/z 573.1323. Calcd for C₂₅H₂₄F₆NaO₇: [M+Na]⁺, 573.1324;

Major/Minor = 52/48

Major isomer: ¹H NMR (CDCl₃) δ 1.380 (t, J = 7.18 Hz, 6H, OCH₂CH₃ X 2), 3.28 (d, J = 17.40 Hz, 2H,

CH_AH_B X 2), 3.47 (d, J = 17.40 Hz, 2H, CH_AH_B X 2), 4.37 (q, J = 7.18 Hz, 4H, OCH₂CH₃ X 2), 4.79 (s, 2H, OH X 2), 7.54 (d, J = 8.55 Hz, 4H, aryl H), 8.01 (d, J = 8.55 Hz, 4H, aryl H); ¹³C NMR (CDCl₃) δ 14.3 (s), 47.2 (s), 61.5 (s), 76.0 (q, J = 29.5 Hz), 124.1 (q, J = 285.3 Hz), 126.34 (s), 129.77 (s), 131.19 (s), 141.2 (s), 166.15 (s), 208.3 (s); ¹⁹F NMR (CDCl₃) δ -80.1 (s, 6F).

Minor isomer: ¹H NMR (CDCl₃) δ 1.384 (t, *J* = 7.09 Hz, 6H, OCH₂CH₃ X 2), 3.33 (d, *J* = 17.10 Hz, 2H, CH_AH_B X 2), 3.42 (d, *J* = 17.10 Hz, 2H, CH_AH_B X 2), 4.38 (q, *J* = 7.09 Hz, 4H, OCH₂CH₃ X 2), 4.83 (s, 2H, OH X 2), 7.49 (d, *J* = 8.55 Hz, 4H, aryl H), 7.98 (d, *J* = 8.55 Hz, 4H, aryl H); ¹³C NMR (CDCl₃) δ 14.3 (s), 47.1 (s), 61.5 (s), 76.0 (q, *J* = 29.5 Hz), 124.1 (q, *J* = 285.3 Hz), 126.27 (s), 129.80 (s), 131.17 (s), 141.3 (s), 166.22 (s), 208.7 (s); ¹⁹F NMR (CDCl₃) δ -80.0 (s, 6F).

Ethyl 4-(1,1,1-trifluoro-2-hydroxy-3-nitropropan-2-yl)benzoate (10a)9

Yield = 74%; $R_f 0.30$ (dichloromethane); IR (KBr) 1365 (NO₂), 1721 (C=O), 3599 (OH) cm⁻¹; ¹H NMR (CDCl₃) δ 1.37 (t, J = 7.19 Hz, 3H, OCH₂CH₃), 4.37 (q, J = 7.19 Hz, 2H, OCH₂CH₃), 5.05 (s, 1H, OH), 5.06 (d, J = 13.50 Hz, 1H, CH_AH_B), 5.13 (d, J = 13.50 Hz, 1H, CH_AH_B), 7.69 (d, J = 8.55 Hz, 2H, aryl H), 8.09 (d, J = 8.55 Hz, 2H, aryl H); ¹³C NMR (CDCl₃) δ 14.2 (s), 61.6 (s), 76.3 (q, J = 29.7 Hz), 77.5 (s), 123.5 (q, J = 286.3 Hz), 126.5 (s), 130.1 (s), 131.9 (s), 137.8 (s), 166.1 (s); ¹⁹F NMR (CDCl₃) δ -78.4 (s, 3F).

⁹ H. Xu and C. Wolf, *Chem. Commun.*, **2010**, *46*, 8026–8028.

3-Methoxy-3-(trifluoromethyl)isobenzofuran-1(3*H***)-one** (5)

¹H NMR

2,2,2-Trifluoro-1-(naphthalen-1-yl)ethan-1-one (4d)

1-(9,9-Dimethyl-9*H*-fluoren-2-yl)-2,2,2-trifluoroethan-1-one (4e)

¹H NMR

1-(2,4-Dimethoxypyrimidin-5-yl)-2,2,2-trifluoroethan-1-one (4f) and **1-(2,4-dimethoxypyrimidin-5-yl)-2,2,2-trifluoroethane-1,1-diol** (4f-hydrate)

¹H NMR

1,3-Dimethyl-5-(2,2,2-trifluoroacetyl)pyrimidine-2,4(1*H***,3***H***)-dione (4g)** and **1,3-dimethyl-5-(2,2,2-trifluoro-1,1-dihydroxyethyl)pyrimidine-2,4(1***H***,3***H***)**-dione (4g-hydrate)

2,2,2-Trifluoro-1-(1-methyl-1*H*-pyrazol-4-yl)ethan-1-one (4j)

Ethyl 4-(2-chloro-2,2-difluoroacetyl)benzoate (7) and ethyl 4-(2-chloro-2,2-difluoro-1,1-dihydroxyethyl)benzoate (7-hydrate)

¹H NMR

¹³C NMR

25

Diethyl 4,4'-(1,1,1,7,7,7-hexafluoro-2,6-dihydroxy-4-oxoheptane-2,6-diyl)dibenzoate (9a)

Ethyl 4-(1,1,1-trifluoro-2-hydroxy-3-nitropropan-2-yl)benzoate (10a)

