Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Neutral Glycoconjugated Amide-Based Calix[4]arenes: Complexation of Alkali Metal Cations in Water

Nikola Cindro,^a Josip Požar,^a Dajana Barišić,^a Nikola Bregović,^a Katarina Pičuljan,^a Renato Tomaš,^b Leo Frkanec,^c Vladislav Tomišić^{*a}

^a Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia

^b Department of Chemistry, Faculty of Chemistry and Technology, University of Split, Split, Croatia

° Laboratory for Supramolecular Chemistry, Ruđer Bošković Institute, Zagreb, Croatia.

ELECTRONIC SUPPLEMENTARY INFORMATION

Table of Contents

1.	NMR Spectra of New Compounds	2
2.	Spectrophotometric Titration Data	16
3.	Microcalorimetric Titration Data	30

1. NMR Spectra of New Compounds

S5

f1 (ppm)

S9

90 80 f1 (ppm)

Figure S1. Concentration dependence of ¹H NMR spectra of L1 in D₂O at 25 °C.

Figure S2. Concentration dependence of ¹H NMR spectra of NaL1⁺ in D₂O at 25 °C.

Figure S3. NOESY NMR spectrum of L1 in D₂O at 25 °C.

Figure S4. NOESY NMR spectrum of NaL1⁺ in D_2O at 25 °C.

Figure S5. Temperature dependence of ${}^{1}H$ NMR spectra of L1 in D₂O.

Figure S6. Temperature dependence of ${}^{1}H$ NMR spectra of NaL1⁺ in D₂O.

Figure S7. Temperature dependence ¹H NMR spectra of P3 in MeOD.

2. Spectrophotometric Titration Data

Figure S8. a) Spectrophotometric titration of L1 ($c = 2.53 \times 10^{-4} \text{ mol dm}^{-3}$) with LiClO₄ ($c = 5.18 \times 10^{-3} \text{ mol dm}^{-3}$) in methanol at (25.0 ± 0.1) °C; l = 1 cm, $V_0 = 2.0 \text{ ml}$. Spectra are corrected for dilution. b) Dependence of absorbance at 280 nm on $n(\text{LiClO}_4) / n(\text{L1})$ molar ratio. \blacksquare experimental, — calculated.

Figure S9. a) Spectrophotometric titration of L1 ($c = 2.56 \times 10^{-4} \text{ mol dm}^{-3}$) with KClO₄ ($c = 1.46 \times 10^{-3} \text{ mol dm}^{-3}$) in methanol at (25.0 ± 0.1) °C; l = 1 cm, $V_0 = 2.0 \text{ ml}$. Spectra are corrected for dilution. b) Dependence of absorbance at 280 nm on $n(\text{KClO}_4) / n(\text{L1})$ molar ratio. \blacksquare experimental, — calculated.

Figure S10. a) Spectrophotometric titration of L1 ($c = 2.52 \times 10^{-4} \text{ mol dm}^{-3}$) with RbCl ($c = 3.10 \times 10^{-2} \text{ mol dm}^{-3}$) in methanol at (25.0 ± 0.1) °C; l = 1 cm, $V_0 = 2.0 \text{ ml}$. Spectra are corrected for dilution. b) Dependence of absorbance at 280 nm on n(RbCl) / n(L1) molar ratio. \blacksquare experimental, — calculated.

Figure S11. a) Spectrophotometric titration of L1 ($c = 2.52 \times 10^{-4} \text{ mol dm}^{-3}$) with CsCl ($c = 7.78 \times 10^{-2} \text{ mol dm}^{-3}$) in methanol at (25.0 ± 0.1) °C; l = 1 cm, $V_0 = 2.0$ ml. Spectra are corrected for dilution. The n(CsCl) / n(L1) molar ratio at the end of titration is 216.

Figure S12. a) Spectrophotometric titration of L1 ($c = 2.80 \times 10^{-4} \text{ mol dm}^{-3}$) with LiClO₄ ($c = 3.00 \times 10^{-1} \text{ mol dm}^{-3}$) in water at (25.0 ± 0.1) °C; l = 1 cm, $V_0 = 2.0 \text{ ml}$. Spectra are corrected for dilution. b) Dependence of absorbance at 280 nm on $n(\text{LiClO}_4) / n(\text{L1})$ molar ratio. \blacksquare experimental, — calculated.

Figure S13. a) Spectrophotometric titration of L1 ($c = 2.80 \times 10^{-4} \text{ mol dm}^{-3}$) with KCl ($c = 1.00 \times 10^{-1} \text{ mol dm}^{-3}$) in water at (25.0 ± 0.1) °C; l = 1 cm, $V_0 = 2.0 \text{ ml}$. Spectra are corrected for dilution. b) Dependence of absorbance at 280 nm on n(KCl) / n(L1) molar ratio. \blacksquare experimental, — calculated.

Figure S14. a) Spectrophotometric titration of L1 ($c = 2.81 \times 10^{-4} \text{ mol dm}^{-3}$) with RbCl ($c = 5.00 \times 10^{-1} \text{ mol dm}^{-3}$) in water at (25.0 ± 0.1) °C; l = 1 cm, $V_0 = 2.0 \text{ ml}$. Spectra are corrected for dilution. The n(RbCl) / n(L1) molar ratio at the end of titration is 1332.

Figure S15. a) Spectrophotometric titration of L1 ($c = 2.81 \times 10^{-4} \text{ mol dm}^{-3}$) with CsCl ($c = 5.00 \times 10^{-1} \text{ mol dm}^{-3}$) in water at (25.0 ± 0.1) °C; l = 1 cm, $V_0 = 2.0 \text{ ml}$. Spectra are corrected for dilution. The n(CsCl) / n(L1) molar ratio at the end of titration is 1330.

Figure S16. a) Spectrophotometric titration of L2 ($c = 3.04 \times 10^{-4} \text{ mol dm}^{-3}$) with LiClO₄ ($c = 1.00 \text{ mol dm}^{-3}$) in methanol at (25.0 ± 0.1) °C; l = 1 cm, $V_0 = 2.0 \text{ ml}$. Spectra are corrected for dilution. The $n(\text{LiClO}_4) / n(\text{L2})$ molar ratio at the end of titration is 2467.

Figure S17. a) Spectrophotometric titration of L2 ($c = 3.04 \times 10^{-4} \text{ mol dm}^{-3}$) with NaClO₄ ($c = 9.94 \times 10^{-3} \text{ mol dm}^{-3}$) in methanol at (25.0 ± 0.1) °C; l = 1 cm, $V_0 = 2.0 \text{ ml}$. Spectra are corrected for dilution. b) Dependence of absorbance at 280 nm on $n(\text{NaClO}_4) / n(\text{L2})$ molar ratio. \blacksquare experimental, — calculated.

Figure S18. a) Spectrophotometric titration of L2 ($c = 3.04 \times 10^{-4} \text{ mol dm}^{-3}$) with KSCN ($c = 3.00 \times 10^{-1} \text{ mol dm}^{-3}$) in methanol at (25.0 ± 0.1) °C; l = 1 cm, $V_0 = 2.0 \text{ ml}$. Spectra are corrected for dilution and the absorption of KSCN. b) Dependence of absorbance at 285 nm on n(KSCN) / n(L2) molar ratio. • experimental, – calculated.

Figure S19. a) Spectrophotometric titration of L2 ($c = 3.03 \times 10^{-4} \text{ mol dm}^{-3}$) with RbCl ($c = 3.05 \times 10^{-2} \text{ mol dm}^{-3}$) in methanol at (25.0 ± 0.1) °C; l = 1 cm, $V_0 = 2.0$ ml. Spectra are corrected for dilution. The n(RbCl) / n(L2) molar ratio at the end of titration is 75.

Figure S20. a) Spectrophotometric titration of L2 ($c = 3.03 \times 10^{-4} \text{ mol dm}^{-3}$) with CsCl ($c = 7.78 \times 10^{-2} \text{ mol dm}^{-3}$) in methanol at (25.0 ± 0.1) °C; l = 1 cm, $V_0 = 2.0 \text{ ml}$. Spectra are corrected for dilution. The n(CsCl) / n(L2) molar ratio at the end of titration is 160.

Figure S21. a) Spectrophotometric titration of L2 ($c = 3.96 \times 10^{-4} \text{ mol dm}^{-3}$) with LiClO₄ ($c = 1.00 \text{ mol dm}^{-3}$) in water at (25.0 ± 0.1) °C; l = 1 cm, $V_0 = 2.2 \text{ ml}$. Spectra are corrected for dilution. The $n(\text{LiClO}_4) / n(\text{L2})$ molar ratio at the end of titration is 1152.

Figure S22. a) Spectrophotometric titration of L2 ($c = 3.03 \times 10^{-4} \text{ mol dm}^{-3}$) with NaClO₄ ($c = 4.03 \text{ mol dm}^{-3}$) in water at (25.0 ± 0.1) °C; l = 1 cm, $V_0 = 2.0 \text{ ml}$. Spectra are corrected for dilution. b) Dependence of absorbance at 280 nm on $n(\text{NaClO}_4) / n(\text{L2})$ molar ratio. \blacksquare experimental, - calculated.

Figure S23. a) Spectrophotometric titration of L2 ($c = 3.96 \times 10^{-4} \text{ mol dm}^{-3}$) with KCl ($c = 1.00 \text{ mol dm}^{-3}$) in water at (25.0 ± 0.1) °C; l = 1 cm, $V_0 = 2.2 \text{ ml}$. Spectra are corrected for dilution. The *n*(KCl) / *n*(L2) molar ratio at the end of titration is 1148.

Figure S24. a) Spectrophotometric titration of L2 ($c = 2.99 \times 10^{-4} \text{ mol dm}^{-3}$) with RbCl ($c = 1.67 \times 10^{-1} \text{ mol dm}^{-3}$) in water at (25.0 ± 0.1) °C; l = 1 cm, $V_0 = 2.0 \text{ ml}$. Spectra are corrected for dilution. The n(RbCl) / n(L2) molar ratio upon addition of titrant is 418.

Figure S25. a) Spectrophotometric titration of L2 ($c = 2.99 \times 10^{-4} \text{ mol dm}^{-3}$) with CsCl ($c = 1.67 \times 10^{-1} \text{ mol dm}^{-3}$) in water at (25.0 ± 0.1) °C; l = 1 cm, $V_0 = 2.0 \text{ ml}$. Spectra are corrected for dilution. The n(CsCl) / n(L2) molar ratio upon addition of titrant is 418.

L3

Figure S26. a) Spectrophotometric titration of L3 ($c = 2.48 \times 10^{-4} \text{ mol dm}^{-3}$) with LiClO₄ ($c = 3.01 \times 10^{-3} \text{ mol dm}^{-3}$) in methanol at (25.0 ± 0.1) °C; l = 1 cm, $V_0 = 2.2 \text{ ml}$. Spectra are corrected for dilution. b) Dependence of absorbance at 280 nm on $n(\text{LiClO}_4) / n(\text{L3})$ molar ratio. \blacksquare experimental, - calculated.

Figure S27. a) Spectrophotometric titration of KL3⁺ ($c = 2.40 \times 10^{-4} \text{ mol dm}^{-3}$) with NaSCN ($c = 1.02 \times 10^{-3} \text{ mol dm}^{-3}$) in methanol at (25.0 ± 0.1) °C; l = 1 cm, $V_0 = 2.0 \text{ ml}$. Spectra are corrected for dilution. b) Dependence of absorbance at 270 nm on $n(\text{NaSCN}) / n(\text{KL3}^+)$ molar ratio. \blacksquare experimental, — calculated.

Figure S28. a) Spectrophotometric titration of L3 ($c = 2.48 \times 10^{-4} \text{ mol dm}^{-3}$) with KClO₄ ($c = 2.96 \times 10^{-3} \text{ mol dm}^{-3}$) in methanol at (25.0 ± 0.1) °C; l = 1 cm, $V_0 = 2.2 \text{ ml}$. Spectra are corrected for dilution. b) Dependence of absorbance at 280 nm on $n(\text{KClO}_4) / n(\text{L3})$ molar ratio. \blacksquare experimental, — calculated.

Figure S29. a) Spectrophotometric titration of L3 ($c = 2.60 \times 10^{-4} \text{ mol dm}^{-3}$) with RbCl ($c = 3.05 \times 10^{-2} \text{ mol dm}^{-3}$) in methanol at (25.0 ± 0.1) °C; l = 1 cm, $V_0 = 2.0 \text{ ml}$. Spectra are corrected for dilution. b) Dependence of absorbance at 280 nm on n(RbCl) / n(L3) molar ratio. \blacksquare experimental, — calculated.

Figure S30. a) Spectrophotometric titration of L3 ($c = 2.48 \times 10^{-4} \text{ mol dm}^{-3}$) with CsCl ($c = 7.10 \times 10^{-2} \text{ mol dm}^{-3}$) in methanol at (25.0 ± 0.1) °C; l = 1 cm, $V_0 = 2.4 \text{ ml}$. Spectrum is corrected for dilution. The n(CsCl) / n(L3) molar ratio upon addition of titrant is 119.

Figure S31. a) Spectrophotometric titration of L3 ($c = 2.66 \times 10^{-4} \text{ mol dm}^{-3}$) with LiClO₄ ($c = 1.60 \text{ mol dm}^{-3}$) in water at (25.0 ± 0.1) °C; l = 1 cm, $V_0 = 2.2 \text{ ml}$. Spectra are corrected for dilution. b) Dependence of absorbance at 280 nm on $n(\text{LiClO}_4) / n(\text{L3})$ molar ratio. \blacksquare experimental, - calculated.

Figure S32. a) Spectrophotometric titration of L3 ($c = 2.80 \times 10^{-4} \text{ mol dm}^{-3}$) with NaClO₄ ($c = 3.00 \times 10^{-2} \text{ mol dm}^{-3}$) in water at (25.0 ± 0.1) °C; l = 1 cm, $V_0 = 2.2 \text{ ml}$. Spectra are corrected for dilution. b) Dependence of absorbance at 280 nm on $n(\text{NaClO}_4) / n(\text{L3})$ molar ratio. \blacksquare experimental, — calculated.

Figure S33. a) Spectrophotometric titration of L3 ($c = 2.71 \times 10^{-4} \text{ mol dm}^{-3}$) with KCl ($c = 3.00 \text{ mol dm}^{-3}$) in water at (25.0 ± 0.1) °C; l = 1 cm, $V_0 = 2.0 \text{ ml}$. Spectra are corrected for dilution. b) Dependence of absorbance at 280 nm on n(KCl) / n(L3) molar ratio. \blacksquare experimental, - calculated.

Figure S34. a) Spectrophotometric titration of L3 ($c = 2.80 \times 10^{-4} \text{ mol dm}^{-3}$) with RbCl ($c = 3.00 \text{ mol dm}^{-3}$) in water at (25.0 ± 0.1) °C; l = 1 cm, $V_0 = 2.2 \text{ ml}$. Spectrum is corrected for dilution. The *n*(RbCl) / *n*(L3) molar ratio upon addition of titrant is 5357.

Figure S35. a) Spectrophotometric titration of L3 ($c = 2.80 \times 10^{-4} \text{ mol dm}^{-3}$) with CsCl ($c = 2.64 \times 10^{-1} \text{ mol dm}^{-1}$) in water at (25.0 ± 0.1) °C; l = 1 cm, $V_0 = 2.5$ ml. Spectrum is corrected for dilution. The n(CsCl) / n(L3) molar ratio upon addition of titrant is 943.

3. Microcalorimetric Titration Data

Figure S36. Microcalorimetric titration of L1 ($c = 2.51 \times 10^{-4} \text{ mol dm}^{-3}$) with NaClO₄ ($c = 3.00 \times 10^{-3} \text{ mol dm}^{-3}$) in methanol at 25. 0 °C; V = 1.4182 ml. b) Dependence of successive enthalpy changes on $n(\text{NaClO}_4) / n(\text{L1})$ molar ratio. The values have been corrected for titrant dilution enthalpy.

Figure S37. Microcalorimetric titration of L3 ($c = 2.85 \times 10^{-4} \text{ mol dm}^{-3}$) with NaClO₄ ($c = 2.06 \times 10^{-2} \text{ mol dm}^{-3}$) in water at 25. 0 °C; V = 1.4182 ml. b) Dependence of successive enthalpy changes on $n(\text{NaClO}_4) / n(\text{L3})$ molar ratio. The values have been corrected for titrant dilution enthalpy. \blacksquare -experimental, – calculated.

Figure S38. Microcalorimetric titration of L3 ($c = 1.21 \times 10^{-4} \text{ mol dm}^{-3}$) with NaClO₄ ($c = 1.12 \times 10^{-3} \text{ mol dm}^{-3}$) in methanol at 25. 0 °C; V = 1.4182 ml. b) Dependence of successive enthalpy changes on $n(\text{NaClO}_4) / n(\text{L3})$ molar ratio. The values have been corrected for titrant dilution enthalpy. **•**-experimental, – calculated.

Figure S39. Microcalorimetric titration of **P3** ($c = 1.83 \times 10^{-4} \text{ mol dm}^{-3}$) with NaClO₄ ($c = 1.87 \times 10^{-3} \text{ mol dm}^{-3}$) in methanol at 25. 0 °C; V = 1.4182 ml. b) Dependence of successive enthalpy changes on $n(\text{NaClO}_4) / n(\text{P3})$ molar ratio. The values have been corrected for titrant dilution enthalpy. experimental, – calculated.

Salt used	log K	$\Delta_{\rm r} G^{\circ} / {\rm kJ} \; {\rm mol}^{-1}$	$\Delta_{\rm r} H^{\rm o}/~{\rm kJ}~{\rm mol}^{-1}$	$\Delta_{\rm r}S^{\rm o}/~{\rm J}~{\rm K}^{-1}~{\rm mol}^{-1}$
NaClO ₄	4.95(2)	-28.23(9)	-58.6(8)	-102(3)
NaCl	4.891(2)	-27.92(1)	-59.62(2)	-106(1)
NaBr	4.916(5)	-28.06(3)	-57.2(2)	-97.5(4)
NaI	4.872(9)	-27.81(5)	-56.2(2)	-95.3(9)
NaSCN	4.897(4)	-27.95(2)	-55.8(2)	-93.3(8)

Table S1. Thermodynamic parameters for complexation of sodium cation with L1 in water at 25 °C obtained microcalorimetrically by using different sodium salts.^a

^a uncertainties of the last digit are given in parentheses as standard errors of the mean (N=3)