Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Transition-metal-catalyst-free synthesis of anthranilic acid

derivatives by transfer hydrogenative coupling of 2-nitroaryl

methanols with alcohols/amines

Shudi Zhang,^a Zhenda Tan,^a Biao Xiong,^b Huan Feng Jiang^a and Min Zhang^{*ac} ^aSchool of Chemistry & Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641 People's Republic of China ^bSchool of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China ^cSchool of Chemical & Environmental Engineering, Wuyi University, Jiangmen, Guangdong Province 529090, China.

Table of contents

General information	S2
Substrates Preparation	S2
Application	S2
Typical procedure for synthesis of 3aa	S 3
Typical procedure for synthesis of 5aa	S4
References	S4
Analytical data of the obtained compounds	S5-S17
NMR spectra of obtained compounds	S18-S50

General information

All the obtained products were characterized by melting points (m.p), ¹H-NMR, ¹³C-NMR and infrared spectra (IR). Melting points were measured on an Electrothemal SGW-X4 microscopy digital melting point apparatus and are uncorrected; IR spectra were recorded on a FTLA2000 spectrometer; ¹H-NMR and ¹³C-NMR spectra were obtained on Bruker-400 and referenced to 7.26 ppm for chloroform solvent with TMS as internal standard (0 ppm) or 2.50 ppm for DMSO-*d*₆. Chemical shifts were reported in parts per million (ppm, δ) downfield from tetramethylsilane. Proton coupling patterns are described as singlet (s), doublet (d), triplet (t), multiplet (m); TLC was performed using commercially prepared 100-400 mesh silica gel plates (GF254), and visualization was effected at 254 nm; Unless otherwise stated,, all the reagents were purchased from commercial sources (J&K Chemic, TCI, Fluka, Acros, SCRC), used without further purification.

Substrates preparation

2-nitroaryl methanols **1a** to **1i** and **1k** are known compounds and they were prepared via the literature procedures.^[1,2] **1j** is unknown compound and it was prepared also via the literature procedures.^[1,2]

Application

3-phenethyl-2-phenyl-2,3-dihydroquinazolin-4(1H)-one **6a** was known compound and prepared via the literature procedure.^[3]

Scheme S1. Substrates employed for synthesizing anthranilic acid derivatives

Typical procedure for synthesis of isopropyl 2-aminobenzoate (3aa)

Under N₂ atmosphere, (2-nitrophenyl)methanol (0.5 mmol, 76.5 mg), Cs₂CO₃ (0.2 mmol, 65.2 mg) and propan-2-ol (1 mL) were introduced in a Schlenk tube (25 mL), successively. Then, the Schlenk tube was closed and the resulting mixture was stirred at 100 \degree for 16 h. After cooling down to room temperature, the reaction mixture was concentrated by removing the solvent under vacuum, and the residue was purified by preparative TLC on silica, eluting with petroleum ether (60-90 \degree) : ethyl acetate (30 : 1) to give isopropyl 2-aminobenzoate **3aa** as clear oil liquid (71.6 mmg, 80%).

Typical procedure for synthesis of 2-amino-N-phenethylbenzamide (5aa)

Under N₂ atmosphere, (2-nitrophenyl)methanol (0.5 mmol, 76.5 mg), Cs₂CO₃ (0.2 mmol, 65.2 mg), 2-phenylethan-1-amine (1.0 ml) and propan-2-ol (3 mmol, 18.0 mg) were introduced in a Schlenk tube (25 mL), successively. Then, the Schlenk tube was closed and the resulting mixture was stirred at 110 °C for 16 h. After cooling down to room temperature, the reaction mixture was concentrated by removing the solvent under vacuum, and the residue was purified by preparative TLC on silica, eluting with petroleum ether : ethyl acetate (4:1) to give 2-amino-N-phenethylbenzamide **5aa** as gray solid (78.0 mmg, 65%).

Reference

- [1] P. Selig, W. Raven. Org. Lett., 2014, 16, 5192.
- [2] D. Han, X. Tong, Y, Zhao. Macromolecules, 2011, 44, 37.
- [3] R. Noel, N. Gupta, V. Pons. Journal of Medicinal Chemistry, 2013, 56, 3404.
- [4] C. Ivica, Z. Andreja, B. Anamarija, M. Hrvoje, L. Mladen, M. Sonja. *Croatica Chemica Acta*, 2008, 81, 519.
- [5] D. Barker, M. A. Brimbleb, M. D. McLeod. Tetrahedron, 2004, 60, 5953.
- [6] D. Barker, M. D. McLeod, M. A. Brimbleb, G. P. Savagec. *Tetrahedron Letters*, 2011, 42, 1785.
- [7] L. Qiu, X. Wang, N. Zhao, S. L. Xu, Z. J. An, X. H. Zhuang, Z. G. Lan, L. R. Wen, X. B. Wan. *Journal of Organic Chemistry*, 2014, **79**, 11339.
- [8] Ş. Kökten, İ. Çelik. Synthesis, 2013, 45, 2551.
- [9] S. Sarkar and A. T. Khan, Chem. Commun., 2015, 51, 12673.
- [10] A. Rivero, K. Espinoza, R. Somanathan. Molecules, 2004, 9, 609.
- [11] Y. G. Liu, G. Q. Chen, C. W. Tse, X. G. Guan, Z. J. Xu, J. S. Huang, C.M. Che. Chemistry -An Asian Journal, 2015, 10, 100.
- [12] R. Darshan, Tetrahedron Letters, 1984, 25, 5701.
- [13] L. M. Wang. Journal of Fluorine Chemistry, 2008, 129, 1139.
- [14] H. B. Zhao. Journal of Organic Chemistry, 2010, 75, 3311.
- [15] M. J. Kornet. Journal of Heterocyclic Chemistry, 1992, 29, 103.
- [16] M. M. Zhang, L. Lu, X. S. Wang. Journal of Heterocyclic Chemistry, 2014, 51, 1363.
- [17] C. K. Khatri, M. S. Patil, G. U. Chaturbhuj. *Journal of the Iranian Chemical Society*, 2017, 14, 1683.

Analytic data of the obtained compounds

(1) (4-(methylsulfonyl)-2-nitrophenyl)methanol(1j)

Yield: 90%, Yellow solid, m.p: 141-142 °C; ¹H NMR (400 MHz, DMSO- d_6): δ 8.52 (s, 1H), 8.30 (d, J = 8.0 Hz, 1H), 8.12 (d, J = 8.0 Hz, 1H), 5.80 (t, J = 5.6 Hz, 1H), 4.92 (d, J = 5.2 Hz, 2H), 3.34 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6): δ 147.10, 144.62, 140.66, 132.16, 130.14, 123.81, 60.32, 43.72. IR (KBr): 3527, 1535, 1388, 1353, 1320, 1159, 1141, 1049, 974, 767, 752, 525 cm⁻¹. HRMS (ESI): Calcd. for C₈H₉NNaO₅S [M+Na]⁺: 254.0094; found: 254.0093.

(2) isopropyl 2-aminobenzoate (**3aa**)^[4]

Yield: 80%, Clear oil liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.86 (d, J = 8.0 Hz, 1H), 7.22-7.28 (m, 1H), 6.60-6.70 (m, 2H), 5.68 (br, 2H), 5.15-5.28 (m, 1H), 1.36 (d, J = 5.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 167.71, 150.44, 133.85, 131.25, 116.66, 116.20, 111.54, 67.60, 22.02. IR (KBr): 3482, 3371, 3036, 2963, 1686, 1615, 1246, 1100, 751 cm⁻¹. MS (EI, m/z): 179.08 [M]⁺.

(3) Heptan-2-yl 2-aminobenzoate (3ab)

Yield: 83%, Clear oil liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.79 (d, *J* = 8.0 Hz, 1H), 7.12-7.22 (m, 1H), 6.52-6.61 (m, 2H), 5.64 (br, 2H), 4.96-5.10 (m, 1H), 1.59-1.69 (m, 1H), 1.45-1.55 (m, 1H), 1.18-1.32 (m, 9H), 0.77-0.84 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 167.82, 150.47, 133.84, 131.21, 116.67, 116.20, 111.55, 72.99, 36.08, 31.71, 25.15, 22.56, 20.14, 14.01. IR (KBr): 3484, 3372, 2956, 2861, 1686, 1615, 1245, 1103, 750 cm⁻¹. MS (EI, m/z): 235.18 [M]⁺. HRMS (ESI): Calcd. for C₁₄H₂₂NO₂ [M+H]⁺: 236.1645; found: 236.1644.

(4) Cyclohexyl 2-aminobenzoate (**3ac**)^[5]

Yield: 82%, Pale yellow oil liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.88 (d, *J* = 8.0 Hz, 1H), 7.20-7.29 (m, 1H), 6.59-6.70 (m, 2H), 5.70 (br, 2H), 4.94-5.04 (m, 1H), 1.86-2.00 (m, 2H), 1.72-1.83 (m, 2H), 1.50-1.65 (m, 3H), 1.28-1.50 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 167.61, 150.46, 133.85, 131.27, 116.67, 116.22, 116.61, 72.33, 31.21, 25.54, 23.69. IR (KBr): 3482, 3370, 3085, 2935, 2858, 1685, 1616, 1244, 1105, 751 cm⁻¹. MS (EI, m/z): 219.12 [M]⁺.

(5) 1-phenylethyl 2-aminobenzoate (**3ad**)^[5]

Yield: 85%, Pale yellow oil liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.97 (d, *J* = 8.0 Hz, 1H), 7.43 (d, *J* = 7.2 Hz, 2H), 7.36 (t, *J* = 7.2 Hz, 2H), 7.22-7.31 (m, 2H), 6.60-6.70 (m, 2H), 6.08 (q, *J* = 12.0 Hz, 1H), 5.68 (br, 2H), 1.65 (d, *J* = 6.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 167.35, 150.64, 142.16, 134.11, 131.28, 128.57, 127.78, 125.92, 116.69, 116.26, 111.07, 72.24, 22.60. IR (KBr): 3483, 3370, 3034, 2925, 2856, 1686, 1611, 1241, 1027, 749 cm⁻¹. MS (EI, m/z): 241.04 [M]⁺.

(6) But-3-en-2-yl 2-aminobenzoate (3ae)^[6]

Yield: 80%, Clear oil liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, *J* = 8.0 Hz, 1H), 7.26 (t, *J* = 7.6 Hz, 1H), 6.60-6.70 (m, 2H), 5.90-6.02 (m, 1H), 5.51-5.61 (m, 1H), 5.32 (d, *J* = 17.2 Hz, 1H), 5.17 (d, *J* = 10.4 Hz, 1H), 1.44 (d, *J* = 5.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 167.36, 150.58, 138.03, 134.04, 131.23, 116.68, 116.24, 115.51, 111.15, 70.80, 20.16. IR (KBr): 3485, 3374, 2926, 2855, 1688, 1616, 1244, 1103, 928, 751 cm⁻¹. MS (EI, m/z): 191.16 [M]⁺.

(7) Isopropyl 2-amino-4,5-dimethoxybenzoate (**3ba**)^[7]

Yield: 78%, Orange solid, m.p: 97-98 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.31 (s, 1H), 6.14 (s, 1H), 5.39 (br, 2H), 5.15-5.24 (m, 1H), 3.85 (s, 3H), 3.83 (s, 3H), 1.36 (d, *J* = 5.6 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 167.33, 154.73, 147.05, 140.51, 113.18, 102.86, 99.40, 67,35, 56.57, 55.73, 22.09. IR (KBr): 3467, 3358, 3078, 2984, 2940, 1684, 1653, 1246, 1105 cm⁻¹. MS (EI, m/z): 239.12 [M]⁺.

(8) cyclohexyl 2-amino-4,5-dimethoxybenzoate (3bc)

Yield: 78%, Orange solid, m.p: 119-120 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.34 (s, 1H), 6.14 (s, 1H), 5.26 (br, 2H), 4.92-5.02 (m, 1H), 3.85 (s, 3H), 3.83 (s, 3H), 1.88-2.00 (m, 2H), 1.73-1.83 (m, 2H), 1.51-1.63 (m, 3H), 1.28-1.50 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 167.21, 154.74, 147.03, 140.53, 113.25, 102.96, 99.41, 72.15, 56.56, 55.74, 31.81, 25.53, 23.79. IR (KBr): 3472, 3362, 2934, 2858, 1678, 1594, 1248, 1207, 1165 cm⁻¹.MS (EI, m/z): 279.22 [M]⁺. HRMS (ESI): Calcd. for C₁₅H₂₂NO₄ [M+H]⁺: 280.1543; found: 280.1539.

(9) 1-phenylethyl 2-amino-4,5-dimethoxybenzoate (3bd)

Yield: 76%, Brown oil liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.39-7.47 (m, 3H), 7.35 (t, *J* = 7.2 Hz, 2H), 7.23-7.31 (m, 1H), 6.02-6.16 (m, 2H), 5.57 (br, 2H), 3.83 (s, 6H), 1.65 (d, *J* = 5.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 166.97, 155.06, 147.45, 142.36, 140.57, 128.56, 127.71, 125.85, 113.29, 102.35, 99.38, 71.97, 56.70, 55.75, 22.04. IR (KBr): 3475, 3365, 3063, 2978, 2867, 1681, 1624, 1250, 1164 cm⁻¹. MS (EI, m/z): 301.13 [M]⁺. HRMS (ESI): Calcd. for C₁₇H₁₉NNaO₄ [M+Na]⁺: 324.1206; found: 324.1207.

(10) 1-phenylethyl 2-amino-5-methylbenzoate (3cd)

Yield: 75%, Pale yellow oil liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.74 (s, 1H), 7.22-7.47 (m, 5H), 7.08 (q, *J* = 8.0 Hz, 1H), 6.56 (d, *J* = 8.4 Hz, 1H), 6.08 (q, *J* = 13.2 Hz, 1H), 5.45 (br, 2H), 2.24 (s, 3H), 1.65 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 167.38, 148.50, 142.21, 135.25, 130.81, 128.56, 127.76, 125.95, 125.37, 116.88, 111.98, 72.15, 22.54, 20.33. IR (KBr): 3484, 3374, 3029, 2980, 2861, 1687, 1626, 1261, 1090 cm⁻¹. MS (EI, m/z): 255.05 [M]⁺. HRMS (ESI): Calcd. for C₁₆H₁₈NO₂ [M+H]⁺: 256.1332; found: 256.1329.

(11) 1-phenylethyl 2-amino-3-methylbenzoate (3dd)

Yield: 67%, Pale yellow oil liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.89 (d, *J* = 8.0 Hz, 1H), 7.43 (d, *J* = 7.6 Hz, 2H), 7.35 (t, *J* = 6.8 Hz, 2H), 7.29 (d, *J* = 6.8 Hz, 1H), 7.19

(d, J = 7.2 Hz, 1H), 6.60 (t, J = 7.2 Hz, 1H), 6.08 (q, J = 12.8 Hz, 1H), 2.15 (s, 3H), 1.65 (d, J = 6.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 167.78, 149.14, 142.24, 134.83, 129.22, 128.54, 127.72, 125.88, 122.99, 115.62, 110.57, 72.19, 22.61, 17.40. IR (KBr): 3470, 3370, 3031, 2974, 2855, 1685, 1612, 1240, 1079 cm⁻¹. MS (EI, m/z): 255.24 [M]⁺. HRMS (ESI): Calcd. for C₁₆H₁₈NO₂ [M+H]⁺: 256.1332; found: 256.1327.

(12) 1-phenylethyl 2-amino-5-methoxybenzoate (3ed)

Yield: 62%, Pale yellow oil liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.23-7.51 (m, 7H), 6.95,6.97 (dd, $J_1 = 4.0$ Hz, $J_2 = 8.8$ Hz, 1H), 6.62 (d, J = 8.8 Hz, 1H), 3,78 (s, 3H), 1.66 (d, J = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 167.01, 150.58, 145.18, 142.05, 128.57, 127.80, 125.91, 122.69, 118.20, 114.09, 111.28, 72.41, 56.01, 22.53. IR (KBr): 3448, 3371, 2926, 2854, 1691, 1590, 1213, 1092 cm⁻¹. MS (EI, m/z): 271.05 [M]⁺. HRMS (ESI): Calcd. for C₁₆H₁₈NO₃ [M+H]⁺: 272.1281; found: 272.1280.

(13) Isopropyl 2-amino-4-chlorobenzoate (**3fa**)^[8]

Yield: 78%, Pale yellow oil liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.78 (d, *J* = 8.0 Hz, 1H), 6.65 (s, 1H), 6.58,6.60 (dd, *J*₁ = 0.8 Hz, *J*₂ = 8.4 Hz, 1H), 5.79 (br, 2H), 5.15-5.26 (m, 1H), 1.35 (d, *J* = 6.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 167.10, 151.19, 139.26, 132.64, 116.59, 115.89, 110.02, 67.93, 21.97. IR (KBr): 3485, 3369, 2981, 2927, 1688, 1613, 1243, 906, 693 cm⁻¹. MS (EI, m/z): 213.01 [M]⁺; 215.04 [M+2]⁺

(14) 1-phenylethyl 2-amino-4-chlorobenzoate (3fd)

Yield: 80%, Pale yellow oil liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.87 (d, *J* = 8.4 Hz, 1H), 7.22-7.47 (m, 5H), 6.57-6.67 (m, 2H), 6.06 (q, *J* = 12.4 Hz, 1H), 5.68 (br, 2H), 1.64 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 166.76, 151.38, 141.92, 140.05, 132.65, 128.61, 127.90, 125.93, 116.67, 115.59, 109.56, 72.55, 22.51. IR (KBr): 3486, 3370, 3032, 2926, 2855, 1689, 1611, 1239, 1094, 763, 696 cm⁻¹.MS (EI, m/z): 275.00 [M]⁺; 277.07 [M+2]⁺. HRMS (ESI): Calcd. for C₁₅H₁₅ClNO₂ [M+H]⁺: 276.0786; found: 276.0781.

(15) Isopropyl 2-amino-4-bromobenzoate (3ga)

Yield: 75%, Pale yellow oil liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.70 (d, *J* = 8.0 Hz, 1H), 6.82 (s, 1H), 6.74 (d, *J* = 8.4 Hz, 1H), 5.75 (br, 2H), 5.14-5.25 (m, 1H), 1.35 (d, *J* = 5.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 167.21, 151.23, 132.63, 128.41, 119.41, 118.96, 110.37, 67.97, 21.97. IR (KBr): 3483, 3367, 2981, 2929, 1687, 1609, 1242, 1091, 892, 767 cm⁻¹. MS (EI, m/z): 256.96 [M]⁺; 259.01 [M+2]⁺. HRMS (ESI): Calcd. for C₁₀H₁₃BrNO₂ [M+H]⁺: 258.0124; found: 258.0116.

(16) 1-phenylethyl 2-amino-4-bromobenzoate (3gd)

Yield: 82%, Pale yellow oil liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.79 (d, J = 8.0 Hz, 1H), 7.21-7.45 (m, 5H), 6.79 (s, 1H), 6.75 (d, J = 8.8 Hz, 1H), 6.01-6.10 (m, 1H), 5.75 (br, 2H), 1.64 (d, J = 5.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 166.89, 151.42, 141.91, 132.64, 128.74, 128.63, 127.93, 125.94, 119.50, 119.04, 109.91, 10

72.59, 22.53. IR (KBr): 3485, 3369, 2981, 2927, 1689, 1608, 1239, 1063, 763, 696 cm⁻¹. MS (EI, m/z): 319.11 [M]⁺; 321.11 [M+2]⁺. HRMS (ESI): Calcd. for $C_{15}H_{15}BrNO_2$ [M+H]⁺: 320.0281; found: 320.0277.

(17) 1-phenylethyl 2-amino-5-fluorobenzoate (3hd)

Yield: 76%, Pale yellow oil liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.62,7.64 (dd, $J_I = 2.8$ Hz, $J_2 = 9.6$ Hz, 1H), 7.42 (d, J = 7.6 Hz, 2H), 7.36 (t, J = 7.2 Hz, 2H), 7.24-7.32 (m, 1H), 6.98-7.06 (m, 1H), 6.55-6.65 (m, 1H), 6.07 (q, J = 13.2 Hz, 1H), 5.51 (br, 2H), 1.65 (d, J = 6.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 116.50, 153.95(d, $J_{C-F} = 116.5$ Hz), 147.18, 141.80, 128.62, 127.93, 125.95, 122.05(d, $J_{C-F} = 11.5$ Hz), 117.85(d, $J_{C-F} = 3.5$ Hz), 116.14(d, $J_{C-F} = 11.5$ Hz), 110.96(d, $J_{C-F} = 3.5$ Hz), 72.72, 22.49. IR (KBr): 3486, 3373, 3035, 2982, 2857, 1678, 1594, 1248, 1207, 1165 cm⁻¹. MS (EI, m/z): 259.08 [M]⁺. HRMS (ESI): Calcd. for C₁₅H₁₅FNO₂ [M+H]⁺: 260.1081; found: 260.1080.

(18) isopropyl 2-amino-4-(trifluoromethyl)benzoate (3ia)

Yield: 81%, Pale yellow oil liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.95 (d, *J* = 8.4 Hz, 1H), 6.89 (d, *J* = 1.6 Hz, 1H), 6.84,6.82 (dd, *J*₁ = 1.6 Hz, *J*₂ = 8.4 Hz, 1H), 5.82 (br, 2H), 5.32-5.17 (m, 1H), 1.37 (d, *J* = 6.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 166.87, 150.19, 135.24 (d, *J* = 32.0 Hz), 132.16, 124.95, 122.24, 113.79, 113.37 (q, *J* = 4.0 Hz), 112.20 (q, *J* = 4.0 Hz), 68.36, 21.93. IR (KBr): 3703, 2985, 1699, 1594, 1456, 1443, 1244, 1171, 1129, 1094, 909, 782, 748, 705 cm⁻¹. HRMS (ESI): Calcd. for C₁₁H₁₃F₃NO₂ [M+H]⁺: 248.0893; found: 248.0892.

(19) isopropyl 2-amino-4-(methylsulfonyl)benzoate (3ja)

Yield: 86%, Pale yellow oil liquid, m.p: 96-97 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.02 (d, *J* = 8.0 Hz, 1H), 7.25 (s, 1H), 7.10 (d, *J* = 8.0 Hz, 1H), 6.10 (br, 2H), 5.16-5.32 (m, 1H), 3.04 (s, 3H), 1.38 (d, *J* = 6.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 166.55, 150.62, 144.66, 132.82, 115.31, 114.93, 113.25, 68.71, 44.09, 21.90. IR (KBr): 3472, 3364, 2982, 2929, 1692, 1614, 1247, 1097 cm⁻¹. MS (EI, m/z): 257.14 [M]⁺. HRMS (ESI): Calcd. for C₁₁H₁₅NNaO₄S [M+Na]⁺: 280.0614; found: 280.0612.

(20) butyl 2-aminobenzoate (3af)^[9]

Yield: 48%, Pale yellow oil liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.81-7.91 (m, 1H), 7.21-7.30 (m, 1H), 6.59-6.72 (m, 2H), 5.35 (br, 2H), 4.27 (t, *J* = 6.4 Hz, 2H), 1.70-1.81 (m, 2H), 1.43-1.55 (m, 2H), 0.98 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 168.25, 154.40, 133.97, 131.22, 116.71, 116.30, 111.19, 64.20, 30.83, 19.34, 13.78. IR (KBr): 3696, 2956, 1689, 1588, 1294, 1245, 1103, 1096, 751 cm⁻¹. MS (EI, m/z): 193.12 [M]⁺.

(21) tert-pentyl 2-aminobenzoate (3ag)

Yield: 35%, Pale yellow oil liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.78-7.88 (m, 1H), 7.21-7.26 (m, 1H), 6.53-6.80 (m, 2H), 1.91 (q, *J* = 14.8 Hz, 2H), 1.56 (s, 6H), 0.97 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 167.62, 150.33, 133.54, 131.43, 116.72, 116.18, 112.66, 83.11, 33.90, 25.81, 8.63. IR (KBr): 3702, 2975, 1687, 1585,

1558, 1487, 1459, 1295, 1252, 1155, 1107, 920, 751 cm⁻¹. HRMS (ESI): Calcd. for $C_{12}H_{18}NO_2 [M+H]^+$: 208.1332; found: 208.1331.

(22) 2-amino-N-phenethylbenzamide (5aa)^[10]

Yield: 65%, Gray solid, m.p: 90-91 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.13-7.35 (m, 7H), 6.66 (d, *J* = 7.6 Hz, 1H), 6.59 (t, *J* = 7.2 Hz, 1H), 6.10 (br, 1H), 5.54 (br, 2H), 3.62-3.72 (m, 2H), 2.91 (t, *J* = 6.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 169.32, 148.63, 138.99, 132.22, 128.83, 128.73, 127.04, 126.59, 117.30, 116.64, 116.29, 40.81, 35.75. IR (KBr): 3472, 3293, 3193, 3030, 2924, 2859, 1629, 1582, 1526, 1300, 1259, 744, 694 cm⁻¹. MS (EI, m/z): 240.15 [M]⁺.

(23) (2-aminophenyl)(pyrrolidin-1-yl)methanone (**5ab**)^[11]

Yield: 45%, Brown solid, m.p: 86-87 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.06-7.24 (m, 2H), 6.60-6.75 (m, 2H), 4.66 (br, 2H), 3.25-3.65 (m, 4H), 1.63-1.97 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 169.53, 145.95, 130.67, 127.96, 120.78, 117.05, 116.66, 49.53, 45.97, 26.31, 24.44. IR (KBr): 3439, 3147, 2962, 2925, 2872, 1679, 1609, 1406, 750 cm⁻¹. MS (EI, m/z): 190.18 [M]⁺.

(24) 2-amino-N-cyclohexylbenzamide (5ac)^[12]

Yield: 72%, Yellow solid, m.p: 152-153 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.28 (d, J = 8.0 Hz, 1H), 7.19 (t, J = 7.6 Hz, 1H), 6.58-6.74 (m, 2H), 5.93 (br, 1H), 5.47 (br, 2H), 3,85-3.99 (m, 1H), 2.01 (d, J = 11.2 Hz, 2H), 1.60-1.80 (m, 4H), 1.34-1.52 (m, 2H), 13

1.17-1.29 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 168.49, 148.59, 130.25, 127.01, 117.25, 116.75, 116.58, 48.31, 33.24, 25.61, 24.92. IR (KBr): 3475, 3367, 3306, 3050, 2930, 2854, 1669, 1626, 1537, 1320, 1264, 749, 668 cm⁻¹. MS (EI, m/z): 218.13 [M]⁺.

(25) 2-amino-N-phenylbenzamide (5ad)^[13]

Yield: 51%, White solid, m.p: 131-132 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.79 (br, 1H), 7.56 (d, J = 7.6 Hz, 2H), 7.46 (d, J = 8.0 Hz, 1H), 7.35 (t, J = 7.2 Hz, 2H), 7.20-7.28 (m, 1H), 7.14 (t, J = 7.2 Hz, 1H), 6.66-6.75 (m, 1H), 5.48 (br, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 167.58, 148.98, 137.88, 132.76, 129.07, 127.18, 124.51, 120.57, 117.56, 116.86, 116.28. IR (KBr): 3467, 3362, 3282, 3121, 2958, 2918, 2852, 1634, 1587, 1528, 1402, 1248, 747, 688 cm⁻¹. MS (EI, m/z): 212.05 [M]⁺.

(26) 2-aminobenzamide (5ae)^[14]

Yield: 20%, brown solid, m.p: 112-113 °C; ¹H NMR (400 MHz, DMSO- d_6): 7.71 (br, 1H), δ 7.52 (d, J = 8.0 Hz, 1H), 7.12 (t, J = 7.6 Hz, 1H), 7.04 (br, 1H), 6.67 (d, J = 8.4 Hz, 1H), 6.54 (s, 2H), 6.47 (t, J = 7.6 Hz, 1H). ¹³C NMR (101 MHz, DMSO- d_6) δ 171.30, 150.18, 131.87, 128.74, 116.40, 114.37, 113.70. IR (KBr): 3412, 1628, 1401, 1315, 1257, 744 cm⁻¹. MS (EI, m/z): 136.09 [M]⁺.

(27) 2-amino-N-cyclohexyl-5-methylbenzamide (5cc)^[15]

Yield: 53%, Gray solid, m.p: 186-187 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.07 (s, 1H), 7.01 (d, J = 8.4 Hz, 1H), 6.60 (d, J = 8.0 Hz, 1H), 5.90 (br, 1H), 5.27 (br, 2H), 14 3.85-4.01 (m, 1H), 2.24 (s, 3H), 1.98-2.06 (m, 2H), 1.60-1.80 (m, 4H), 1.37-1.49 (m, 2H), 1.18-1.28 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 168.51, 146.10, 132.88, 127.10, 125.85, 117.48, 116.96, 48.30, 33.28, 25.63, 24.95, 20.36. IR (KBr): 3412, 3297, 3132, 2927, 2854, 1628, 1584, 1529, 1401, 1150, 825, 600 cm⁻¹. MS (EI, m/z): 232.16 [M]⁺.

(28) 2-amino-5-methyl-N-phenethylbenzamide (5ca)

Yield: 67%, Gray solid, m.p: 113-115 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.29-7.35 (m, 2H), 7.21-7.27 (m, 3H), 6.95-7.03 (m, 2H), 6.58 (d, *J* = 8.4 Hz, 1H), 6.10 (br, 1H), 5.24 (br, 2H), 3.66 (q, *J* = 13.2 Hz, 2H), 2.91 (t, *J* = 6.8 Hz, 2H), 2.18 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 169.34, 146.16, 139.05, 133.06, 128.87, 128.69, 127.23, 126.57, 125.87, 117.49, 116.53, 40.83, 35.80, 20.23. IR (KBr): 3459, 3415, 3293, 3026, 2923, 2859, 1633, 1578, 1403, 693 cm⁻¹. MS (EI, m/z): 254.15 [M]⁺. HRMS (ESI): Calcd. for C₁₆H₁₉N₂O [M+H]⁺: 255.1492; found: 255.1495.

(29) 2-amino-4,5-dimethoxy-N-phenethylbenzamide (5ba)

Yield: 60%, Black solid, m.p: 110-112 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.20-7.34 (m, 7H), 6.67 (s, 1H), 6.16 (s, 1H), 6.10 (br, 1H), 5.31 (br, 2H), 3.81 (s, 3H), 3.72 (s, 3H), 3.64 (q, *J* = 12.8 Hz, 2H), 2.90 (t, *J* = 6.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 168.91, 153.16, 144.65, 140.78, 139.18, 128.89, 128.67, 126.55, 110.92, 107.42, 100.84, 56.84, 55.72, 40.75, 35.76. IR (KBr): 3457, 3345, 3336, 2925, 2856, 2758, 1637, 1590, 1504, 1504, 1257, 1218, 699, 607 cm⁻¹. MS (EI, m/z): 300.15 [M]⁺. HRMS (ESI): Calcd. for C₁₇H₂₁N₂O₃ [M+H]⁺: 301.1547; found: 301.1550.

(30) 2-amino-4-chloro-N-cyclohexylbenzamide (5fc)^[16]

Yield: 70%, Yellow solid, m.p: 173-174 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.20 (d, *J* = 8.4 Hz, 1H), 6.65 (s, 1H), 6.58 (d, *J* = 8.4 Hz, 1H), 5.89 (br, 1H), 5.61 (br, 2H), 5.82-5.96 (m, 1H), 1.94-2.05 (m, 2H), 1.60-1.82 (m, 4H), 1.35-1.47 (m, 2H), 1.17-1.27 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 167.77, 149.73, 137.78, 128.28, 116.55, 116.51, 114.94, 48.46, 33.19, 25.56, 24.92. IR (KBr): 3467, 3348, 3285, 3053, 2930, 2853, 1619, 1576, 1532, 1255 cm⁻¹. MS (EI, m/z): 252.08 [M]⁺; 254.13 [M+2]⁺.

(31) 2-amino-4-bromo-N-cyclohexylbenzamide (5gc)

Yield: 72%, Brown solid, m.p: 181-182 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.12 (d, *J* = 8.4 Hz, 1H), 6.82 (s, 1H), 6.73 (d, *J* = 8.4 Hz, 1H), 5.88 (br, 1H), 5.59 (s, 2H), 3.80-3.96 (m, 1H), 1.93-2.05 (m, 2H), 1.60-1.78 (m, 4H), 1.35-1.47 (m, 2H), 1.17-1.27 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 167.82, 149.80, 128.32, 126.18, 119.54, 119.41, 115.35, 48.46, 33.18, 25.57, 24.91. IR (KBr): 3465, 3349, 3285, 3044, 2927, 2854, 1618, 1572, 1530, 1253 cm⁻¹. MS (EI, m/z): 296.06 [M]⁺; 298.05 [M+2]⁺. HRMS (ESI): Calcd. for C₁₃H₁₈BrN₂O [M+H]⁺: 297.0597; found: 297.0593.

(32) 2-amino-N-cyclohexyl-4-(methylsulfonyl)benzamide (5jc)

Yield: 73%, Pale yellow solid, m.p: 191-193 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.45 (d, J = 8.0 Hz, 1H), 7.20 (s, 1H), 7.10 (d, J = 8.0 Hz, 1H), 6.04 (br, 1H), 5.75 (br, 2H), 3.85-4.01 (m, 1H), 3.02 (s, 3H), 1.95-2.06 (m, 2H), 1.62-1.81 (m, 4H), 1.37-1.49 (m,

2H), 1.28-1.34 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 167.12, 148.98, 143.14, 128.39, 120.71, 115.31, 114.07, 48.77, 44.23, 33.07, 25.50, 24.90. IR (KBr): 3471, 3363, 3142, 2925, 2853, 1621, 1576, 1532, 1402, 1143 cm⁻¹. MS (EI, m/z): 296.08 [M]⁺. HRMS (ESI): found [M-H]⁺: 295.0800.

(33) 3-phenethyl-2-phenyl-2,3-dihydroquinazolin-4(1H)-one(**6a**)^[17]

Yield: 62%, brown solid, m.p: 145-146 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.96 (d, J = 7.6 Hz, 1H), 7.34 (s, 5H), 7.18-7.24 (m, 4H), 7.10 (d, J = 7.2 Hz, 2H), 6.84 (t, J = 7.6 Hz, 1H), 6.52 (d, J = 7.6 Hz, 1H), 5.55 (s, 1H), 4.50 (s, 1H), 3.98-4.11 (m, 1H), 3.03-2.91 (m, 2H), 2.72-2.82 (m, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 163.34, 145.40, 139.70, 139.29, 133.54, 129.53, 129.08, 128.99, 128.58, 128.55, 126.97, 126.45, 119.38, 116.31, 114.46, 73.07, 47.04, 34.34. IR (KBr): 3306, 1603, 1504, 1452, 1403, 1312, 747, 695 cm⁻¹. MS (EI, m/z): 328.20 [M]⁺.

NMR spectra of the obtained compounds

¹H- NMR spectrum of 1j

^{150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0} f1 (ppm)

¹³C-NMR spectrum of 3aa

¹H- NMR spectrum of 3ab

¹³C-NMR spectrum of 3ab

¹H- NMR spectrum of 3ac

¹³C-NMR spectrum of 3ac

¹H- NMR spectrum of 3ad

¹³C-NMR spectrum of 3ad

¹³C-NMR spectrum of 3ae

¹H- NMR spectrum of 3ba

¹³C-NMR spectrum of 3ba

¹H- NMR spectrum of 3bc

¹³C-NMR spectrum of 3bc

¹H- NMR spectrum of 3bd

¹³C-NMR spectrum of 3bd

26

¹H- NMR spectrum of 3cd

¹³C-NMR spectrum of 3cd

¹H- NMR spectrum of 3dd

¹³C-NMR spectrum of 3dd

¹H- NMR spectrum of 3ed

¹³C-NMR spectrum of 3ed

¹³C-NMR spectrum of 3fa

¹H- NMR spectrum of 3fd

¹³C-NMR spectrum of 3fd

¹H- NMR spectrum of 3ga

¹³C-NMR spectrum of 3ga

¹H- NMR spectrum of 3gd

¹³C-NMR spectrum of 3gd

¹H- NMR spectrum of 3hd

¹³C-NMR spectrum of 3hd

¹H- NMR spectrum of 3ia

¹³C-NMR spectrum of 3ia

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H- NMR spectrum of 3ja

¹³C-NMR spectrum of 3ja

fl (ppm)

¹H- NMR spectrum of 3ag

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C-NMR spectrum of 5aa

¹H- NMR spectrum of 5ab

¹³C-NMR spectrum of 5ab

¹³C-NMR spectrum of 5ac

¹³C-NMR spectrum of 5ad

¹H- NMR spectrum of 5ae

¹³C-NMR spectrum of 5ae

¹³C-NMR spectrum of 5cc

¹H- NMR spectrum of 5ca

¹³C-NMR spectrum of 5ca

¹H- NMR spectrum of 5ba

¹³C-NMR spectrum of 5ba

¹³C-NMR spectrum of 5fc

¹H- NMR spectrum of 5gc

¹³C-NMR spectrum of 5gc

¹H- NMR spectrum of 5jc

¹³C-NMR spectrum of 5jc

¹H- NMR spectrum of 6a

¹³C-NMR spectrum of 6a

