Specific labeling of mitochondria of *Chlamydomonas* with cationic helicene fluorophores

Christoph Bauer,^a Romain Duwald,^b Geraldine Maria Labrador,^b Simon Pascal,^b Pau Moneva Lorente,^b Johann Bosson,^b Jérôme Lacour,^{*,b} and Jean-David Rochaix^{*,c}

^a BIOIMAGING CENTER, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva 4, Switzerland.

^b Department of Organic Chemistry, University of Geneva, quai Ernest Ansermet 30, CH-1211 Geneva 4, Switzerland. E-mail: Jerome.Lacour@unige.ch

^c Departments of Molecular Biology and Plant Biology, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva 4, Switzerland. E-mail: Jean-David.Rochaix@unige.ch

Supporting information

1.	General remarks and analysis conditions	S2
2.	Synthetic protocols and characterization	
3.	Structural analyses	
4.	Optical properties	S22
5.	References	\$25

1. General remarks and analysis conditions

Reagents. Fluorophores **1**,¹ **2**,² **4**,³ **5**,⁴ **6**, ⁴ **7**,³ **8**,⁵ **11**⁵ and **12**⁵ were synthesized according to previously reported procedures. Column chromatography was performed using Silicaflash P60 silicagel (40-63 μ m, 60 Å) and Acros Brockmann I basic alumina (40-200 μ m, 60 Å). Optical properties were recorded in analytical grade acetonitrile and Milli-Q water.

Analytical methods and apparatus. NMR spectra were recorded on Brucker Avance II+ AMX-500 spectrometers at room temperature. NMR chemical shifts are given in ppm (δ) relative to Me₄Si with solvent resonances used as internal standards (CD₂Cl₂: 5.32 ppm for ¹H and 53.8 for ¹³C). IR spectra were recorded on a Perkin-Elmer 1650 FT-IR spectrometer using a diamond ATR Golden Gate sampling. Melting points (M.P.) were measured in open capillary tubes with a Buchi B-550 melting points apparatus and are uncorrected. UV-vis-NIR absorption spectra were recorded on a JASCO V-650 spectrophotometer at 20°C. Electrospray mass spectra were obtained on a Finnigan SSQ 7000 spectrometer QSTAR pulsar *i* (AB / MDS Sciex), ESI (TIS)/nanoESI/APCI-QqTof by the Department of Mass Spectroscopy of the University of Geneva.

Luminescence. Fluorescence quantum yields in MeCN of cationic dyes were previously reported in literature. ^{3,4,6,7}

2. Synthetic protocols and characterization

Fluorophores **1**,¹ **2**,² **4**,³ **5**,⁴ **6**, ⁴ **7**,³ **8**,⁵ **11**⁵ and **12**⁵ were synthesized according to previously reported procedures.

1,13-dimethoxy-6-(methoxycarbonyl)-5,9-dipropyl-5,9-dihydro-13bH-quinolino[2,3,4-kl]acridin-13b-ylium tetrafluoroborate (3)

³ 6-carboxy-1,13-dimethoxy-5,9-dipropyl-5,9-dihydro-13bH-quinolino[2,3,4-kl]acridin-13b-ylium tetrafluoroborate³ (100 mg, 0.18 mmol, 1 eq.) was dissolved in 2 mL of anhydrous dichloromethane. To this solution was added SOCl₂ (40 μ L, 0.56 mmol, 6 eq.) and the reaction was stirred for 10 minutes at room temperature. Then methanol (100 μ L, 2.46 mmol, 14 eq.) was added and after 10 min of stirring at room temperature the mixture was concentrated under reduced pressure. The residue was diluted in DCM. The organic phase was washed with a diluted aqueous solution of HBF₄, dried over Na₂SO₄, filtered and finally evaporated. Purification by silica gel column chromatography using DCM/methanol (95/5, R_f = 0.65) afforded the pure product as a dark green solid (98 mg, 98%).

M. P.: 124-126°C. ¹**H NMR** (**CD**₂**Cl**₂, **500 MHz**): δ 8.63 (d, ³*J* = 9.1 Hz, 1H, CH_{Ar}), 8.03 (dd, ³*J* = 8.9 Hz, ³*J* = 8.1 Hz, 1H, CH_{Ar}), 7.92 (t, ³*J* = 8.1 Hz, 1H, CH_{Ar}), 7.52 (t, ³*J* = 9.0 Hz, 2H, CH_{Ar}), 7.46 (dd, ³*J* = 8.8 Hz, ⁴*J* = 0.7 Hz, 1H, CH_{Ar}), 7.00 (d, ³*J* = 8.1 Hz, 1H, CH_{Ar}), 6.92 (dd, ³*J* = 8.2 Hz, ⁴*J* = 0.7 Hz, 1H, CH_{Ar}), 4.94 - 4.89 (m, 1H, CH₂), 4.76 - 4.70 (m, 1H, CH₂), 4.56-4.51(m, 1H, CH₂), 4.04 (s, 3H, CO₂CH₃), 3.85-3.79 (m, 1H, CH₂), 3.81 (s, 3H, OCH₃), 3.77 (s, 3H, OCH₃), 2.23 - 2.19 (m, 2H, CH₂), 1.77 - 1.72 (m, 2H, CH₂), 1.28 (t, ³*J* = 7.4 Hz, 3H, CH₃), 0.40 (t, ³*J* = 7 Hz, 3H, CH₃). ¹³C{¹H} **NMR (CD₂Cl₂, 126 MHz)**: δ 166.3 (C_{quat}), 160.2 (C_{quat}), 159.5 (C_{quat}), 142.2 (C_{quat}), 141.9 (C_{quat}), 141.6 (C_{quat}), 141.3 (C_{quat}), 140.5 (C_{quat}), 139.8 (CH), 138.6 (CH), 137.3 (CH), 120.6 (C_{quat}), 116.6 (C_{quat}), 114.1 (C_{quat}), 112.5 (C_{quat}), 110.5 (CH), 107.9 (CH), 106.1 (CH), 104.8 (CH), 104.3 (CH), 59.3 (CH₂), 56.5 (OCH₃), 56.3 (OCH₃), 53.4 (OCH₃), 53.1 (CH₃CN) = 591 nm (ε = 11,400 L.mol⁻¹.cm⁻¹). IR (neat, cm⁻¹): 2961, 1642, 1586, 1469, 1267, 840, 760. **HRMS (ESI+)** calculated for [M+]: 471.2278 (C₂₉H₃₁N₂O₄⁺), Found 471.2278.

11-octylbenzo[a]benzo[5,6]chromeno[2,3,4-kl]acridin-17c(11H)-ylium tetrafluoroborate (9)

⁹ To a solution of 11-methoxy-12-(2-methoxynaphthalen-1-yl)-12H-benzo[a]xanthen-12-ylium tetrafluoroborate (prepared following reported procedures)⁵ (50 mg, 0.1 mmol) in acetonitrile (10 mL) was added octylamine (0.3 mmol, 3 equiv). The reaction mixture was refluxed until completion of the reaction as monitored by ESI-MS (4 h). Then, the reaction mixture was evaporated. The residue was dissolved in a minimum amount of dichloromethane and the product was precipitated by addition of diethyl ether. The precipitate was separated from the mother liquor by centrifugation, dissolved in dichloromethane and washed once with 1 M aq. NaBF₄ solution and once with 1 M aq. HBF₄ solution. The organic layer was dried over Na₂SO₄, filtered and evaporated. The material was next columned (CombiFlash, 4 g SiO₂, CH₂Cl₂/MeOH, 100:00 to 95:05). The product was finally dissolved in a minimum amount of dichloromethane and precipitated by addition of diethyl ether. The precipitate was separated from the mother liquor by centrifugation. 19 mg were obtained as a dark red solid (33% yield).

Rf (CH₂Cl₂/MeOH, 95:5): 0.12. ¹**H NMR (500 MHz, CD₂Cl₂) δ** 8.58 (d, J = 9.5 Hz, 1H), 8.37 (d, J = 9.0 Hz, 1H), 8.33 (t, J = 8.4 Hz, 2H), 8.10 (d, J = 9.5 Hz, 1H), 8.03 (d, J = 8.0 Hz, 1H), 7.99 (d, J = 8.4 Hz, 1H), 7.96 (d, J = 8.0 Hz, 1H), 7.85 (d, J = 8.0 Hz, 1H), 7.82 (d, J = 9.0 Hz, 1H), 7.53 (t, J = 8.0 Hz, 1H), 7.44 (t, J = 8.0 Hz, 1H), 7.40 (d, J = 8.0 Hz, 1H), 7.02 – 6.89 (m, 3H), 5.16 – 5.04 (m, 1H), 4.99 – 4.83 (m, 1H), 2.29 – 2.15 (m, 2H), 1.80 – 1.69 (m, 2H), 1.45 – 1.31 (m, 5H), 0.90 (t, J = 7.2 Hz, 2H). ¹³C **NMR (126 MHz, CD₂Cl₂) δ** 157.1 (C⁺), 150.6 (C), 145.26 (C), 142.8 (CH), 142.7 (C), 140.1 (CH), 137.5 (C), 136.4 (CH), 131.2 (C), 129.8 (C), 129.7 (CH), 129.6 (C), 129.6 (CH), 129.5 (CH), 129.0 (CH), 128.6 (CH), 127.8 (C), 127.6 (CH), 125.3 (CH), 124.1 (CH), 119.2 (C), 118.6 (C), 117.9 (CH), 115.3 (CH), 114.8 (C), 111.0 (CH₃). ¹⁹F **NMR (282 MHz, CD₂Cl₂) δ** -152.42, -152.37. **UV/VIS (CH₃CN, 2.10⁻⁵ M, λ_{max} (nm), (Log ε))** 338 (4.03), 409 (3.84), 561 (3.97). **IR (neat, cm⁻¹) u** 2928, 2856, 1624, 1597, 1571, 1548, 1529, 1510, 1487, 1459, 1438, 1381, 1348, 1263, 1244, 1208, 1162, 1141 1048, 871, 820, 786, 753, 729, 698, 594, 542. **HRMS (ESI)** (M⁺) calculated for (C₃₅H₃₂NO): 482.2478. Found: 482.2490.

11-hexadecylbenzo[a]benzo[5,6]chromeno[2,3,4-kl]acridin-17c(11H)-ylium tetrafluoroborate (10)

То а solution of 11-methoxy-12-(2-methoxynaphthalen-1-yl)-12Hbenzo[a]xanthen-12-ylium tetrafluoroborate (prepared following reported procedures)⁵ (25 mg, 0.05 mmol) in acetonitrile (5 mL) was added hexadecylamine (0.15 mmol, 3 equiv). The reaction mixture was heated at 70 °C until completion of the reaction as monitored by MS (16 h). Then, the reaction mixture was evaporated. The residue was dissolved in a minimum amount of dichloromethane and the product was precipitated by addition of diethyl ether. The precipitate was separated from the mother liquor by centrifugation, dissolved in dichloromethane and washed once with 1 M aq. NaBF₄ solution and once with 1 M aq. HBF₄ solution. The organic layer was dried over Na₂SO₄, filtered and evaporated. The material was next columned (CombiFlash, 4 g SiO₂, CH₂Cl₂/MeOH, 100:00 to 95:05). The product was finally dissolved in a minimum amount of dichloromethane and precipitated by addition of diethyl ether. The precipitate was separated from the mother liquor by centrifugation. 6 mg were obtained as a dark red solid (14% yield).

Rf (CH₂Cl₂/MeOH, 95:5): 0.13. ¹**H NMR (500 MHz, CD₂Cl₂)** δ 8.58 (d, J = 9.5 Hz, 1H), 8.37 (d, J = 9.0 Hz, 1H), 8.34 (dd, J = 8.8, 8.1 Hz, 1H), 8.10 (d, J = 9.6 Hz, 1H), 8.03 (dd, J = 7.9, 1.3 Hz, 1H), 7.99 (d, J = 8.7 Hz, 1H), 7.97 – 7.95 (m, 1H), 7.86 (dd, J = 8.1, 0.6 Hz, 1H), 7.82 (d, J = 9.0 Hz, 1H), 7.53 (ddd, J = 8.0, 7.1, 1.1 Hz, 1H), 7.44 (ddd, J = 8.1, 6.8, 1.2 Hz, 1H), 7.41 (dd, J = 8.3, 0.9 Hz, 1H), 7.00 (dd, J = 8.5, 1.0 Hz, 1H), 6.98 – 6.91 (m, 2H), 5.18 – 5.02 (m, 1H), 4.98 – 4.83 (m, 1H), 2.29 - 2.17 (m, 2H), 1.88 – 1.63 (m, 2H), 1.55-1.49 (m, 4H, superimposed with H₂O), 1.44 – 1.38 (m, 2H), 1.28 (brs, 20H), 0.88 (t, J = 6.9 Hz, 3H).. ¹³C NMR (126 MHz, CD₂Cl₂) δ 157.1 (C), 150.6 (C), 145.3 (C), 142.8 (CH), 142.8 (C), 140.2 (CH), 137.5 (C), 136.4 (CH), 131.3 (C), 129.9 (C), 129.7 (CH), 129.6 (CH), 129.5 (C), 129.1 (CH), 128.6

(CH), 127.8 (C), 127.6 (CH), 125.4 (CH), 124.1 (CH), 119.3 (C), 118.6 (C), 117.9 (CH), 115.3 (CH), 114.8 (C), 111.0 (CH), 110.4 (CH), 32.3 (3 CH₂), 30.1 (CH₂), 30.1 (CH₂), 30.1 (CH₂), 30.0 (CH₂), 30.0 (CH₂), 29.8 (CH₂), 29.7 (CH₂), 28.4 (2 CH₂), 27.2 (2 CH₂), 23.1 (CH₂), 14.3 (CH₃). ¹⁹F NMR (282 MHz, CD₂Cl₂) δ - 153.18, -153.24. UV/VIS (CH₃CN, 1.55.10⁻⁵ M, λ_{max} (nm), (Log ϵ)) 339 (4.14), 410 (3.96), 562 (4.08). IR (neat, cm⁻¹) u 2924, 2853, 1624, 1599, 1572, 1548, 1530, 1488, 1465, 1440, 1350, 1264, 1247, 1212, 1160, 1057, 821, 792, 757. HRMS (ESI) (M⁺) calculated for (C₄₃H₄₈NO): 594.3730. Found: 594.3736.

1,13-dimethoxy-5-octyl-5,9-dihydro-13bH-quinolino[2,3,4-kl]acridin-13b-ylium tetrafluoroborate (15)

¹⁵ 10-amino-9-(2,6-dimethoxyphenyl)-1,8-dimethoxy-9,10-dihydroacridin-9-ylium tetrafluoroborate (304 mg, 0.64 mmol) (prepared following reported procedures)⁶ was degassed in a red-tinted flask. DMF (3 mL, 0.2 M) was then added and the solution was allowed to stir under N₂ atmosphere at 90 °C for 5 min. Finally, *n*-octylamine (2.63 mL, 15.89 mmol, 25 equiv) was added, the lights were switched off and the reaction mixture was allowed to stir under N₂ atmosphere at 90 °C for 16 h. After complete consumption of the starting material (followed by ESI-MS) the crude reaction mixture was allowed to cool down to RT. 25 mL of a solution of HBF₄ 1 M were added and the product was extracted with 25 mL of CH₂Cl₂. The organic layer was washed consecutively with aqueous solutions of LiCl 10% (w/w) (x3), brine, and HBF₄ 1 M again, dried over Na₂SO₄ and concentrated. Selective precipitations with Et₂O afforded the quinacridinium tetrafluoroborate salt **15** as a dark green solid (209 mg, 0.40 mmol, 62%).

R_f (basic alumina, CH₂Cl₂/MeOH, 97/3): 0.54. ¹H NMR (CD₂Cl₂, 400 MHz): δ 11.72 (s, 1H, NH), 8.04 (t, *J* = 8.3 Hz, 1H, CH), 7.82 (dd, *J* = 8.9, 8.0 Hz, 1H, CH), 7.77 (t, *J* = 8.2 Hz, 1H, CH), 7.67 (d, *J* = 8.3 Hz, 1H, CH), 7.50 (dd, *J* = 8.6, 1.0 Hz, 1H, CH), 7.26 – 7.19 (m, 2H, 2xCH), 6.78 (d, *J* = 8.0 Hz, 1H, CH), 6.74 (d, *J* = 8.0 Hz, 1H, CH), 4.58 – 4.47 (m, 1H, CH₂), 4.34 – 4.23 (m, 1H, CH₂), 3.75 (d, *J* = 4.7 Hz, 6H, 2xOCH₃), 2.11 – 1.96 (m, 2H, CH₂), 1.65 – 1.59 (m, 2H, CH₂), 1.53 – 1.45 (m, 2H, CH₂), 1.42 – 1.31 (m, 6H, 3xCH₂), 0.94 – 0.89 (m, 3H, CH₃) ppm. ¹³C NMR (CD₂Cl₂, 101 MHz): δ 160.9 (C), 159.4 (C), 144.5 (C), 143.5 (C), 142.6 (C), 138.9 (C), 138.7 (C), 137.3 (CH), 137.1 (CH), 136.7 (CH), 119.3 (C), 113.5 (C), 113.0 (C), 110.6 (CH), 107.3 (CH), 103.8 (CH), 103.1 (CH), 102.9 (CH), 56.0 (2xOCH₃), 50.2 (CH₂), 32.3 (CH₂), 29.8 (2xCH₂), 27.4 (CH₂), 26.5 (CH₂), 23.2 (CH₂), 14.4 (CH₃) ppm. ¹⁹F NMR (CD₂Cl₂, 282 MHz): δ - 149.8 (26%), -149.9 (74%) ppm. UV-vis: λ_{max} (CH₃CN): 567 nm (ε = 4800 L.mol⁻¹.cm⁻¹). IR (neat): 3300, 2928, 2861, 1639, 1589, 1502, 1483, 1346, 1259, 1162, 1118, 1068, 816, 766, 580, 525 cm⁻¹. HRMS (ESI+) calculated for [C₂9H₃₃N₂O₂⁺ (M⁺)]: 441.2537; found: 441.2535.

8-octyl-8,12-dihydro-3a2H-benzo[ij]xantheno[1,9,8-cdef][2,7]naphthyridin-3a2-ylium hexafluorophosphate (13)

¹³ Pyridinium chloride (3.10 g, 26.32 mmol, 100 equiv) was melted at 160 °C and let water evaporate for 30 min. Pyridine (0.5 mL) was added in order to avoid crystallization of the pyridinium salt and 1,13-dimethoxy-5-octyl-5,9-dihydro-13bH-quinolino[2,3,4-kl]acridin-13b-ylium tetrafluoroborate **15** (139 mg, 0.26 mmol) was then added. A reflux was set up to the system and the reaction mixture was allowed to stir for 38 h at 160 °C. After complete consumption of the starting material (followed by ESI-MS) the crude reaction mixture was allowed to cool down to room temperature. Ion metathesis was then performed by adding 25 mL of a solution of KPF₆ 0.2 M to the crude mixture and extracted it with 25 mL of CH₂Cl₂. The organic phase was dried over Na₂SO₄ and concentrated. Finally, the product was purified by flash chromatography with CH₂Cl₂/MeOH (100/0 to 90/10). Triangulenium hexafluorophosphate salt **13** was obtained as a dark purple solid (122 mg, 0.22 mmol, 85%).

R_f (basic alumina, CH₂Cl₂/MeOH, 97/3): 0.44. ¹H NMR (CD₂Cl₂, 500 MHz): δ 10.47 (s, 1H, NH), 8.10 (t, *J* = 8.4 Hz, 1H, CH), 8.01 (dd, *J* = 8.8, 8.2 Hz, 1H, CH), 7.94 (t, *J* = 8.3 Hz, 1H, CH), 7.48 (dd, *J* = 8.5, 0.7 Hz, 1H, CH), 7.45 (d, *J* = 8.3 Hz, 1H, CH), 7.34 (d, *J* = 8.8 Hz, 1H, CH), 7.25 (dd, *J* = 8.2, 0.5 Hz, 1H, CH), 7.21 – 7.15 (m, 2H, 2xCH), 4.40 – 4.34 (m, 2H, CH₂), 1.98 – 1.90 (m, 2H, CH₂), 1.63 – 1.56 (m, 2H, CH₂), 1.50 – 1.42 (m, 2H, CH₂), 1.40 – 1.30 (m, 6H, 3xCH₂), 0.92 – 0.88 (m, 3H, CH₃) ppm. ¹³C NMR (CD₂Cl₂, 126 MHz): δ 153.8 (C), 152.4 (C), 141.3 (C), 141.0 (C), 140.7 (C), 140.5 (C), 140.2 (CH), 139.4 (C), 139.2 (CH), 139.1 (CH), 111.5 (C), 111.3 (CH), 109.4 (CH), 109.2 (CH), 108.6 (CH), 108.2 (CH), 108.0 (C), 107.5 (C), 105.3 (CH), 48.4 (CH₂), 32.3 (CH₂), 29.8 (2xCH₂), 27.3 (CH₂), 26.1 (CH₂), 23.2 (CH₂), 14.4 (CH₃) ppm. ¹⁹F NMR (CD₂Cl₂, 282 MHz): δ -70.2, -72.7 ppm. UV-vis: λ_{max} (CH₃CN): 549 nm (ε = 7800 L.mol⁻¹.cm⁻¹). IR (neat): 3315, 2927, 2854, 1649, 1620, 1596, 1523, 1451, 1340, 1258, 1156, 1102, 1075, 1055, 823, 765, 736, 625, 552 cm⁻¹. HRMS (ESI+) calculated for [C₂7H₂7N₂O⁺ (M⁺)]: 395.2123; found: 395.2122.

3. Structural analyses

¹H NMR (500 MHz, CD₂Cl₂) 3

¹⁹F NMR (282 MHz, CD₂Cl₂)

 $\bigwedge^{\textbf{-153.28}}_{\textbf{-153.33}}$

Mass Spectrometry Core Facility

Faculty of Sciences - University of Geneva

ESI-HRMS – Certificate of Analysis

Applicant:	Romain Duwald	Date of reception:	November 7, 2017
Group/Company:	DUR668	Date of certificate:	November 8, 2017
Sample number:	9002	Data filename:	SMSXL-171107-JM-A009
Analyst:	Julien Meyer	Instrument:	QSTAR XL (QqTOF)
Contact:	esi-hrms@unige.ch	Ionisation mode:	ESI (positive polarity)

Expected Formula	lon type	Theoretical <i>m/z</i>	Observed <i>m/z</i>	Accuracy (ppm) ^{a)}					
$C_{29}H_{31}N_2O_4^+$	[M] ⁺	471.2278	471.2278	-0.2					
OMe BF4									

^{a)} Mass accuracy is determined after spectrum re-calibration (internal calibration with standards added to the FIA mobile phase).

Recalibrated mass spectrum

¹⁹F NMR (282 MHz, CD₂Cl₂)

 $<^{-152.37}_{-152.42}$

D	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100 f1 (ppm)	-110)	-120	-130	-140	-150	-160	-170	-180	-190	-2

Π.

Faculty of Sciences

Sciences Mass Spectrometry

Submitter:	Geraldine Labrador	Date of reception	: 29/07/15
Sample name:	GL 443	Date of certificate	e: 04/08/15
Sample number:	7979	Data filename:	SMS10GE-150730-HT-A001
Operator:	Harry Théraulaz	Instrument:	QSTAR Pulsar (AB/MDS Sciex)
Principal investigator	: Dr. Sophie Michalet	Ionisation mode:	ESI (positive mode)

D -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -2 f1 (ppm)

Faculty of Sciences

Sciences Mass Spectrometry

(III)

Submitter:	BOSSON	Date of reception:	02/06/16
Sample name:	JB753	Date of certificate:	03/06/16
Sample number:	8424	Data filename:	MS_XL_R3-160602-ES-A001
Operator:	Eliane Sandmeier	Instrument:	XL_R3 (AB/MDS Sciex)
Principal investigator:	Dr. Sophie Michalet	Ionisation mode:	ESI (positive mode)

Warning: The analyte signal is mixed with the internal standard at m/z 622.0354. It hasn't been used for the calibration.

D -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -2 f1 (ppm)

Faculty of Sciences

Sciences Mass Spectrometry

Submitter:	Moneva Lorente Pau	Date of reception: 05/12/2016
Sample name:	PML175	Date of certificate: 05/12/2016
Sample number:	8631	Data filename: SMS10GE-161205-JM-A012
Operator:	Julien Meyer	Instrument: QSTAR Pulsar (AB/MDS Sciex)
Principal investigato	or: Dr. Sophie Michalet	Ionisation mode: ESI (positive mode)

¹H NMR (400 MHz, CD₂Cl₂) 15

6.0 5.5 f1 (ppm) 5.0 4.5 4.0 3.5 3.0 2.5 2.0

1.5

1.0 0.5 0.0 -0

2.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5

¹⁹F NMR (282 MHz, CD₂Cl₂)

 $\underbrace{}^{-149.85}_{-149.90}_{-149.90}$

Faculty of Sciences

Sciences Mass Spectrometry

Submitter:	PAU	Date of reception	: 26/02/15
Sample name:	PM17	Date of certificate	e: 02/03/15
Sample number:	7721	Data filename:	SMS10GE-150226-ES-A003
Operator:	Eliane Sandmeier	Instrument:	QSTAR Pulsar (AB/MDS Sciex)
Principal investigator:	Dr. Sophie Michalet	lonisation mode:	ESI (positive mode)

Expected Formula	Observed <i>m/z</i> [M]⁺	Expected <i>m/z</i> (amu)	Accuracy (ppm)					
$C_{29}H_{33}N_2O_2$	441.2535	441.2537	-0.3					
Chemical Formula: $C_{29}H_{33}N_2O_2^+$								
Exact Mass: 441.25								
Molecular Weight: 441.59								

4. Optical properties

UV-vis (CH₃CN 10⁻⁵ M) (13)

UV-vis (CH₃CN 10⁻⁵ M) (15)

5. References

- 1 (a) B. W. Laursen and F. C. Krebs, Angewandte Chemie International Edition, 2000, 39, 3432-3434;
 (b) C. Herse, D. Bas, F. C. Krebs, T. Bürgi, J. Weber, T. Wesolowski, B. W. Laursen and J. Lacour, Angewandte Chemie International Edition, 2003, 42, 3162-3166.
- 2 B. Laleu, P. Mobian, C. Herse, B. W. Laursen, G. Hopfgartner, G. Bernardinelli and J. Lacour, Angewandte Chemie International Edition, 2005, **44**, 1879-1883.
- 3 I. Hernández Delgado, S. Pascal, A. Wallabregue, R. Duwald, C. Besnard, L. Guénée, C. Nançoz, E. Vauthey, R. C. Tovar, J. L. Lunkley, G. Muller and J. Lacour, *Chem. Sci.*, 2016, **7**, 4685 4693.
- 4 A. Babič, S. Pascal, R. Duwald, D. Moreau, J. Lacour and E. Allémann, *Adv. Funct. Mater.*, 2017, **27**, DOI: 10.1002/adfm.201701839.
- 5 F. Torricelli, J. Bosson, C. Besnard, M. Chekini, T. Bürgi and J. Lacour, *Angew. Chem. Int. Ed.*, 2013, **52**, 1796-1800.
- 6 A. Wallabregue, P. Sherin, J. Guin, C. Besnard, E. Vauthey and J. Lacour, *European Journal of Organic Chemistry*, 2014, 2014, 6431-6438.
- 7 J. Bosson, G. M. Labrador, S. Pascal, F.-A. Miannay, O. Yushchenko, H. Li, L. Bouffier, N. Sojic, R. C. Tovar, G. Muller, D. Jacquemin, A. D. Laurent, B. Le Guennic, E. Vauthey and J. Lacour, *Chem. Eur. J.*, 2016, **22**, 18394-18403.