Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Bifunctional Catalysis in the Stereocontrolled Synthesis of Tetrahydro-1,2-oxazines

Marek Moczulski, Piotr Drelich and Łukasz Albrecht *

Institute of Organic Chemistry

Department of Chemistry, Lodz University of Technology

Zeromskiego 116, 90-924 Łódź, Poland

e-mail: <u>lukasz.albrecht@p.lodz.pl</u>

http://www.a-teamlab.p.lodz.pl

1.	General methods	S 2
2.	Screening results	S 3
3.	Synthesis of starting materials	S 6
4.	Enantio- and diastereoselective synthesis of tetrahydro-1,2-oxazines $1\ -$ general procedure	S 9
5.	Crystal and X-ray data for methyl 2-((3 <i>R</i> ,5 <i>S</i>)-4-nitro-2-((2-nitrophenyl)sulfonyl)-3-phenyl-1,2-oxazinan-5-yl)acetate (3da)	S17
6.	NMR data	S18
7.	HPLC traces	S37

1. General methods

NMR spectra were acquired on a Bruker Ultra Shield 700 instrument, running at 700 MHz for ¹H and 176 MHz for ¹³C, respectively. Chemical shifts (δ) are reported in ppm relative to residual solvent signals (CDCl₃: 7.26 ppm for ¹H NMR, 77.16 ppm for ¹³C NMR). Mass spectra were recorded on a Bruker Maxis Impact spectrometer using electrospray (ES+) ionization (referenced to the mass of the charged species). Optical rotations were measured on a Perkin-Elmer 241 polarimeter and [α]_D values are given in deg•cm•g⁻¹•dm⁻¹; concentration *c* is listed in g•(100 mL)⁻¹. Analytical thin layer chromatography (TLC) was performed using pre-coated aluminum-backed plates (Merck Kieselgel 60 F254) and visualized by ultraviolet irradiation or KMnO₄ or phosphamolybdic acid stain. The enantiomeric ratio (er) of the products was determined by chiral stationary phase HPLC (Daicel Chiralpak IA). Unless otherwise noted, analytical grade solvents and commercially available reagents were used without further purification. For flash chromatography (FC) silica gel (Silica gel 60, 230-400 mesh, Fluka). Methyl (*E*)-4-(aminooxy)but-2-enoate, **1a** and **1b** were synthetized according to the literature procedure.¹ *N*-(Allyloxy)-2-nitrobenzenesulfonamide was synthetized according to the literature procedure.²

¹ P. Drelich, M. Moczulski and Ł. Albrecht, Org. Lett. 2017, 19, 3143.

² P. A. Reddya, O. F. Schalla, J. R. Wheatleya, L. O. Rosika, J. P. McClurga, G. R. Marshalla and U. Slomczynska, *Synthesis* 2001, **7**, 1086.

2. Screening results General procedure

In an ordinary 4 mL glass vial, equipped with a teflon-coated magnetic stirring bar and a screw cap, catalyst 5 (0.1 equiv, 0.01 mmol) and the corresponding aminooxylating reagent 1 (1. equiv, 0.2 mmol) were dissolved in a solvent (0.1 - 0.8 mL). After 5 min., nitroolefin 2a (2 equiv, 0.4 mmol) was added and stirring was maintained for 24-48 h at given temperature. Reaction mixture was directly subjected to flash chromatography on silica gel (eluent: hexanes/ethyl acetate 70:30) to obtain pure product 3 which was subsequently analyzed by HPLC.

Aminooxylating reagent 1 screening

^a Reactions performed on 0.1 mmol scale using **1a-d** (1 equiv) and **2a** (2 equiv) in 0.2 mL of the CH₂Cl₂. ^b As determined by ¹H NMR of a crude reaction mixture after 24 h. ^c Determined by ¹H NMR of a crude reaction mixture. ^d Determined by a chiral stationary phase HPLC.

Catalyst 5 screening

	Cat.	Conv. ^b	3da:4da	dr ^c	er ^d
		[%]	ratio		
1	I	83 (92)	91:9	>20:1	>99.5:0.5
2	II	66 (72)	67:33	>20:1	>99.5:0.5
3	III	86 (94)	93:7	>20:1	>99.5:0.5
4	IV	55 (65)	83:17	2:1	>99.5:0.5
5	V	91	86:14	>20:1	>99.5:0.5
6	VI	12 (17)	75:25	2:1	nd

^a Reactions performed on 0.1 mmol scale using **1d** (1 equiv) and **2a** (2 equiv) in 0.2 mL of the CH₂Cl₂. ^b As determined by ¹H NMR of a crude reaction mixture after 24 h, in parenthesis after 48 h. ^c Determined by ¹H NMR of a crude reaction mixture after 48h. ^d Determined by a chiral stationary phase HPLC.

Solvent screening

NsO_ H	CO2Me + P	h NO ₂ —	Catalyst III (10 mol%) Solvent rt, 24-48 h	Ph NSN O CO ₂ Me	Ph Ph NSN I + O NO2 NO2 + O CO2Me
(1d 1 equiv)	2a (2 equiv)		3da	4da
	Solvent	Conv. ^b	3da:4da	dr ^c	er ^d
		[%]	ratio		
1	CH_2Cl_2	86 (94)	93:7	>20:1	>99.5:0.5
2	THF	21 (80)	91:9	>20:1	>99.5:0.5
3	CHCl ₃	76 (79)	86:14	>20:1	>99.5:0.5
4	Et_2O	75 (76)	92:8	>20:1	>99.5:0.5
5	CH ₃ CN	49 (80)	75:25	17:1	>99.5:0.5
6	iPrOH	18 (20)	86:14	8:1	nd
7	CCl_4	89 (92)	90:10	>20:1	>99.5:0.5
8	1,4-Dioxane	45 (55)	90:10	>20:1	>99.5:0.5
9	Toluene	96 (97)	96:4	>20:1	>99.5:0.5

^a Reactions performed on 0.1 mmol scale using **1d** (1 equiv) and **2a** (2 equiv) in 0.2 mL of the solvent. ^b As determined by ¹H NMR of a crude reaction mixture after 2 4h, in parenthesis after 48 h. ^c Determined by ¹H NMR of a crude reaction mixture after 48 h. ^d Determined by a chiral stationary phase HPLC.

Temperature experiments

NsO H	CO ₂ Me +	Ph NO ₂ — -20°	tatalyst III 10 mol%) Toluene ' to 40°, 24 h	NO2 NO2 CO2Me	Ph Ph NSN NO ₂ NO ₂
	1d (1 equiv)	2a (2 equiv)		3da	4da
	Temp.	Conv. ^b	3da:4da	drc	er ^d
	[°C]	[%]	ratio		
1	rt	96 (97)	96:4	>20:1	>99.5:0.5
2	-20	85 (93)	80:20	>20:1	>99.5:0.5
3	0	94 (96)	92:8	>20:1	>99.5:0.5
4	40	85 (92)	93:7	>20:1	>99.5:0.5

^a Reactions performed on 0.1 mmol scale using **1d** (1 equiv) and **2a** (2 equiv) in 0.2 mL of the solvent. ^b As determined by ¹H NMR of a crude reaction mixture after 24 h, in parenthesis after 48 h. ^c Determined by ¹H NMR of a crude reaction mixture after 48 h. ^d Determined by a chiral stationary phase HPLC.

Dilution experiments

^a Reactions performed on 0.1 mmol scale using 1d (1 equiv) and 2a (2 equiv) ^b in 0.8 mL of the solvent ^c in 0.4 mL of the solvent ^d in 0.2 mL of the solvent ^e in 0.1 mL of the solvent. ^f As determined by ¹H NMR of a crude reaction mixture after 24 h, in parenthesis after 48 h. ^g Determined by ¹H NMR of a crude reaction mixture after 48 h. ^h Determined by a chiral stationary phase HPLC.

3. Synthesis of starting materials

Sulfonylation of Aminoxy Groups - General Procedure 1

To a solution of methyl (*E*)-4-(aminooxy)but-2-enoate **6** (1 equiv, 5 mmol, 655 mg) in dichloromethane (0.5 M, 10 mL) in a (50 mL) round bottom flask equipped with a telfon-coated magnetic stirring bar and a glass stopper, water (10 mL) was added followed by anhydrous sodium carbonate (1.5 equiv, 7.5 mmol, 795 mg). After the dissolution of sodium carbonate arylsulfonyl chloride (1.5 equiv, 7.5 mmol) was added in one portion and the reaction was left stirring overnight. Afterwards, biphasic mixture was transferred to a separatory funnel and phases were separated. Aqueous layer was extracted with dichloromethane (2x 10 mL). Combined organic layers were dried over anhydrous magnesium sulfate, filtered and evaporated under reduced pressure. Pure product was obtained after FC (eluent: hexane/ethyl acetate 70:30).

Methyl (*E*)-4-(((4-methylphenyl)sulfonamido)oxy)but-2-enoate (1c)

Following the general procedure, using *p*-toluenesulfonyl chloride (1.5 equiv. 7.5 mmol, 1.43 g) product **1c** was isolated by FC (eluent: hexanes/ethyl acetate 70:30) as white amorphous solid in 52 % yield. ¹H NMR (700 MHz, CDCl₃) δ 7.83 – 7.78 (m, 2H), 7.37 – 7.32 (m, 2H), 7.18

(bs, 1H), 6.87 (dt, J = 15.9, 5.2 Hz, 1H), 5.95 (dt, J = 15.9, 1.8 Hz, 1H), 4.64 (dd, J = 5.2, 1.8 Hz, 2H), 3.74 (s, 3H), 2.45 (s, 3H). ¹³C NMR (176 MHz, CDCl₃) δ 166.4, 145.3, 141.4, 133.5, 130.0 (2C), 128.7 (2C), 123.1, 75.6, 51.9, 21.8. HRMS: calculated for [C₁₂H₁₅NO₅S+H]⁺: 286.0744; found: 286.0748.

Methyl (E)-4-(((2-nitrophenyl)sulfonamido)oxy)but-2-enoate (1d)

Following the general procedure, using *o*-nitrobenzenesulfonyl chloride (1.5 equiv. 7.5 mmol, 1.66 g) product **1d** was isolated by FC (eluent: hexanes/ethyl acetate 70:30) as white amorphous solid in 80 % yield. ¹H

NMR (700 MHz, CDCl₃) δ 8.24 (s, 1H), 8.21 (dd, J = 7.4, 1.8 Hz, 1H), 7.92 (dd, J = 7.7, 1.6 Hz, 1H), 7.87 – 7.79 (m, 2H), 6.91 (dt, J = 15.9, 5.3 Hz, 1H), 5.97 (dt, J = 15.9, 1.7 Hz, 1H), 4.74 (dd, J = 5.3, 1.8 Hz, 2H), 3.75 (s, 3H). ¹³C NMR (176 MHz, CDCl₃) δ 166.2, 148.6, 140.8, 135.1, 133.8, 133.1, 130.2,

125.8, 123.6, 77.3, 77.2, 77.0, 76.0, 51.9. HRMS: calculated for $[C_{11}H_{12}N_2O_7S+H]^+$: 317.0438; found: 317.0433.

Synthesis of (E)-2-nitro-N-((4-oxopent-2-en-1-yl)oxy)benzenesulfonamide 1e

tert-Butyl (allyloxy)((2-nitrophenyl)sulfonyl)carbamate 8

To a solution of *N*-(Allyloxy)-2-nitrobenzenesulfonamide **7** (1 equiv, 5 mmol, 1.29 g) in acetonitrile (0.3 M, 17 mL) in a 50 mL round bottom flask equipped with a Teflon-coated magnetic stirring bar and a glass stopper, di-tert-buthyl dicarbonate (1.1 equiv, 5.5 mmol, 1.20 g) was added followed by 4-(dimethylamino)pyridine (0.2 equiv, 1 mmol, 122 mg). The reaction was left

stirring overnight. Subsequently, solvent was evaporated and the crude oil was purified by FC (eluent: hexanes/ethyl acetate 70:30) to obtain pure product **8** as a clear viscous oil (1.61 g, 90% yield). ¹H NMR (700 MHz, CDCl₃) δ 8.14 – 8.12 (m, 1H), 7.79 – 7.76 (m, 1H), 7.74 – 7.70 (m, 2H), 6.03 – 5.96 (m, 1H), 5.43 – 5.38 (m, 1H), 5.35 – 5.30 (m, 1H), 4.63 (d, *J* = 6.7 Hz, 2H), 1.42 (s, 8H). ¹³C NMR (176 MHz, CDCl₃) δ 150.1, 148.5, 135.0, 132.0, 131.6, 131.3, 131.0, 124.5, 121.9, 86.5, 80.4, 27.8 (3C). HRMS calculated for [C₁₄H₁₈N₂O₇S+H⁺]: 359.0907; found: 359.0903.

tert-butyl (E)-((2-nitrophenyl)sulfonyl)((4-oxopent-2-en-1-yl)oxy)carbamate 9

A solution of *tert*-butyl (allyloxy)((2-nitrophenyl)sulfonyl)carbamate **8** (1 equiv, 2 mmol, 716 mg) and a methyl vinyl ketone (5 equiv, 10 mmol, 0.83 mL) in dry dichloromethane (0.2 M, 10 mL) in a 25 mL Schlenk flask equipped with a condenser and a Teflon-coated magnetic stirring bar, was degassed three times employing freezepump-thaw method and flushed with

dry Argon afterwards. As the solution warmed up to room temperature nitro Grela catalyst (2.5 mol%, 0.05 mmol, 33 mg) was added and the reaction mixture was heated to 45°C and was left stirring overnight. Afterwards, solvent was evaporated under reduced pressure and the crude product was purified by FC (eluent: hexanes/ethyl acetate 70:30) to obtain pure product **9** as a pale yellow viscous oil (584 mg, 73% yield). ¹H NMR (700 MHz, CDCl₃) δ 8.22 – 8.15 (m, 1H), 7.84 – 7.81 (m, 1H), 7.79 – 7.75 (m, 2H), 6.83 (dt, *J* = 16.2, 5.8 Hz, 1H), 6.34 (dt, *J* = 16.2, 1.6 Hz, 1H), 4.85 (dd, *J* = 5.9, 1.6 Hz, 2H), 2.31 (s, 3H), 1.45 (s, 9H). ¹³C NMR (176 MHz, CDCl₃) δ 197.9, 150.0, 148.6, 138.1, 135.2, 133.4, 132.0, 131.9, 131.1, 124.6, 87.1, 77.9, 27.9 (3C), 27.4. HRMS calculated for [C₁₆H₂₀N₂O₈S+H⁺]: 401.1013; found: 401.1014.

(E)-2-Nitro-N-((4-oxopent-2-en-1-yl)oxy)benzenesulfonamide 1d

To a solution of *tert*-butyl (*E*)-((2-nitrophenyl)sulfonyl)((4-oxopent-2-en-1-yl)oxy)carbamate **9** (1 equiv, 1 mmol, 400 mg) in dichloromethane (0.2 M, 5 mL) in a 8 mL glass vial equipped with a magnetic stirring bar and a screw

cap, trifluoroacetic acid (2 equiv, 2 mmol, 153 µL) was added. Reaction mixture was left stirring overnight and next it was transferred to a separatory funnel and was washed with saturated aqueous solution of sodium bicarbonate (10 mL). Aqueous layer was then extracted with dichloromethane (2 x 10 mL). Combined organic layers were dried over anhydrous magnesium sulfate, filtered off and evaporated under reduced pressure. Crude product was purified by FC (eluent: hexane/ethyl acetate 70:30). ¹H NMR (700 MHz, CDCl₃) δ 8.27 (s, 1H), 8.21 (dd, *J* = 7.5, 1.8 Hz, 1H), 7.92 (dd, *J* = 7.7, 1.6 Hz, 1H), 7.86 – 7.80 (m, 14H), 6.75 (dt, *J* = 16.2, 5.4 Hz, 1H), 6.19 (dt, *J* = 16.2, 1.7 Hz, 1H), 4.75 (dd, *J* = 5.4, 1.7 Hz, 2H), 2.28 (s, 3H). ¹³C NMR (176 MHz, CDCl₃) δ 197.9, 148.6, 139.2, 135.1, 133.8, 133.1, 132.6, 130.2, 125.8, 76.2, 27.4. HRMS calculated for [C₁₁H₁₂N₂O₆S+H⁺]: 301.0489; found: 301.0495.

4. Enantio- and diastereoselective synthesis of tetrahydro-1,2oxazines 3 – general procedure

In an ordinary 4 mL glass vial, equipped with a teflon-coated magnetic stirring bar and a screw cap, catalyst **III** (0.1 equiv, 0.02 mmol, 11.2 mg) and the aminooxylating reagent **1d** (1 equiv, 0.2 mmol, 63 mg) were dissolved in toluene (1.6 mL). After 5 min., nitroolefin **2** (2 equiv, 0.4 mmol) was added and stirring was maintained for 24-144 h at ambient temperature. Reaction mixture was directly subjected to flash chromatography on silica gel (eluent: hexanes/ethyl acetate 70:30) to obtain pure product.

 NO_2

ĊO₂Me

3da Methyl 2-((3*R*,4*S*,5*S*)-4-nitro-2-((2-nitrophenyl)sulfonyl)-3-phenyl-1,2-oxazinan-5-yl)acetate (Table 2, Entry 1)

Following general procedure, using nitroolefin **2a** and compound **1d** (reaction time 48 h), pure product **3da** was isolated by FC on silica gel (eluent: hexanes/ethyl acetate 70:30) in 95% yield as a white amorphous solid (>20:1

dr). ¹H NMR (700 MHz, CDCl₃) δ 7.87 (dd, J = 7.9, 1.4 Hz, 1H), 7.74 (td, J = 7.7, 1.4 Hz, 1H), 7.66 (dd, J = 7.9, 1.3 Hz, 1H), 7.61 (td, J = 7.7, 1.3 Hz, 1H), 7.42 – 7.38 (m, 2H), 7.34 – 7.27 (m, 3H), 5.21 (d, J = 8.0 Hz, 1H), 5.03 (t, J = 8.6 Hz, 1H), 4.45 (dd, J = 12.1, 4.9 Hz, 1H), 3.95 (dd, J = 12.1, 8.9 Hz, 1H), 3.64 (s, 3H), 3.01 (qt, J = 9.1, 4.8 Hz, 1H), 2.37 (dd, J = 17.2, 4.8 Hz, 1H), 2.33 (dd, J = 17.2, 8.4 Hz, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 170.4, 148.6, 135.0, 132.2, 132.0, 131.6, 129.9, 129.7, 128.9 (2C), 128.7 (2C), 124.5, 89.7, 72.5, 65.3, 52.3, 35.9, 32.8. HRMS calculated for [C₁₉H₁₉N₃O₉S+H⁺]: 466.0915; found: 466.0911. The *er* was determined by HPLC using a chiral Chiralpack IA column [hexane:*i*-PrOH, 90:10]; column temperature 30 °C; flow rate 1.0 mL/min; detection wavelength = 216 nm; $\tau_{major} = 61.6$ min, $\tau_{minor} = 53.2$ min, (>99.5:0.5 er); [α]_D²⁰ = +10.6 (c = 1.0, CHCl₃).

3dbMethyl2-((3R,4S,5S)-3-(4-bromophenyl)-4-nitro-2-((2-nitrophenyl)sulfonyl)-1,2-oxazinan-5-yl)acetate (Table 2, Entry 2)

Following general procedure, using nitroolefin **2b** and compound **1d** (reaction time 72 h), pure product **3db** was isolated by FC on silica gel (eluent: hexanes/ethyl acetate 70:30) in 78% yield as a pale orange amorphous solid (>20:1 dr). ¹H NMR (700 MHz, CDCl₃) δ 7.91 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.78

(td, J = 7.7, 1.3 Hz, 1H), 7.68 (dd, J = 8.0, 1.2 Hz, 1H), 7.66 (td, J = 7.7, 1.3 Hz, 1H), 7.46 – 7.41 (m, 2H), 7.31 – 7.26 (m, 2H), 5.16 (d, J = 8.2 Hz, 1H), 4.98 (dd, J = 9.3, 8.2 Hz, 1H), 4.43 (dd, J = 12.1, 4.9 Hz, 1H), 3.93 (dd, J = 12.1, 9.1 Hz, 1H), 3.65 (s, 3H), 3.00 (ddq, J = 13.8, 9.2, 4.8 Hz, 1H), 2.38 (dd, J = 17.2, 4.6 Hz, 1H), 2.33 (dd, J = 17.2, 8.5 Hz, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 170.3, 148.6, 135.2, 132.2 (2C), 132.1, 131.7, 131.2, 130.4 (2C), 129.4, 124.6, 124.3, 89.6, 72.5, 64.7, 52.3, 35.9, 32.7. HRMS calculated for [C₁₉H₁₈BrN₃O₉S+H⁺]: 544.0020; found: 544.0024. The *er* was determined by HPLC using a chiral Chiralpack IB column [hexane:*i*-PrOH, 80:20]; column temperature 30 °C; flow rate 1.0 mL/min; detection wavelength = 225 nm; $\tau_{major} = 31.5$ min, $\tau_{minor} = 35.8$ min, (99.4:0.6 er); $[\alpha]_D^{20} = +20.3$ (c = 1.0, CHCl₃).

3dcMethyl2-((3R,4S,5S)-3-(3-bromophenyl)-4-nitro-2-((2-nitrophenyl)sulfonyl)-1,2-oxazinan-5-yl)acetate (Table 2, Entry 3)

Following general procedure, using nitroolefin **2c** and compound **1d** (reaction time 72 h), pure product **3dc** was isolated by FC on silica gel (eluent: hexanes/ethyl acetate 70:30) in 77% yield as a pale orange amorphous solid (>20:1 dr). ¹H NMR (700 MHz, CDCl₃) δ 7.91 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.77

(td, J = 7.7, 1.4 Hz, 1H), 7.68 (dd, J = 8.0, 1.2 Hz, 1H), 7.65 (td, J = 7.7, 1.2 Hz, 1H), 7.51 (t, J = 1.8 Hz, 1H), 7.46–7.43 (m, 1H), 7.38–7.36 (m, 1H), 7.20 (t, J = 7.9 Hz, 1H), 5.23 (d, J = 7.8 Hz, 1H), 4.98 (dd, J = 8.9, 7.8 Hz, 1H), 4.47 (dd, J = 12.1, 4.8 Hz, 1H), 3.94 (dd, J = 12.1, 8.6 Hz, 1H), 3.65 (s, 3H), 3.02 (qt, J = 8.5, 5.0 Hz, 1H), 2.40 – 2.30 (m, 2H). ¹³C NMR (176 MHz, CDCl₃) δ 170.3, 148.6, 135.3, 134.7, 133.0, 132.0, 131.7, 131.5, 130.5, 129.5, 127.4, 124.6, 122.9, 89.3, 72.5, 64.2, 52.3, 35.6, 32.8. HRMS calculated for [C₁₉H₁₈BrN₃O₉S+H⁺]: 544.0020; found: 544.0028. The *er* was determined by HPLC using a chiral Chiralpack IA column [hexane:*i*-PrOH, 80:20]; column temperature 30 °C; flow rate 1.0 mL/min; detection wavelength = 219 nm; $\tau_{major} = 35.2 \text{ min}, \tau_{minor} = 21.7 \text{ min}, (99.1:0.9 \text{ er}); [\alpha]_D^{20} = +1.4$ (c = 1.0, CHCl₃).

3ddMethyl2-((3R,4S,5S)-3-(2-bromophenyl)-4-nitro-2-((2-nitrophenyl)sulfonyl)-1,2-oxazinan-5-yl)acetate (Table 2, Entry 4)

Following general procedure, using nitroolefin **2d** and compound **1d** (reaction time 72 h), pure product **3dd** was isolated by FC on silica gel (eluent: hexanes/ethyl acetate 70:30) in 97% pale yellow oil (>20:1 dr). ¹H NMR (700 MHz, CDCl₃) δ 8.02 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.76 (td, *J* = 7.7, 1.4 Hz, 1H),

7.71 – 7.66 (m, 2H), 7.68 – 7.63 (m, 1H), 7.56 (dd, J = 7.9, 1.2 Hz, 1H), 7.31 (td, J = 7.6, 1.2 Hz, 1H), 7.20 (td, J = 7.7, 1.6 Hz, 1H), 5.95 (bs, 1H), 5.15 (bs, 1H), 4.43 (dd, J = 12.2, 4.3 Hz, 1H), 3.97 (dd, J = 12.2, 6.9 Hz, 1H), 3.63 (s, 3H), 3.13 (dtt, J = 9.0, 6.9, 4.6 Hz, 1H), 2.40 (dd, J = 17.1, 8.8 Hz, 1H), 2.31 (dd, J = 17.1, 4.9 Hz, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 170.4, 148.7, 135.1, 133.9, 132.6, 132.0, 131.8, 131.0, 130.2, 129.8, 128.0, 124.5, 123.9, 86.6, 72.1, 62.0, 52.3, 35.1, 33.3. HRMS calculated for [C₁₉H₁₈BrN₃O₉S+H⁺]: 544.0020; found: 544.0011. The *er* was determined by HPLC using a chiral Chiralpack IB column [hexane:*i*-PrOH, 80:20]; column temperature 30 °C; flow rate 1.0 mL/min; detection wavelength = 210 nm; $\tau_{major} = 32.6 \text{ min}$, $\tau_{minor} = 36.7 \text{ min}$, (>99.5:0.5 er); [α] $_D^{20} = +8.3$ (c = 1.0, CHCl₃).

3de Methyl 2-((3*R*,4*S*,5*S*)-4-nitro-2-((2-nitrophenyl)sulfonyl)-3-(*p*-tolyl)-1,2-oxazinan-5-yl)acetate (Table 2, Entry 5)

Following general procedure, using nitroolefin **2e** and compound **1d** (reaction time 72 h), pure product **3de** was isolated by FC on silica gel (eluent: hexanes/ethyl acetate 70:30) in 82% yield as a white amorphous solid (>20:1 dr). ¹H NMR (700 MHz, CDCl₃) δ 7.85 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.74 (td, *J* =

7.7, 1.3 Hz, 1H), 7.66 (dd, J = 8.0, 1.2 Hz, 1H), 7.60 (td, J = 7.8, 1.2 Hz, 1H), 7.29 – 7.25 (m, 2H), 7.09 – 7.07 (m, 2H), 5.11 (d, J = 8.4 Hz, 1H), 5.01 (dd, J = 9.5, 8.4 Hz, 1H), 4.43 (dd, J = 12.1, 4.9 Hz, 1H), 3.93 (dd, J = 12.1, 9.3 Hz, 1H), 3.65 (s, 3H), 3.00 (qt, J = 9.3, 4.7 Hz, 1H), 2.39 (dd, J = 17.1, 4.4 Hz, 1H), 2.33 (dd, J = 17.2, 8.7 Hz, 1H), 2.30 (s, 3H). ¹³C NMR (176 MHz, CDCl₃) δ 170.3, 148.7, 139.9, 134.9, 132.0, 131.5, 129.6, 129.6 (2C), 128.8, 128.8 (2C), 124.5, 90.0, 72.5, 65.5, 52.3, 36.2, 32.8, 21.4. HRMS calculated for [C₂₀H₂₁N₃O₉S+H⁺]: 480.1071; found: 480.1077. The *er* was determined by HPLC using a chiral Chiralpack IA column [hexane:*i*-PrOH, 80:20]; column temperature 30 °C; flow rate 1.0 mL/min; detection wavelength = 225 nm; $\tau_{major} = 26.8 \text{min}$, $\tau_{minor} = 22.7 \text{ min}$, (>99.5:0.5 er); [α]_D²⁰ = +11.6 (c = 1.0, CHCl₃).

3dfMethyl2-((3R,4S,5S)-3-(4-methoxyphenyl)-4-nitro-2-((2-nitrophenyl)sulfonyl)-1,2-oxazinan-5-yl)acetate (Table 2, Entry 6)

Following general procedure, using nitroolefin **2f** and compound **1d** (reaction time 120 h), pure product **3df** was isolated by FC on silica gel (eluent: hexanes/ethyl acetate 70:30) in 76% yield as a pale yellow amorphous solid (>20:1 dr). ¹H NMR (700 MHz, CDCl₃) δ 7.83 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.73

(td, J = 7.7, 1.4 Hz, 1H), 7.66 (dd, J = 8.0, 1.2 Hz, 1H), 7.60 (td, J = 7.7, 1.3 Hz, 1H), 7.32 – 7.27 (m, 2H), 6.80 – 6.75 (m, 2H), 5.04 (d, J = 8.8 Hz, 1H), 5.00 (t, J = 9.3 Hz, 1H), 4.41 (dd, J = 12.1, 5.1 Hz, 1H), 3.93 (dd, J = 12.1, 9.8 Hz, 1H), 3.77 (s, 3H), 3.66 (s, 3H), 2.99 (qt, J = 9.4, 4.6 Hz, 1H), 2.41 (dd, J = 17.1, 4.2 Hz, 1H), 2.33 (dd, J = 17.1, 8.7 Hz, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 170.3, 160.7, 148.6, 134.9, 131.9, 131.5, 130.4 (2C), 129.7, 124.5, 123.3, 114.3 (2C), 90.3, 72.6, 65.6, 55.4, 52.3, 36.5, 32.7. HRMS calculated for [C₂₀H₂₁N₃O₁₀S+H⁺]: 496.1020; found: 496.1029. The *er* was determined by HPLC using a chiral Chiralpack IA column [hexane:*i*-PrOH, 80:20]; column temperature 30 °C; flow rate 1.0 mL/min; detection wavelength = 225 nm; $\tau_{major} = 35.7$ min, $\tau_{minor} = 29.7$ min, (98.4:1.6 er); [α]_D²⁰ = +26.5 (*c* = 1.0, CHCl₃).

3dg Methyl 2-((3R,4S,5S)-3-(2,4-dichlorophenyl)-4-nitro-2-((2-nitrophenyl)sulfonyl)-1,2-oxazinan-5-yl)acetate (Table 2, Entry 7) Entry 1 <td

Following general procedure, using nitroolefin **2g** and compound **1d** (reaction time 24 h), pure product **3dg** was isolated by FC on silica gel (eluent: hexanes/ethyl acetate 70:30) in 93% yield as a white amorphous solid (>20:1 dr). ¹H NMR (700 MHz, CDCl₃) δ 8.05 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.79 (td, *J* =

7.8, 1.3 Hz, 1H), 7.71 (td, J = 7.8, 1.2 Hz, 1H), 7.67 (dd, J = 7.9, 1.0 Hz, 1H), 7.61 (d, J = 8.4 Hz, 1H), 7.40 (d, J = 2.1 Hz, 1H), 7.27 – 7.24 (m, 1H), 5.86 (bs, 1H), 5.10 (t, J = 7.2 Hz, 1H), 4.43 (dd, J = 12.1, 4.5 Hz, 1H), 3.95 (dd, J = 12.1, 7.2 Hz, 1H), 3.64 (s, 3H), 3.10 (dtd, J = 9.1, 7.4, 4.7 Hz, 1H), 2.38 (dd, J = 17.1, 8.6 Hz, 1H), 2.32 (dd, J = 17.1, 5.0 Hz, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 170.3, 148.6, 136.3, 135.3, 134.6, 132.2, 131.8, 131.0, 130.3, 129.6, 129.5, 127.9, 124.6, 86.4, 72.2, 59.8, 52.3, 35.1, 33.2. HRMS calculated for [C₁₉H₁₇Cl₂N₃O₉S+H⁺]: 534.0135; found: 534.0141. The *er* was determined by HPLC using a chiral Chiralpack IA column [hexane:*i*-PrOH, 80:20]; column temperature 30 °C; flow rate 1.0 mL/min; detection wavelength = 223 nm; $\tau_{major} = 19.5$ min, $\tau_{minor} = 22.3$ min, (99.5:0.5 er); $[\alpha]_D^{20} = +16.0$ (c = 1.0, CHCl₃).

3dh Methyl 2-((3*R*,4*S*,5*S*)-3-(2,5-dimethoxyphenyl)-4-nitro-2-((2-nitrophenyl)sulfonyl)-1,2-oxazinan-5-yl)acetate (Table 2, Entry 8)

Following general procedure, using nitroolefin **2h** and compound **1d** (reaction time 144 h), pure product **3dh** was isolated by FC on silica gel (eluent: hexanes/ethyl acetate 70:30) in 87% yield as a brown oil (>20:1 dr). ¹H NMR

(700 MHz, CDCl₃) δ 8.00 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.74 (td, *J* = 7.7, 1.4 Hz, 1H), 7.66 (td, *J* = 7.7, 1.3 Hz, 1H), 7.63 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.02 (d, *J* = 3.0 Hz, 1H), 6.82 (dd, *J* = 8.9, 3.0 Hz, 1H), 6.77 (d, *J* = 8.9 Hz, 1H), 5.82 (bs, 1H), 5.20 (t, *J* = 5.9 Hz, 1H), 4.44 (dd, *J* = 12.1, 4.2 Hz, 1H), 3.93 (dd, *J* = 12.1, 6.0 Hz, 1H), 3.82 (s, 3H), 3.71 (s, 3H), 3.60 (s, 3H), 3.09 – 3.02 (m, 1H), 2.39 (dd, *J* = 17.0, 9.0 Hz, 1H), 2.27 (dd, *J* = 17.0, 5.1 Hz, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 170.8, 153.7, 151.1, 148.6, 134.8, 131.8, 131.6, 130.3, 124.3, 122.2, 115.7, 115.4, 112.2, 85.2, 72.2, 59.1, 56.3, 55.9, 52.1, 34.5, 33.7. HRMS calculated for [C₂₁H₂₃N₃O₁₁S+H⁺]: 526.1126; found: 526.1116. The *er* was determined by HPLC using a chiral Chiralpack IA column [hexane:*i*-PrOH, 80:20]; column temperature 30 °C; flow rate 1.0 mL/min; detection wavelength = 296 nm; τ_{major} = 28.1 min, τ_{minor} = 23.7 min, (99.4:0.6 er); [α]_D²⁰ = -18.1° (*c* = 1.0, CHCl₃).

3di Methyl 2-((3*R*,4*S*,5*S*)-3-butyl-4-nitro-2-((2-nitrophenyl)sulfonyl)-1,2oxazinan-5-yl)acetate (Table 2, Entry 9)

Following general procedure, using nitroolefin **2i** and compound **1d** (reaction ^e time 72 h), pure product **3di** was isolated by FC on silica gel (eluent:

hexanes/ethyl acetate 70:30) in 93% yield as pale yellow oil (>20:1 dr). ¹H NMR (700 MHz, CDCl₃) δ 8.10 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.79 (td, *J* = 7.7, 1.4 Hz, 1H), 7.72 (td, *J* = 7.8, 1.3 Hz, 1H), 7.68 (dd, *J* = 7.8, 1.3 Hz, 1H), 4.67 (t, *J* = 4.8 Hz, 1H), 4.65 – 4.62 (m, 1H), 4.31 (dd, *J* = 11.9, 4.4 Hz, 1H), 3.81 (dd, *J* = 11.9, 4.7 Hz, 1H), 3.69 (s, 3H), 3.08 – 3.00 (m, 1H), 2.62 (dd, *J* = 16.9, 8.8 Hz, 1H), 2.55 (dd, *J* = 16.9, 5.7 Hz, 1H), 2.05 – 1.90 (m, 2H), 1.56 – 1.48 (m, 1H), 1.47 – 1.41 (m, 1H), 1.41 – 1.35 (m, 2H), 0.92 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (176 MHz, CDCl₃) δ 170.9, 148.6, 135.1, 132.0, 131.8, 130.1, 124.5, 84.3, 72.4, 60.3, 52.4, 34.3, 32.9, 30.1, 27.9, 22.4, 13.9. HRMS calculated for [C₁₇H₂₃N₃O₉S+H⁺]: 446.1228; found: 446.1232. The *er* was determined by HPLC using a chiral Chiralpack IG column [hexane:*i*-PrOH, 80:20]; column temperature 30 °C; flow rate 1.0 mL/min; detection wavelength = 214 nm; τ_{major} = 29.6 min, τ_{minor} = 26.5 min, (98.3:1.7 er); $[\alpha]_D^{20}$ = -55.1° (*c* = 1.0, CHCl₃).

3dj Methyl 2-((3*R*,4*S*,5*S*)-3-heptyl-4-nitro-2-((2-nitrophenyl)sulfonyl)-1,2oxazinan-5-yl)acetate (Table 2, Entry 10)

Following general procedure, using nitroolefin **2j** and compound **1d** (reaction time 72 h), pure product **3dj** was isolated by FC on silica gel (eluent: hexanes/ethyl acetate 70:30) in 66% yield as pale yellow oil (>20:1 dr). ¹H

NMR (700 MHz,) δ 8.10 (dd, J = 8.0, 1.4 Hz, 1H), 7.78 (dd, J = 7.7, 1.4 Hz, 1H), 7.72 (td, J = 7.7, 1.3 Hz, 1H), 7.68 (dd, J = 7.9, 1.3 Hz, 1H), 4.67 (t, J = 4.8 Hz, 1H), 4.63 (td, J = 6.6, 4.6 Hz, 1H), 4.32 (dd, J = 11.9, 4.4 Hz, 1H), 3.81 (dd, J = 11.9, 4.8 Hz, 1H), 3.69 (s, 3H), 3.07 – 3.00 (m, 1H), 2.61 (dd, J = 16.9, 8.8 Hz, 1H), 2.55 (dd, J = 16.9, 5.7 Hz, 1H), 2.03 – 1.89 (m, 2H), 1.56 – 1.48 (m, 1H), 1.49 – 1.40 (m, 1H), 1.37 – 1.22 (m, 10H), 0.89 (t, J = 7.0 Hz, 3H). ¹³C NMR (176 MHz, CDCl₃) δ 170.9, 148.7, 135.1, 132.0, 131.7, 130.1, 124.5, 84.3, 72.4, 60.4, 52.4, 34.3, 32.9, 31.8, 31.1, 30.4, 29.1, 25.8, 22.7, 14.2. HRMS calculated for [C₂₀H₂₉N₃O₉S+H⁺]: 488.1697; found: 488.1705. The *er* was determined by HPLC using a chiral Chiralpack IG column [hexane:*i*-PrOH, 80:20]; column temperature 30 °C; flow rate 1.0 mL/min; detection wavelength = 225 nm; τ_{major} = 26.2 min, τ_{minor} = 23.1 min, (99.0:1.0 er); [α]_D²⁰ = -58.7° (*c* = 1.0, CHCl₃).

3dk Methyl 2-((3*R*,4*S*,5*S*)-3-isopropyl-4-nitro-2-((2-nitrophenyl)sulfonyl)-1,2-oxazinan-5-yl)acetate (Table 2, Entry 11)

Following general procedure, using nitroolefin **2k** and compound **1d** (reaction time 72 h in 40 °C), pure product **3dk** was isolated by FC on silica gel (eluent:

hexanes/ethyl acetate 70:30) in 74% yield as pale yellow oil (>20:1 dr). ¹H NMR (700 MHz, CDCl₃) δ 8.08 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.77 (td, *J* = 7.7, 1.4 Hz, 1H), 7.72 (td, *J* = 7.7, 1.3 Hz, 1H), 7.64 (dd, *J* = 7.9, 1.3 Hz, 1H), 4.80 (dd, *J* = 7.2, 4.7 Hz, 1H), 4.63 (dd, *J* = 7.7, 4.7 Hz, 1H), 4.49 (dd, *J* = 10.7, 5.7 Hz, 1H), 3.82 (dd, *J* = 10.8, 6.5 Hz, 1H), 3.70 (s, 3H), 3.10 – 3.02 (m, 1H), 2.57 (dd, *J* = 17.1, 7.8 Hz, 1H), 2.52 (dd, *J* = 17.1, 5.4 Hz, 1H), 2.23 – 2.15 (m, 1H), 1.09 (d, *J* = 6.7 Hz, 3H), 1.03 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (176 MHz, CDCl₃) δ 170.7, 148.9, 134.8, 131.8, 131.2, 130.8, 124.3, 82.7, 71.9, 64.7, 52.3, 33.6, 32.4, 31.4, 19.4, 19.1. HRMS calculated for [C₁₆H₂₁N₃O₉S+H⁺]: 432.1071; found: 432.1065. The *er* was determined by HPLC using a chiral Chiralpack IA column [hexane:*i*-PrOH, 80:20]; column temperature 30 °C; flow rate 1.0 mL/min; detection wavelength = 223 nm; τ_{major} = 15.3 min, τ_{minor} = 16.7 min, (>99.5:0.5 er); [α]_D²⁰ = -130.3° (*c* = 1.0, CHCl₃).

3ea 1-((3*R*,4*S*,5*S*)-4-Nitro-2-((2-nitrophenyl)sulfonyl)-3-phenyl-1,2oxazinan-5-yl)propan-2-one (Scheme 2)

Following general procedure, using nitroolefin **2a** and compound **1e** (reaction time 24 h), pure product **3ea** was isolated by FC on silica gel (eluent: hexanes/diethyl ether 30:70) in 89% yield as a white amorphous solid (18:1:1 dr).

¹H NMR (700 MHz, CDCl₃) δ 7.90 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.74 (td, *J* = 7.7, 1.4 Hz, 1H), 7.66 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.63 (td, *J* = 7.7, 1.3 Hz, 1H), 7.44 – 7.38 (m, 2H), 7.34 – 7.28 (m, 3H), 5.29 (d, *J* = 7.6 Hz, 1H), 4.98 (dd, *J* = 8.7, 7.6 Hz, 1H), 4.43 (dd, *J* = 12.0, 4.8 Hz, 1H), 3.85 (dd, *J* = 12.0, 8.3 Hz, 1H), 3.05 (qt, *J* = 8.3, 4.8 Hz, 1H), 2.50 (dd, *J* = 18.7, 4.9 Hz, 1H), 2.43 (dd, *J* = 18.6, 8.1 Hz, 1H), 1.99 (s, 3H). ¹³C NMR (176 MHz, CDCl₃) δ 204.5, 148.6, 135.0, 132.6, 132.0, 131.7, 129.7, 129.7, 128.9 (2C), 128.6 (2C), 124.5, 89.2, 72.7, 64.9, 41.8, 34.6, 30.2. HRMS calculated for [C₁₉H₁₉N₃O₈S+H⁺]: 450.0966; found: 450.0977. [α]_D²⁰ = +5.6° (*c* = 1.0, CHCl₃). In order to determine the er, the product was converted to the 1,3-dioxolane **10**.

10 (3*R*,4*S*,5*S*)-5-((2-Methyl-1,3-dioxolan-2-yl)methyl)-4-nitro-2-((2-nitrophenyl)sulfonyl)-3-phenyl-1,2-oxazinane. To a solution of 3ea (1 equiv, 0.02 mmol, 9 mg) in toluene (1 mL) in a 5 mL round bottom flask equipped with a Teflon-coated magnetic stirring bar and a Dean-Stark apparatus, ethylene glycol (0.12 mL) followed by pyridinium p-toluenesulfonate (0.2 equiv 0.004 mmol, 1.0 mg) was added. Reaction mixture was refluxed for 2 h with vigorous

stirring. Subsequently, it was cooled to room temperature and saturated aqueous solution of sodium bicarbonate (10 mL) was added. Contents of the flask were transferred to a separatory funnel and the product was extracted with diethyl ether (3x10 mL). Combined organic layers were washed with brine (15 mL), dried over magnesium sulfate, filtered off and concentrated under reduced pressure to obtain **10** which was directly subjected to HPLC analysis. ¹H NMR (700 MHz, CDCl₃) δ 7.85 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.73 (td, *J* = 7.7, 1.4 Hz, 1H), 7.66 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.60 (ddd, *J* = 7.9, 7.5, 1.3 Hz, 1H), 7.38 (dd, *J* = 7.9, 1.7 Hz, 2H), 7.32 – 7.26 (m, 3H), 5.08 (d, *J* = 8.7 Hz, 1H), 4.90 (dd, *J* = 9.9, 8.7 Hz, 1H), 4.51 (dd, *J* = 12.3, 5.2 Hz, 1H), 3.93 – 3.82 (m, 5H), 2.78 (tddd, *J* = 9.7, 8.6, 5.2, 3.3 Hz, 1H), 1.72 (dd, *J* = 14.9, 3.4 Hz, 1H), 1.66 (dd, *J* = 14.9, 8.6 Hz, 1H), 1.22 (s, 3H). 13C NMR (176 MHz, CDCl₃) δ 148.7, 134.9, 132.1, 132.0, 131.6, 129.9, 129.7, 129.0 (2C), 128.8 (2C), 124.5, 108.7, 91.7, 74.1, 66.2, 64.8, 64.5, 37.6, 36.1, 24.0. HRMS calculated for [C₂₁H₂₃N₃O₉S+H⁺]: 494.1228; found: 494.1231. The *er* was determined by HPLC using a chiral Chiralpack IA column [hexane:*i*-PrOH, 80:20]; column temperature 30 °C; flow rate 1.0 mL/min; detection wavelength = 223 nm; τ_{major} = 19.9 min, τ_{minor} = 21.3 min, (88:12 er).

3dl Methyl 2-((3*R*,4*S*,5*S*)-4-methyl-4-nitro-2-((2-nitrophenyl)sulfonyl)-3-phenyl-1,2-oxazinan-5-yl)acetate (Scheme 2)

Following general procedure, using nitroolefin **2l** and compound **1d** (reaction time 96 h), pure product **3dl** was isolated by FC on silica gel (eluent: hexanes/ethyl acetate 70:30) in 90% yield as pale yellow oil (>20:1 dr). ¹H NMR (700 MHz, CDCl₃) δ 7.94 (d, *J* = 7.9 Hz, 1H), 7.74 (td, *J* = 7.7, 1.3 Hz,

1H), 7.66 – 7.60 (m, 2H), 7.42 – 7.38 (m, 2H), 7.35 – 7.30 (m, 1H), 7.31 – 7.26 (m, 2H), 5.71 (s, 1H), 4.38 (dd, J = 12.0, 4.5 Hz, 1H), 3.91 (dd, J = 12.0, 6.9 Hz, 1H), 3.65 (s, 3H), 3.45 – 3.38 (m, 1H), 2.38 (dd, J = 16.7, 10.7 Hz, 1H), 2.16 (dd, J = 16.7, 3.2 Hz, 1H), 1.59 (s, 3H). ¹³C NMR (176 MHz, CDCl₃) δ 170.9, 148.7, 134.9, 132.0, 131.9, 131.6, 129.9 (2C), 129.8, 129.5, 128.3 (2C), 124.3, 93.0, 72.6, 67.9, 52.3, 52.0, 38.8, 32.3. HRMS calculated for [C₂₀H₂₁N₃O₉S+H⁺]: 480.1071; found: 480.1082. The *er* was determined by HPLC using a chiral Chiralpack IA column [hexane:*i*-PrOH, 80:20]; column temperature 30 °C; flow rate 1.0 mL/min; detection wavelength = 215 nm; $\tau_{major} = 21.1$ min, $\tau_{minor} = 17.4$ min, (95.4:4.6 er); [α]_D²⁰ = -57.6 (*c* = 1.0, CHCl₃).

5. Crystal and X-ray data for methyl 2-((3*R*,5*S*)-4-nitro-2-((2-nitrophenyl)sulfonyl)-3-phenyl-1,2-oxazinan-5-yl)acetate (3da)

Formula $C_{19}H_{19}N_3O_9S$, monoclinic, space group $P2_1$, Z = 2, cell constants a = 5.9946(2) Å, b = 13.3006(5) Å, c = 13.1317(5) Å, $\beta = 93.111(3)^\circ$, V = 1045.47(7) Å³. The data was collected on a Rigaku Synergy, Pilatus 300K diffractometer at 100 K using PhotonJet micro-focus X-ray Source Cu-K α ($\lambda = 1.54178$ Å) as a source of radiation. The integration of the data yielded a total of 10198 reflections to a θ angle of 79.3°, of which 3787 were independent (Rint =5.48%,) and 3401 were greater than $2\sigma(F^2)$. The final anisotropic full-matrix least-squares refinement on F^2 with 290 variables converged at $R_1 = 5.80\%$, for the observed data and $wR_2 = 16.09\%$ for all data. The hydrogen atoms were placed in calculated positions and refined isotropically by using a riding model. The goodness-of-fit was 1.029.

The absolute configuration of **3da** was determined from anomalous scattering, by calculating the Flack parameter: -0.02(3) (Classical Flack method preferred over Parsons because s.u. lower).

CCDC 1553098 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

6. NMR data

Methyl (E)-4-(((2-nitrophenyl)sulfonamido)oxy)but-2-enoate (1d)

tert-Butyl (allyloxy)((2-nitrophenyl)sulfonyl)carbamate (8)

3da Methyl 2-((3*R*,4*S*,5*S*)-4-nitro-2-((2-nitrophenyl)sulfonyl)-3-phenyl-1,2-oxazinan-5-yl)acetate (Table 2, Entry 1)

3db Methyl 2-((3*R*,4*S*,5*S*)-3-(4-bromophenyl)-4-nitro-2-((2-nitrophenyl)sulfonyl)-1,2-oxazinan-5yl)acetate (Table 2, Entry 2)

3dc Methyl 2-((3*R*,4*S*,5*S*)-3-(3-bromophenyl)-4-nitro-2-((2-nitrophenyl)sulfonyl)-1,2-oxazinan-5yl)acetate (Table 2, Entry 3)

3dd Methyl 2-((3*R*,4*S*,5*S*)-3-(2-bromophenyl)-4-nitro-2-((2-nitrophenyl)sulfonyl)-1,2oxazinan-5-yl)acetate (Table 2, Entry 4)

3de Methyl 2-((3*R*,4*S*,5*S*)-4-nitro-2-((2-nitrophenyl)sulfonyl)-3-(*p*-tolyl)-1,2-oxazinan-5yl)acetate (Table 2, Entry 5)

3df Methyl 2-((3*R*,4*S*,5*S*)-3-(4-methoxyphenyl)-4-nitro-2-((2-nitrophenyl)sulfonyl)-1,2-oxazinan-5-yl)acetate (Table 2, Entry 6)

3di Methyl 2-((3*R*,4*S*,5*S*)-3-butyl-4-nitro-2-((2-nitrophenyl)sulfonyl)-1,2-oxazinan-5-yl)acetate (Table 2, Entry 9)

3dj Methyl 2-((3*R*,4*S*,5*S*)-3-heptyl-4-nitro-2-((2-nitrophenyl)sulfonyl)-1,2-oxazinan-5-yl)acetate (Table 2, Entry 10)

3ea 1-((3*R*,4*S*,5*S*)-4-Nitro-2-((2-nitrophenyl)sulfonyl)-3-phenyl-1,2-oxazinan-5-yl)propan-2-one (Scheme 2)

10 (3*R*,4*S*,5*S*)-5-((2-Methyl-1,3-dioxolan-2-yl)methyl)-4-nitro-2-((2-nitrophenyl)sulfonyl)-3-phenyl-1,2-oxazinane

3dl Methyl 2-((3*R*,4*S*,5*S*)-4-methyl-4-nitro-2-((2-nitrophenyl)sulfonyl)-3-phenyl-1,2-oxazinan-5-yl)acetate (Scheme 2)

7. HPLC traces

3da Methyl 2-((3*R*,4*S*,5*S*)-4-nitro-2-((2-nitrophenyl)sulfonyl)-3-phenyl-1,2-oxazinan-5-yl)acetate (Table 2, Entry 1)

Racemic sample

Peak#	Ret. Time	Area%
1	53,208	51,952
2	61,651	48,048
Total		100,000

Enantiomerically enriched sample

100,000

Total

3db Methyl 2-((3*R*,4*S*,5*S*)-3-(4-bromophenyl)-4-nitro-2-((2-nitrophenyl)sulfonyl)-1,2-oxazinan-5yl)acetate (Table 2, Entry 2)

Peak#	Ret. Time	Area%
1	31,476	56,716
2	35,765	43,284
Total		100,000

Enantiomerically enriched sample

Peak#	Ret. Time	Area%
1	30,918	99,353
2	35,679	0,647
Total		100,000

Peak#	Ret. Time	Area%
1	21,719	49,674
2	35,246	50,326
Total		100,000

Enantiomerically enriched sample

1 2

Total

35,460

0,876

99,124

100,000

3dd Methyl 2-((3*R*,4*S*,5*S*)-3-(2-bromophenyl)-4-nitro-2-((2-nitrophenyl)sulfonyl)-1,2-oxazinan-5yl)acetate (Table 2, Entry 4)

Peak#	Ret. Time	Area%
1	32,556	48,592
2	36,731	51,408
Total		100,000

Enantiomerically enriched sample

Peak#	Ret. Time	Area%
1	32,384	99,779
2	37,397	0,221
Total		100,000

3de Methyl 2-((3*R*,4*S*,5*S*)-4-nitro-2-((2-nitrophenyl)sulfonyl)-3-(*p*-tolyl)-1,2-oxazinan-5yl)acetate (Table 2, Entry 5)

Peak#	Ret. Time	Area%
1	22,678	49,805
2	26,840	50,195
Total		100,000

Enantiomerically enriched sample

Peak#	Ret. Time	Area%
1	29,706	51,935
2	35,749	48,065
Total		100,000

Enantiomerically enriched sample

Peak#	Ret. Time	Area%
1	29,945	1,603
2	35,721	98,397
Total		100,000

3dg Methyl 2-((3*R*,4*S*,5*S*)-3-(2,4-dichlorophenyl)-4-nitro-2-((2-nitrophenyl)sulfonyl)-1,2oxazinan-5-yl)acetate (Table 2, Entry 7)

Peak#	Ret. Time	Area%
1	19,498	49,252
2	22,292	50,748
Total		100,000

Enantiomerically enriched sample

Peak#	Ret. Time	Area%
1	19,320	99,470
2	22,090	0,530
Total		100,000

3dh Methyl 2-((3*R*,4*S*,5*S*)-3-(2,5-dimethoxyphenyl)-4-nitro-2-((2-nitrophenyl)sulfonyl)-1,2oxazinan-5-yl)acetate (Table 2, Entry 8)

Peak#	Ret. Time	Area%
1	23,719	50,139
2	28,060	49,861
Total		100,000

Racemic Sample

Enantiomerically enriched sample

2

Total

27,729

99,357 100,000

3di Methyl 2-((3*R*,4*S*,5*S*)-3-butyl-4-nitro-2-((2-nitrophenyl)sulfonyl)-1,2-oxazinan-5-yl)acetate (Table 2, Entry 9)

Peak#	Ret. Time	Area%
1	26,506	50,192
2	29,556	49,808
Total		100,000

Enantiomerically enriched sample

Peak#	Ret. Time	Area%
1	26,610	1,692
2	29,513	98,308
Total		100,000

3dj Methyl 2-((3*R*,4*S*,5*S*)-3-heptyl-4-nitro-2-((2-nitrophenyl)sulfonyl)-1,2-oxazinan-5-yl)acetate (Table 2, Entry 10)

Peak#	Ret. Time	Area%
1	23,057	49,316
2	26,203	50,684
Total		100,000

Enantiomerically enriched sample

Peak#	Ret. Time	Area%
1	23,184	0,965
2	26,243	99,035
Total		100,000

3dk Methyl 2-((3*R*,4*S*,5*S*)-3-isopropyl-4-nitro-2-((2-nitrophenyl)sulfonyl)-1,2-oxazinan-5yl)acetate (Table 2, Entry 11)

Peak#	Ret. Time	Area%
1	15,324	50,049
2	16,746	49,951
Total		100,000

Enantiomerically enriched sample

Peak#	Ret. Time	Area%
1	15,296	99,548
2	16,737	0,452
Total		100,000

10 (3*R*,4*S*,5*S*)-5-((2-Methyl-1,3-dioxolan-2-yl)methyl)-4-nitro-2-((2-nitrophenyl)sulfonyl)-3-phenyl-1,2-oxazinane

	Peak#	Ret. Time	Area%
	1	19,882	48,570
	2	21,250	51,430
ĺ	Total		100,000

Enantiomerically enriched sample

Peak#	Ret. Time	Area%
1	19,902	87,636
2	21,311	12,364
Total		100,000

3dl Methyl 2-((3*R*,4*S*,5*S*)-4-methyl-4-nitro-2-((2-nitrophenyl)sulfonyl)-3-phenyl-1,2-oxazinan-5-yl)acetate (Scheme 2)

Peak#	Ret. Time	Area%
1	17,394	49,027
2	21,075	50,973
Total		100.000

Enantiomerically enriched sample

Peak#	Ret. Time	Area%
1	17,520	4,558
2	21,215	95,442
Total		100,000