Organic & Biomolecular Chemistry

Supplementary Data for

Unexpected racemization and the hydrogen-deuterium exchange of the hydrogen at the α-carbon of proline analogs containing the 5-azoniaspiro[4.4]nonyl-group

Bartosz Setner, Magdalena Wierzbicka, Lucjan Jerzykiewicz, Marek Lisowski, Zbigniew Szewczuk *Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland*

Correspondence to: Z. Szewczuk, Faculty of Chemistry, University of Wrocław F. Joliot-Curie 14, 50-383 Wrocław, Poland E-mail: zbigniew.szewczuk@chem.uni.wroc.pl

Keywords: Proline · Betaine · Hydrogen-Deuterium Exchange · Charged-tagged Peptides

Table of contents

- 1. Synthetic details 2
- 2. ESI-MS spectra recorded during HDX in the 5-azoniaspiro[4.4]nonyl-carbonyl group 3
- 3. ESI-MS/MS spectra 3
- 4. NMR spectra recorded before and after HDX in the 5–azoniaspiro[4.4]nonyl–carbonyl group 3
- 5. X-ray crystal structure 3
- 6. ESI-MS quantification experiments 3

1. Synthetic details

a. Synthesis of H-yAbu-OEt·HCl^[1]

A solution of 20.6 g (0.2 mol) of 4-aminobutyric acid (γ Abu) in 140 mL of anhydrous ethanol in a 250 mL round bottom flask was prepared. After cooling down the solution in the ice-water bath, 20 mL (0.275 mol) of thionyl chloride were slowly added in 2 mL portions with a vigorous stirring. Next, the ice-water bath was removed and the solution was left at room temperature for additional 2 h. Ethanol was removed on a rotary evaporator and obtained colorless oil was recrystallized from hot ethanol; yield: 24.0 g (94%).

i. Analysis

¹H NMR (@500 MHz, CD₃CN, 300 K) δ : 1.22 (t, *J* = 7.1 Hz, 3H); 1.97–2.03 (m, 2H); 2.47 (t, *J* = 7.3 Hz, 2H); 2.98–3.04 (m, 2H); 4.10 (q, *J* = 7.1 Hz, 2H); 8.08 (s, 3H).

¹³C{H} NMR (@125 MHz, CD₃CN, 300 K) δ: 14.5; 23.4; 31.9; 40.0; 61.4; 173.6

1. 1 H-NMR

Figure 1S. ¹H NMR spectrum (@500 MHz, CD₃CN, 300 K, δ) of H- γ Abu-OEt·HCl

Figure 2S. ¹³C{H} NMR spectrum (@125 MHz, CD₃CN, 300 K, δ) of H- γ Abu-OEt·HCl

b. Synthesis of BASN⁺-CO-γAbu-OEt·BPh₄

In a 100 mL round bottom flask chilled in the ice-water bath, a solution of Boc-Pro-OH (2.15 g, 10 mmol) and *N*-methylmorpholine (NMM, 1.10 mL, 10 mmol) in tetrahydrofuran (THF, 25 mL) was prepared. Then, isobuthyl chloroformate (1.34 mL, 10.5 mmol) was added with a vigorous stirring. Next, a solution of H- γ Abu-OEt·HCl (1.67 g, 10 mmol) and triethylamine (TEA, 1.40 mL, 10 mmol) in DMF (10 mL) were added. Reaction proceeded for 1 h. The TEA·HCl salt was filtered off and the filtrate was concentrated. Obtained colorless oil was dissolved in 50 mL of ethyl acetate and washed with KHSO₄, diluted NaHCO₃, and H₂O. After removing the solvent on a rotary evaporator, the product was dried. Dipeptide Boc-Pro- γ Abu-OEt was purified by flash chromatography using a Büchi Sepacore[®] flash system X50 (column – Sepacore[®] Silica 12 g; eluent – chloroform/methanol,

95:5 v/v); yield: 2.2 g (67%).^[2] The Boc protecting group was removed with 10 mL of TFA/dichloromethane (DCM) (95:5, v/v); yield: 2.29 g (quantitative).

A benzo-5-azoniaspiro[4.4]nonyl-carbonyl group was obtained by mixing 1.02 g (3 mmol) of H-Pro- γ Abu-OEt·CF₃COO⁻, 0.79 g (3 mmol) of α, α '-dibromo-*o*-xylene and 1.24 g (9 mmol) of K₂CO₃ in 25 mL of acetonitrile for 24 h. After filtering off potassium carbonate, the filtrate was concentrated. Colorless oil was resuspended in a fresh portion of acetonitrile and chilled in the ice-water bath. An anion-exchange reaction was performed using 1.02 g (3 mmol) of sodium tetraphenylborate (NaBPh₄). Sodium bromide was filtered off on a filter funnel with a Celite[®] S pad and the product was dried under *vacuum*. Crystallization of BASN⁺-CO- γ Abu-OEt·BPh₄ was initiated by addition of methanol; yield: 0.33 g (17%).

i. Analysis

Boc-Pro-yAbu-OEt:

ESI-MS: *m/z* 351.199 [M+Na]⁺; calc. for C₁₆H₂₈N₂NaO₅ [M+Na]⁺: 351.189

¹H NMR (@500 MHz, CDCl₃, 300 K) δ: 1.24 (t, *J* = 7.1 Hz, 3H); 1,45 (s, 9H); 1.80–1.85 (m, 6H); 2.33 (t, *J* = 7.4 Hz, 2H); 3.26–3.48 (m, 4H); 4.12 (q, *J* = 7.1 Hz, 2H); 4.23 (1H).

¹³C{H} NMR (@125 MHz, CDCl₃, 300 K) δ: 14.3; 24.1; 24.8; 28.2; 28.5; 31.7; 38.8; 47.2; 60.6; 61.4; 80.5; 155.9; 172.3; 173.3

Figure 3S. ESI-MS spectrum of Boc-Pro-yAbu-OEt

2. ¹H-NMR

Figure 4S. ¹H NMR spectrum (@500 MHz, CDCl₃, 300 K, δ) of Boc-Pro- γ Abu-OEt

Figure 5S. ¹³C{H} NMR spectrum (@125 MHz, CDCl₃, 300 K, δ) of Boc-Pro- γ Abu-OEt

H-Pro-γAbu-OEt·CF₃COO⁻:

ESI-MS: *m/z* 229.157 [M+H]⁺; calc. for C₁₁H₂₁N₂O₃ [M+H]⁺: 229.154

4. ESI-MS

Figure 6S. ESI-MS spectrum of H-Pro-yAbu-OEt

 $BASN^+$ -CO- γAbu -OEt·BPh₄:

ESI-MS: *m/z* 331.207 [M]⁺; calc. for C₁₉H₂₇N₂O₃ [M]⁺: 331.201

¹H NMR (@500 MHz, CD₃CN, 300 K) δ : 1.22 (t, *J* = 7.1 Hz, 3H); 1.65–1.73 (m, 2H); 2.27 (t, *J* = 7.4 Hz, 2H); 2.47–2.55 (m, 1H); 3.10–3.20 (m, 2H); 3.26–3.61 (m, 1H); 3.90–3.95 (m, 1H); 4.09 (q, *J* = 7.1 Hz, 2H); 4.21–4.23 (m, 1H); 4.77 (dd, *J* = 14.3 Hz, 2H); 4.87 (dd, *J* =

14.4 Hz, 2H); 6.83–6.86 (m, 4H); 6.95 (s, 1H); 6.98–7.01 (m, 8H); 7.26–7.30 (m, 8H); 7.35–7.38 (m, 2H); 7.41–7.45 (m, 2H).

¹³C{H} NMR (@125 MHz, CD₃CN, 300 K) δ: 14.6; 21.1; 25.0; 27.3; 32.0; 39.7; 61.1; 65.1; 65.9; 69.6; 74.2; 122.8; 124.2; 124.3; 126.6; 126.6; 126.6; 126.6; 130.1; 130.2; 133.5; 134.3; 136.7; 136.7; 136.8; 136.8; 164.2; 164.6; 165.0; 165.4; 166.7; 173.8

Figure 75. ESI-MS spectrum of BASN⁺-CO-γAbu-OEt

Figure 8S. ¹H NMR spectrum (@500 MHz, CD₃CN, 300 K, δ) of BASN⁺-CO- γ Abu-OEt·BPh₄

Figure 9S. ¹³C{H} NMR spectrum (@125 MHz, CD₃CN, 300 K, δ) of BASN⁺-CO- γ Abu-OEt·BPh₄

Figure 10S. COSY spectrum of BASN⁺-CO-γAbu-OEt·BPh₄

Figure 11S. HMBC spectrum of BASN⁺-CO-γAbu-OEt·BPh₄

Figure 12S. HMQC spectrum of BASN⁺-CO-γAbu-OEt·BPh₄

c. Synthesis of 1-Boc-ethylenediamine^[3]

In a 500 mL round bottom flask, 70 mL (1.05 mol) of 1,2-ethylenediamine and 100 mL of 1,4-dioxane were placed. A solution of 20.87 g (0.09 mol) of di-*tert*-butyl dicarbonate in 100 mL of 1,4-dioxane was added from a dropping funnel to the flask on a vigorous stirring in 2 h. The reaction mixture was left at room temperature for additional 22 h. 1,4-dioxane was removed on a rotary evaporator and 300 mL of water were added to obtain a colorless oil. Insoluble 1,4-di-Boc-ethylenediamine was filtered off. Aqueous solution was washed with DCM (4×250 mL). Organic fractions were dried with anhydrous magnesium sulfate and DCM was removed on a rotary evaporator; yield of colorless oil: 7.3 g (50%).

i. Analysis

1-Boc-ethylenediamine:

ESI-MS m/z 161.133 [M+H]⁺; calc. for C₇H₁₆N₂O₂ [M+H]⁺: 161.128

and *m*/*z* 105.070 [M+H]⁺; calc. for C₇H₁₆N₂O₂–C₄H₉ [M+H]⁺: 105.065

¹H NMR (@500 MHz, CD₃CN, 300 K) δ : 1.40 (s, 9H); 1.49 (s, 2H); 2.63 (t, *J* = 6.2 Hz, 2H); 3.01 (q, *J* = 6.1 Hz, 2H); 5.38 (bs, 1H).

¹³C{H} NMR (@125 MHz, CD₃CN, 300 K) δ: 27.6; 41.7; 43.5; 78.0; 156.1

1. ESI-MS

Figure 13S. ESI-MS spectrum of 1-Boc-ethylenediamine

Figure 14S. ¹H NMR spectrum (@500 MHz, CD₃CN, 300 K, δ) of 1-Boc-ethylenediamine

Figure 15S. ¹³C{H} NMR spectrum (@125 MHz, CD₃CN, 300 K, δ) of 1-Boc-ethylenediamine

d. Synthesis of BASN+-CO-ethylenediamine-N-Boc·BPh₄

In a 100 mL round bottom flask chilled in the ice-water bath, a solution of Z-Pro-OH (2.5 g, 10 mmol) and *N*-methylmorpholine (NMM) (1.10 mL, 10 mmol) in tetrahydrofuran (THF) (25 mL) was prepared. Then, isobuthyl chloroformate (1.34 mL, 10.5 mmol) was added on a vigorous stirring. Next, a solution of 1-Boc-ethylenediamine (1.6 g, 10 mmol) and triethylamine (TEA) (1.40 mL, 10 mmol) in DMF (10 mL) were added. After 5 minutes the TEA·HCl salt was filtered off and the filtrate was concentrated. Obtained colorless oil was washed with H₂O, diluted NaHCO₃, and H₂O and the product was dried. Z-Pro-ethylenediamine-*N*-Boc was purified by flash chromatography using a Büchi Sepacore[®] flash system X50 (column – Sepacore[®] Silica 12 g; eluent – chloroform/methanol 95:5, v/v); yield: 3.63 g (93%).^[2] Z protecting group was removed by hydrogenolysis using 360 mg of Pd/C

(10%) in 50 mL of methanol for 4 h. Methanol was removed on a rotary evaporator and the obtained colorless oil was dried under *vacuum*; yield: 2.21 g (quantitative).

The benzo-5-azoniaspiro[4.4]nonyl-carbonyl group was obtained by mixing 0.77 g (3 mmol) of H-Pro-ethylenediamine-*N*-Boc, 0.79 g (3 mmol) α , α '-dibromo-*o*-xylene, and 1.24 g (9 mmol) K₂CO₃ in 25 mL of acetonitrile (24 h). After filtering off potassium carbonate, the filtrate was concentrated. A colorless oil was resuspended in a fresh portion of acetonitrile and chilled in the ice-water bath. An anion-exchange reaction was performed using 1.02 g (3 mmol) of sodium tetraphenylborate (NaBPh₄). Sodium bromide was filtered off on a filter funnel with a Celite[®] S pad and the product was dried under *vacuum*. Dissolving BASN⁺-CO-ethylenediamine-*N*-Boc·BPh₄ in methanol afforded a white powder; yield: 0.3 g (15%).

i. Analysis

Z-Pro-ethylenediamine-N-Boc:

¹H NMR (@500 MHz, CDCl₃, 300 K) δ: 1.43 (s, 9H); 1.89–2.26 (m, 4H); 3.12–3.33 (m, 4H); 3.45–3.55 (m, 2H); 4.28–4.29 (m, 1H); 5.05–5.12 (m, 2H); 7.30–7.35 (m, 5H).

¹³C{H} NMR (@125 MHz, CDCl₃, 300 K) δ: 24.7; 28.5; 29.0; 40.5; 47.2; 61.0; 67.5; 79.5; 128.1; 128.3; 128.7; 136.6; 156.2; 156.7; 172.5

Figure 16S. ¹H NMR spectrum (@500 MHz, CDCl₃, 300 K, δ) of Z-Pro-ethylenediamine-*N*-Boc

Figure 17S. ¹³C{H} NMR spectrum (@125 MHz, CDCl₃, 300 K, δ) of Z-Pro-ethylenediamine-*N*-Boc

Figure 18S. COSY spectrum of Z-Pro-ethylenediamine-N-Boc

H-Pro-ethylenediamine-N-Boc:

ESI-MS: *m/z* 258.180 [M+H]⁺; calc. for C₁₂H₂₃N₃O₃ [M+H]⁺: 258.181

3. ESI-MS

BASN⁺-CO-ethylenediamine-N-Boc·BPh₄

ESI-MS: *m/z* 360.227 [M]⁺; calc. for C₂₀H₃₀N₃O₃ [M]⁺: 360.228

¹H NMR (@500 MHz, CD₃CN, 300 K) δ : 1.40 (s, 9H); 2.24–2.38 (m, 3H); 2.48–2.56 (m, 1H); 3.09–3.11 (m, 2H); 3.16–3.22 (m, 2H); 3.57–3.62 (m, 1H); 3.89–3.95 (m, 1H); 4.32 (dd, J = 6.0 Hz, 1H); 4.82 (dd, J = 14.5 Hz, 2H); 4.90 (dd, J = 14.4 Hz, 2H); 6.83–6.86 (m, 4H); 6.98–7.01 (m, 8H); 7.26–7.30 (m, 8H); 7.36–7.39 (m, 2H); 7.43–7.44 (m, 2H)

¹³C{H} NMR (@125 MHz, CD₃CN, 300 K) δ: 21.1; 27.3; 28.6; 40.2; 41.0; 65.1; 66.0; 69.6; 74.1; 79.6; 122.8; 124.3; 124.3; 126.6; 126.6; 126.6; 126.6; 127.9; 128.4; 128.6; 129.9; 130.1; 130.2; 130.5; 133.6; 134.3; 134.9; 136.7; 136.7; 136.8; 157.3; 164.2; 164.6; 165.0; 165.4; 167.0

4. ESI-MS

Figure 20S. ESI-MS spectrum of BASN⁺-CO-ethylenediamine-*N*-Boc

5. ¹H NMR

Figure 21S. ¹H NMR spectrum (@500 MHz, CD₃CN, 300 K, δ) of BASN⁺-CO-ethylenediamine-*N*-Boc·BPh₄

Figure 22S. ¹³C{H} NMR spectrum (@125 MHz, CD₃CN, 300 K, δ) of BASN⁺-CO-ethylenediamine-*N*-Boc·BPh₄

Figure 23S. COSY spectrum of BASN⁺-CO-ethylenediamine-*N*-Boc·BPh₄

Figure 24S. HMQC spectrum of BASN⁺-CO-ethylenediamine-*N*-Boc·BPh₄

	Sequence	m/z	Charge	<i>m/z</i> calculated	Retention time [min]
1.	ASN ⁺ –CO–DVYT–NH ₂	647.339	[M] ⁺	647.339	12.2
2.	BASN ⁺ -CO-DVYT-NH ₂	695.339		695.339	14.6
3.	ASN ⁺ -CO-SVWE-NH ₂	670.356		670.355	16.4
4.	BASN ⁺ -CO-SWVE-NH ₂	718.354		718.355	18.6
5.	ASN+-CO-MQIFVKT-OH	1017.580	[M] ⁺	1017.580	16.6
		509.294	[M+H] ²⁺	509.293	
6.	BASN ⁺ -CO-MQIFVKT-OH	1065.579	[M] ⁺	1065.580	18.5
		533.294	[M+H] ²⁺	533.293	

Table 1S. QAS-derivatized model peptides examined in this study

2. ESI–MS spectra recorded during HDX in the 5–azoniaspiro[4.4]nonyl– carbonyl group

a. BASN⁺–CO–DVYT–NH₂ \rightarrow BASN⁺{**D**}–CO–DVYT–NH₂

Figure 25S. ESI-MS spectra of the progress of the HDX exchange reaction in BASN⁺–CO–DVYT–NH₂

Figure 26S. ESI-MS spectra of the progress of the HDX exchange reaction in ASN⁺–CO–SWVE–NH₂

c. BASN⁺-CO-SVWE-NH₂ \rightarrow BASN⁺{**D**}-CO-SVWE-NH₂

Figure 27S. ESI-MS spectra of the progress of the HDX exchange reaction in BASN⁺–CO–SWVE–NH₂

Figure 28S. ESI-MS spectra of the progress of the HDX exchange reaction in ASN⁺–CO–MQIFVKT–OH. Before each MS measurement, a sample was lyophilized. Each ESI-MS spectrum was recorded using a mixture of water/acetonitrile (1:1) with 0.1% of formic acid

Figure 29S. ESI-MS spectra of the progress of the HDX exchange reaction in BASN⁺-CO- γ Abu-OEt. Before each MS measurement, a sample was lyophilized. Each ESI-MS spectrum was recorded using a mixture of water/acetonitrile (1:1) with 0.1% of formic acid

Figure 30S. ESI-MS spectra of the progress of the HDX exchange reaction in BASN⁺-COethylenediamine-*N*-Boc. Before each MS measurement, a sample was lyophilized. Each ESI-MS spectrum was recorded using a mixture of water/acetonitrile (1:1) with 0.1% of formic acid

3. ESI-MS/MS spectra

Scheme 1S. Proposed nomenclature for a* and b*-type ions of the ASN⁺ (5-azoniaspiro[4.4]nonyl-carbonyl) and BASN⁺ (benzo-5-azoniaspiro[4.4]nonyl-carbonyl) groups.

Figure 31S. ESI-MS/MS spectra of $BASN^+$ –CO–DVYT– NH_2 before (collision energy: 30 V) and after (collision energy: 30 V) HDX

Figure 32S. ESI-MS/MS spectrum of a mixture of BASN⁺–CO–DVYT–NH₂ and BASN⁺{**D**}–CO–DVYT–NH₂ (1:1). Collision energy: 30 V

Figure 33S. ESI-MS/MS spectra of ASN⁺–CO–SWVE–NH₂ before (collision energy: 30 V) and after (collision energy: 30 V) HDX

c. BASN⁺-CO-SWVE-NH₂

Figure 34S. ESI-MS/MS spectra of BASN⁺-CO-SWVE-NH₂ before (collision energy: 30 V) and after (collision energy: 30 V) HDX

Figure 35S. ESI-MS/MS spectra of ASN⁺–CO–MQIFVKT–NH₂ before (collision energy: 10 V) and after (collision energy: 12 V) HDX

e. BASN+-CO-MQIFVKT-OH

Figure 36S. ESI-MS/MS spectra of BASN⁺−CO−MQIFVKT−NH₂ before (collision energy: 12 V) and after (collision energy: 22 V) HDX

4. NMR spectra recorded before and after HDX in the 5– azoniaspiro[4.4]nonyl–carbonyl group

a. ASN⁺–CO–DVYT–NH₂

Figure 375. ¹H-NMR (@500 MHz, CD₃CN, 300K) spectrum of ASN⁺–CO–DVYT–NH₂ before and after HDX. Red inset depicts disappearance of the signal of α -H (4.34 ppm) due to HDX in the 5-azoniaspiro[4.4]nonyl-carbonyl residue

Figure 38S. ¹H-NMR (@500 MHz, CD₃CN, 300K) spectrum of BASN⁺–CO–DVYT–NH₂ before and after HDX. Red inset depicts disappearance of the signal of α -H (based on the integration of the signal at 4.49 ppm) due to HDX in the benzo-5-azoniaspiro[4.4]nonyl-carbonyl residue

Figure 39S. ¹H-NMR (@500 MHz, CD₃CN, 300K) spectrum of ASN⁺–CO–SWVE–NH₂ before and after HDX. Red inset depicts disappearance of the signal of α -H (3.96 ppm) due to HDX in the 5-azoniaspiro[4.4]nonyl-carbonyl residue

Figure 40S. ¹H-NMR (@500 MHz, CD₃CN, 300K) spectrum of BASN⁺–CO–SWVE–NH₂ before and after HDX. Red inset depicts disappearance of the signal of α -H (based on the integration of the signal at 4.10 ppm) due to HDX in the benzo-5-azoniaspiro[4.4]nonyl-carbonyl residue

Figure 41S. ¹H-NMR (@500 MHz, CD₃CN, 300K) spectrum of BASN⁺–CO– γ Abu–OEt·BPh₄ before and after HDX. Red inset depicts disappearance of the signal of α -H (4.22 ppm) due to HDX in the benzo-5-azoniaspiro[4.4]nonyl-carbonyl residue

f. BASN+-CO-ethylenediamine-N-Boc·BPh₄

Figure 42S. ¹H-NMR (@500 MHz, CD₃CN, 300K) spectrum of BASN⁺-CO-ethylenediamine-*N*-Boc·BPh₄ before and after HDX. Red inset depicts disappearance of the signal of α -H (4.22 ppm) due to HDX in the benzo-5-azoniaspiro[4.4]nonyl-carbonyl residue

5. X-ray crystal structure

Figure 43S. X-ray crystal structure of BASN⁺–CO– γAbu–OEt⋅BPh₄ along the a axis

Figure 44S. X-ray crystal structure of the BASN⁺–CO– γ Abu–OEt·BPh₄ along the b axis

Figure 45S. X-ray crystal structure of the BASN⁺–CO– γAbu–OEt·BPh₄ along the c axis

Identification code:	CCDC 1578235
Morphology:	Colorless plates
Crystal size (mm ³):	$0.21 \times 0.18 \times 0.11$
Empirical formula:	$C_{47}H_{42}BF_5N_2O_3$
Formula weight:	788.65

	a (Å):	9.6421(8)		
Unit cell dimensions	b (Å):	18.6118(12)		
	c (Å):	20.0924(14)		
	Volume (ų):	3605.72		
Ζ:		4		
Density _c	alculated (g·cm ^{−3}):	1.199		
	Crystal system:	Rhombohedral		
Space group:		P2 ₁ 2 ₁ 2 ₁		
λ (Å):		0.71073		
Absorption coefficient		0.074		
μ (mm ⁻¹):				
Absorption correction:		Analytical		
T _{min} / T _{max} :		0.0294 / 0.0721		
Т (К):		100(2)		
ϑ range for dat	a collection (°):	2.89 to 25.00		
Index ranges:		$-11 \le h \le 7$; $-22 \le k \le 10$; $-14 \le l \le 23$		
Reflections collected:		5785		
Independent reflections:		4754 [R(int) =0.0465]		
	Parameters:	447		
Goodn	ess-of-fit on F ² :	1.016		

6. ESI-MS/MS quantification experiments

Figure 46S. ESI-MS/MS spectrum of 4:1 mixture of ASN⁺-CO-DVYT-NH₂ and ASN⁺{d₁}-CO-DVYT-NH₂ (parent ion m/z 647.346, collision energy 25 V).

Figure 47S. ESI-MS/MS spectrum of 2:1 mixture of $ASN^+-CO-DVYT-NH_2$ and $ASN^+\{d_1\}-CO-DVYT-NH_2$ (parent ion m/z 648.352, collision energy 25 V).

Figure 48S. ESI-MS/MS spectrum of 1:2 mixture of ASN⁺-CO-DVYT-NH₂ and ASN⁺{d₁}-CO-DVYT-NH₂ (parent ion m/z 648.352, collision energy 25 V).

Figure 49S. ESI-MS/MS spectrum of 1:4 mixture of $ASN^+-CO-DVYT-NH_2$ and $ASN^+\{d_1\}-CO-DVYT-NH_2$ (parent ion m/z 648.353, collision energy 25 V).

Figure 50S. The correlation between the theoretical and obtained ratios of non-deuterated and deuterated a_2^* (•) and b_2^* (•) ion fragments.

¹ Guttmann S, Boissonnas RA (1958) Synthèse de la L–histidyl–L–phénylalanyl–L–arginyl–L– tryptophanyl–glycyl–€–CBO–L–lysyl–L–prolyl–L–valylamide. *Helv Chem Acta* 41(6):1852– 1867

² Anderson GW, Zimmermann JE, Callahan FM, Reinvestigation of the mixed carbonic anhydride method of peptide synthesis. J Am Chem Soc 89(19):5012–5017

³ Reschela T, Koňáka C, Oupicky D, Seymour LW, Ulbrich K (2002) Physical properties and *in vitro* transfection efficiency of gene delivery vectors based on complexes of DNA with synthetic polycations. J Control Release 81(1-2):201–217