Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Concise Total Synthesis of (+)-Asperazine A and (+)-Pestalazine B. Brandon M. Nelson, Richard P. Loach , Stefan Schiesser, and Mohammad Movassaghi^{*} Page S1/S52

Concise Total Synthesis of (+)-Asperazine A and (+)-Pestalazine B

Brandon M. Nelson,[§] Richard P. Loach,[§] Stefan Schiesser, and Mohammad Movassaghi^{*}

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA movassag@mit.edu

[§]B.M.N and R.P.L contributed equally to this manuscript.

Supporting Information

General procedures	<u>S2</u>
Materials	S2
Instrumentation	S2
Positional Numbering System	<u>S3</u>
D-Phenylalanine tetracyclic bromide (–)-12	S4
6-Chloro-D-phenylalanine tetracyclic bromide (–)-13	<u>S6</u>
6-Chloro-D-phenylalanine tetracyclic alcohol (–)-S1	<u>S8</u>
D-Phenylalanine tetracyclic <i>tert</i> -butyldimethylsilyl ether (–)-14	S9
D-Phenylalanine tetracyclic indoline (–)-15	S11
Bis-D-Phenylalanine dimer (–)-22	S12
D-Phenylalanine-D-leucine dimer (–)-23	S14
Bis-D-Phenylalanine-indole dimer (–)-25	S16
D-Phenylalanine-D-leucine indole dimer (–)-26	S18
(+)-Asperazine A (1)	S20
Table S1. Comparison of our ¹ H NMR data for (+)-Asperazine A (1) with literature	S22
Table S2. Comparison of our ¹³ C NMR data for (+)-Asperazine A (1) with literature	S23
(+)-Pestalazine B (2)	S24
Table S3. Comparison of our ¹ H NMR data for (+)-Pestalazine B (2) with literature	S26
Table S4. Comparison of our ¹³ C NMR data for (+)-Pestalazine B (2) with literature	S27
Calculated Structures of Tetracyclic Indolines 18-19	S28
Copy of ¹ H and ¹³ C NMR Spectra	S29

General Procedures. Unless otherwise stated, all reactions were performed under an argon atmosphere, either in oven-dried or flame-dried round bottom flasks, or modified Schlenk (Kjeldahl shape) flasks. The flasks were fitted with rubber septa and reactions were conducted under a positive pressure of argon. Stainless steel syringes or cannulae were used to transfer air- and moisture-sensitive liquids. Where necessary (so noted), solutions were deoxygenated by argon purging for a minimum of 10 min. Flash column chromatography was performed as described by Still et al. using silica gel (60 Å pore size, 40–63 µm, 4–6% H₂O content).¹ Analytical thin–layer chromatography was performed using glass plates pre-coated with 0.25 mm 230–400 mesh silica gel impregnated with a fluorescent indicator (254 nm). Thin layer chromatography plates were visualized by exposure to ultraviolet light and/or an aqueous solution of ceric ammonium molybdate (CAM) followed by heating (<1 min) on a hot plate (~250 °C). Organic solutions were concentrated on rotary evaporators at ~2 torr (house vacuum) at 25–35 °C, then at ~0.5 torr (vacuum pump) unless otherwise indicated.

Materials. Commercial reagents and solvents were used as received with the following exceptions: dichloromethane, acetonitrile, tetrahydrofuran, methanol, *N*,*N*-dimethylformamide and triethylamine were purchased from J. T. Baker (Cycletainer TM) and were purified by the method of Grubbs et al. under positive argon pressure.² Nitroethane was distilled over calcium hydride and stored neat; prior to use, it was dried over 4 Å molecular sieves for 2 hours. All amino acid derivatives, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride, *N*-hydroxybenzotriazole, and *tert*-butyl-dimethylsilyl trifluoromethanesulfonate were purchased from Chem-Impex International; 2,6-di-*tert*-butyl-4-methylpyridine was purchased from Matrix Scientific. All other solvents and chemicals were purchased from either Sigma–Aldrich, Strem Chemicals, or Alfa Aesar–Johnson Matthey.

Instrumentation. Nuclear magnetic resonance (¹H and ¹³C NMR) spectra were recorded with Varian inverse probe INOVA-500, Varian INOVA-500, and Bruker AVANCE III 400 spectrometers, and are reported in parts per million on the δ scale. ¹H NMR are referenced from the residual protium in the NMR solvent³ (Acetone- d_{δ} : δ 2.05 (Acetone- d_{5}), DMSO- d_{6} : δ 2.50 (DMSO- d_{5}). Data are reported as follows: chemical shift [multiplicity (s = singlet, d = doublet, t = triplet, q = quadruplet, m = multiplet), coupling constant(s) in Hertz (Hz), integration, assignment]. ¹³C NMR are referenced from the carbon resonances of the solvent (Acetone- d_{6} : δ 29.92, DMSO- d_{6} : δ 39.52). Data are reported as follows: chemical shift (assignment). Infrared data (IR) were obtained with a Perkin-Elmer 2000 FTIR, and are reported as follows: frequency of absorption (cm⁻¹), intensity of absorption (s = strong, m = medium, w = weak, br = broad). Optical rotations were measured on a Jasco-1010 polarimeter. We are grateful to Dr. Li Li for obtaining the mass spectrometric data at the Department of Chemistry's Instrumentation Facility, Massachusetts Institute of Technology. High resolution mass spectra (HRMS) were recorded on a Bruker Daltonics APEXIV 4.7 Tesla FTICR-MS using an electrospray (ESI) ionization source.

¹ Still, W. C.; Kahn M.; Mitra, A. J. Org. Chem. **1978**, 43, 2923.

² Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518.

³ Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. J. Org. Chem. 1997, 62, 7512.

Positional Numbering System. At least three numbering systems for dimeric diketopiperazine alkaloids exist in the literature.⁴ In assigning the ¹H NMR and ¹³C NMR data of all intermediates en route to our total syntheses of (+)-asperazine A (1) and (+)-pestalazine B (2), we wished to employ a uniform numbering scheme. For ease of direct comparison, particularly between early intermediates, and advanced compounds, the numbering system used by Barrow for (+)-WIN-64821 (using positional numbers 1-21)^{4b} is optimal and used throughout this report. In all instances, the products are accompanied by the numbering system as shown below.

⁴ (a) Barrow, C. J.; Cai, P.; Snyder, J. K.; Sedlock, D. M.; Sun, H. H.; Cooper, R. J. Org. Chem. **1993**, 58, 6016. (b) Li, X.-B.; Li, Y.-L.; Zhou, J.-C.; Yuan, H.-Q.; Wang, X.-N.; Lou, H.-X. J. Asian Nat. Prod. Res. **2015**, 17, 182. (c) Perez-Balado, C.; De Lera, A. R. Org. Biomol. Chem. **2010**, 8, 5179.

Concise Total Synthesis of (+)-Asperazine A and (+)-Pestalazine B. Brandon M. Nelson, Richard P. Loach , Stefan Schiesser, and Mohammad Movassaghi^{*}

D-Phenylalanine tetracyclic bromide (–)-12:

A flame-dried 100 mL round-bottomed flask equipped with a stir bar was charged with diketopiperazine (+)-**11** (1.13 g, 2.42 mmol, 1 equiv),⁵ was dried azeotropically by concentration from anhydrous toluene (3×10 mL), was capped with a rubber septum and secured with copper wire. After additional drying under vacuum (1–2 Torr) for 2 h, anhydrous acetonitrile (15 mL) and *N*,*O*-bis(trimethylsilyl)trifluoroacetamide (2.18 g, 8.46 mmol, 3.50 equiv) were added sequentially, and the reaction mixture was heated to 80 °C. After 19 h at 80 °C, volatiles were removed by concentration, taking care to avoid contact with air, and then drying under vacuum (1–2 Torr) for 2 days. The resulting orange oily semi-solid was too unstable to characterize, and it was used in the next step with no further purification.

The crude semi-solid was dissolved in anhydrous dichloromethane (15 mL), was cooled to -45 °C, and bromine (130 µL, 2.54 mmol, 1.05 equiv) was added dropwise. The resulting light orange solution was allowed to warm to -20 °C over 2 h, at which point a saturated aqueous solution of sodium thiosulfate (30 mL) was added and the biphasic mixture was allowed to warm to 23 °C. The organic layer was separated, and the aqueous layer was extracted with dichloromethane (3 × 50 mL). The organic layers were combined, were washed with a saturated aqueous solution of sodium chloride (150 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The resulting light orange foamy solid was purified by flash column chromatography on silica gel (eluent: $8 \rightarrow 15 \rightarrow 25\%$ acetone in dichloromethane) to afford exotetracyclic bromide (-)-12 as a light yellow solid (1.08 g, 81.7%).

¹H NMR (400 MHz, Acetone- d_6 , 20 °C):

δ 7.89 (d, J = 8.1 Hz, 1H, C₈H), 7.64 (app-d, J = 6.7 Hz, 2H, Ph_{Cbz}-o-CH), 7.51–7.45 (m, 2H, C₅H, C₇H), 7.41 (app-tt, J = 6.5, 1.1 Hz, 2H, Ph_{Cbz}-m-CH), 7.38–7.32 (m, 1H, Ph_{Cbz}-p-CH), 7.20 (td, J = 7.6, 1.0 Hz, 1H, C₆H), 6.95 (dd, J = 4.1, 3.3 Hz, 2H, C₁₉H, C₂₃H), 6.91–6.81 (m, 3H, C₂₀₋₂₂H), 6.50 (s, 1H, C₂H), 5.45 (d, J = 12.3 Hz, 1H, Ph_{Cbz}CH_a), 5.35 (d, J = 12.2 Hz, 1H, Ph_{Cbz}CH_b), 4.26 (app-q, J = 4.3 Hz, 1H, C₁₅H), 3.12 (dd, J = 13.5, 3.9 Hz, 1H, C₁₇H_a), 3.01 (dd, J = 12.5, 5.4, 1H, C₁₂H_a), 2.92 (dd, J = 13.5, 4.9 Hz, 1H, C₁₇H_b), 2.72 (dd, J = 11.8, 5.5 Hz, 1H, C₁₁H).

¹³C NMR (125 MHz, Acetone- d_6 , 20 °C):

δ 167.1 (C₁₃), 165.7 (C₁₆), 153.6 (C=O_{Cbz}), 142.8 (C₉), 137.3 (Ph_{Cbz}-*ipso*-C), 135.9 (C₁₈), 132.7 (C₄), 131.8 (C₇), 130.9 (C₁₉, C₂₃), 129.3 (Ph_{Cbz}-*m*-C),

⁵ For optimal synthesis of diketopiperazine (+)-11, see Supporting Information in: Loach, R. P.; Fenton, O. S.; Movassaghi, M. J. Am. Chem. 2016, 138, 1057.

	129.3 (Ph _{Cbz} - o -C), 129.0 (Ph _{Cbz} - p -C), 129.0 (C ₂₀ , C ₂₂), 127.5 (C ₂₁), 125.6 (C ₆), 124.9 (C ₅), 117.7 (C ₈), 84.4 (C ₂), 68.8 (Ph _{Cbz} CH ₂), 60.3 (C ₃), 59.0 (C ₁₅), 58.5 (C ₁₁), 44.4 (C ₁₂), 41.1 (C ₁₇).
FTIR (thin film) cm ⁻¹	3270 (br-m), 3061 (w), 3031 (w), 1720 (s), 1684 (s), 1422 (m), 1270 (m), 1154 (m).
HRMS (ESI) (m/z) :	calc'd for C ₂₈ H ₂₅ BrN ₃ O ₄ , [M+H] ⁺ : 546.1023, found: 546.1029.
$[\alpha]_D^{23}$:	$-102 (c = 0.19, CHCl_3).$
TLC (20% acetone in dichloromethane), Rf:	0.30 (UV, CAM).

6-Chloro-D-phenylalanine tetracyclic bromide (-)-13:

To a solution of tetracyclic bromide (–)-12 (994 mg, 1.82 mmol, 1 equiv) in anhydrous acetonitrile (10.0 mL) at 23 °C was added *N*-chlorosuccinimide (NCS, 729 mg, 5.46 mmol, 3.00 equiv) in one portion. Titanium tetrachloride (1 M in dichloromethane, 5.46 mL, 5.46 mmol, 3.00 equiv) was added slowly dropwise via syringe, and the bright orange reaction mixture was stirred at 23 °C. After 6 h, the reaction mixture was quenched by slow addition of a saturated aqueous solution of sodium bicarbonate (50 mL). The organic layer was separated and the aqueous layer was extracted with dichloromethane (2×50 mL). The combined organic layers were then washed with a saturated aqueous solution of sodium thiosulfate (100 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The resulting dark orange residue was purified by flash column chromatography on silica gel (eluent: 18% acetone in dichloromethane) to furnish 6-chloro-tetracyclic bromide (–)-13 as a pale yellow solid (990 mg, 93.6%).

 δ 7.88 (d, J = 8.7 Hz, 1H, C₈H), 7.66–7.62 (m, 2H,

¹H NMR (500 MHz, Acetone- d_6 , 20 °C):

	Ph _{Cbz} -o-C H), 7.57 (d, $J = 2.2$ Hz, 1H, C ₅ H), 7.52 (dd, $J = 8.6$, 2.2 Hz, 1H, C ₇ H), 7.45 (s, 1H, N ₁₄ H), 7.41 (dd, $J = 8.2$, 6.6 Hz, 2H, Ph _{Cbz} - <i>m</i> -C H), 7.39–7.33 (m, 1H, Ph _{Cbz} - <i>p</i> -C H), 7.00–6.93 (m, 2H, C ₁₉ H , C ₂₃ H), 6.92 (app-td, $J = 5.9$, 2.9 Hz, 3H, C ₂₀₋₂₃ H), 6.49 (s, 1H, C ₂ H), 5.44 (d, $J = 12.2$ Hz, 1H, Ph _{Cbz} C H _a), 5.35 (d, $J = 12.2$ Hz, 1H, Ph _{Cbz} C H _b), 4.26 (q, $J = 4.2$ Hz, 1H, C ₁₅ H), 3.10 (app-ddd, $J = 13.5$, 4.9 Hz, 1H, C ₁₇ H _b), 2.73 (t, $J = 12.2$ Hz, 1H, C ₁₂ H _b), 2.17 (dd, $J = 11.8$, 5.3 Hz, 1H, C ₁₁ H).
¹³ C NMR (100 MHz, Acetone- <i>d</i> ₆ , 20 °C):	δ 166.9 (C ₁₃), 165.7 (C ₁₆), 153.4 (C=O _{Cbz}), 141.6 (C ₉), 137.2 (Ph _{Cbz} - <i>ipso</i> -C), 136.0 (C ₁₈), 134.8 (C ₄), 131.8 (C ₇), 130.9 (C ₁₉ , C ₂₃), 130.0 (C ₆), 129.3 (Ph _{Cbz} - <i>m</i> -CH, Ph _{Cbz} - <i>o</i> -CH), 129.1 (C ₂₀ , C ₂₂ , Ph _{Cbz} - <i>p</i> -CH), 127.5 (C ₂₁), 125.0 (C ₅), 119.0 (C ₈), 84.6 (C ₂), 69.0 (Ph _{Cbz} CH ₂), 59.2 (C ₃), 59.0 (C ₁₅), 58.5 (C ₁₁), 43.9 (C ₁₂), 41.1(C ₁₇).
FTIR (thin film) cm ⁻¹	3232 (br-m), 3067 (w), 3030 (w), 1717 (s), 1682 (s), 1475 (s), 1419 (m), 1307 (m), 1253 (m), 1156 (m).
HRMS (ESI) (m/z) :	calc'd for $C_{28}H_{24}BrClN_3O_4$, $[M+H]^+$: 582.0625, found: 582.0639.

 $[\alpha]_{D}^{23}$:

$$-56 (c = 0.24, CHCl_3).$$

TLC (15% acetone in dichloromethane), Rf: 0.29 (UV, CAM).

6-Chloro-D-phenylalanine tetracyclic alcohol (-)-S1:

Nitromethane (16.0 mL) and deionized water (290 μ L, 16.1 mmol, 10.0 equiv) were sequentially added to a round-bottom flask charged with tetracyclic bromide (–)-**13** (935 mg, 1.61 mmol, 1 equiv) at 23 °C. The flask was opened to air and a solution of silver(I) hexafluoroantimonate (830 mg, 2.41 mmol, 1.50 equiv) in nitromethane (6.00 mL) was added by glass pipette over 1 min. The reaction flask was closed and the reaction mixture was stirred at 23 °C. After 1 h, a saturated aqueous solution of sodium chloride (50 mL) and dichloromethane (50 mL) were added sequentially, the organic layer was separated, and the aqueous layer was extracted with dichloromethane (3 × 50 mL). The organic layers were combined, were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure to give a brown residue. This residue was purified by flash column chromatography on silica gel (eluent: 25→50% acetone in dichloromethane) to furnish chloro-tetracyclic alcohol (–)-**S1** as a white powder (689 mg, 82.6%).

¹ H NMR (500 MHz, Acetone- <i>d</i> ₆ , 20 °C):	δ 7.87 (d, $J = 8.6$ Hz, 1H, C ₈ H), 7.64 (d, $J = 7.5$ Hz, 2H, Ph _{Cbz} -o-CH), 7.46–7.27 (m, 6H, Ph _{Cbz} -m-CH, Ph _{Cbz} -p-CH, C ₅ H, C ₇ H, N ₁₄ H), 6.95 (m, 5H, C _{19- 23} H), 6.14 (s, 1H, C ₂ H), 5.43 (s, 1H, C ₃ OH), 5.41 (d, J = 12.5 Hz, 1H, Ph _{Cbz} CH _a), 5.30 (d, $J = 12.3$ Hz, 1H, Ph _{Cbz} CH _b), 4.26 (q, $J = 4.2$ Hz, 1H, C ₁₅ H), 3.11 (dd, $J = 13.5$, 4.1 Hz, 1H, C ₁₇ H _a), 2.93 (dd, $J = 13.5$, 4.8 Hz, 1H, C ₁₇ H _b), 2.53 (dd, $J = 13.2$, 8.1 Hz, 1H, C ₁₂ H _a), 2.34–2.20 (m, 2H, C ₁₂ H _b , C ₁₁ H).
¹³ C NMR (125 MHz, Acetone- <i>d</i> ₆ , 20 °C):	δ 167.6 (C ₁₃), 165.6 (C ₁₆), 153.9 (C=O _{Cbz}), 143.0 (C ₉), 137.4 (Ph _{Cbz} - <i>ipso</i> -C), 136.0 (C ₁₈), 135.4 (C ₄), 131.1 (C ₁₉ , C ₂₃), 130.9 (C ₇), 129.5 (C ₂₀ , C ₂₂), 129.3 (Ph _{Cbz} - <i>o</i> -CH), 129.2 (C ₆), 129.0 (Ph _{Cbz} - <i>p</i> -CH, Ph _{Cbz} - <i>m</i> -CH), 127.5 (C ₂₁), 124.9 (C ₅), 118.3 (C ₈), 83.6 (C ₃), 81.8 (C ₂), 68.5 (Ph _{Cbz} CH ₂), 58.8 (C ₁₁), 58.2 (C ₁₅), 41.8 (C ₁₂), 41.3 (C ₁₇).
FTIR (thin film) cm ⁻¹	3253 (br-s), 3062 (w), 2923 (w), 1724 (s), 1669 (s), 1476 (s), 1441 (m), 1308 (s), 1256 (m), 1104 (m).
HRMS (ESI) (m/z) :	calc'd for C ₂₈ H ₂₅ ClN ₃ O ₅ , [M+H] ⁺ : 518.1477, found: 518.1472.
$[\alpha]_{D}^{23}$:	$-44 (c = 0.24, CHCl_3).$
TLC (25% acetone in dichloromethane), Rf:	0.17 (UV, CAM).

D-Phenylalanine tetracyclic *tert*-butyldimethylsilyl ether (–)-14:

A sample of 2,6-lutidine (930 μ L, 8.29 mmol, 7.97 equiv) was added via syringe to a a white slurry of tetracyclic alcohol (–)-**S1** (537 mg, 1.04 mmol, 1 equiv) in anhydrous dichloromethane (10.0 mL) at 23 °C. After 5 min, the slurry became a light yellow solution, whereupon *tert*-butyldimethylsilyl trifluoromethanesulfonate (953 μ L, 4.15 mmol, 3.99 equiv) was added via syringe slowly dropwise over 3 min. After 19 h, a saturated aqueous solution of sodium bicarbonate (30 mL) was added to the reaction mixture and the organic layer was separated. The aqueous layer was extracted with dichloromethane (3 × 50 mL), the organic layers were combined, and were washed with a saturated aqueous solution of sodium chloride (100 mL). The organic phase was dried over anhydrous sodium sulfate, was filtered, and was concentrated under reduced pressure to give a yellow oil. This oil was dried azeotropically by concentration from toluene (3 × 20 mL) and the resulting waxy yellow solid was purified by flash column chromatography on silica gel (eluent: 15% acetone in dichloromethane) to give a yellow oil. This oil was placed under vacuum (1–2 Torr) overnight, delivering tetracyclic silyl ether (–)-14 as a tan foamy solid (584 mg, 89.2%).

¹H NMR (500 MHz, Acetone-*d*₆, 20 °C):

δ 7.91 (d, J = 8.7 Hz, 1H, C ₈ H), 7.61 (d, J = 7.5 Hz,
2H, Ph_{Cbz} - <i>o</i> -CH), 7.51 (dd, $J = 8.6$, 2.2 Hz, 1H,
C_7 H), 7.45 (d, $J = 2.1$ Hz, 1H, C_5 H), 7.42 (br-s, 1H,
$N_{14}H$), 7.40 (app-t, $J = 7.4$ Hz, 2H, Ph_{Cbz} - <i>m</i> -CH),
7.34 (app- t, $J = 7.4$ Hz, 1H, Ph _{Cbz} - <i>p</i> -CH), 6.95 (m,
5H, C_{19-23} H), 6.12 (s, 1H, C_2 H), 5.47 (d, $J = 12.3$
Hz, 1H, $Ph_{Cbz}CH_a$), 5.31 (d, $J = 12.2$ Hz, 1H,
$Ph_{Cbz}CH_b$), 4.25 (q, $J = 4.2$ Hz, 1H, $C_{15}H$), 3.12 (dd,
J = 13.5, 4.0 Hz, 1H, C ₁₇ H), 2.93 (dd, $J = 13.2, 4.6$
Hz, 1H, C_{17} H), 2.61 (dd, $J = 12.1$, 5.2 Hz, 1H,
$C_{12}H_a$), 2.28 (t, $J = 12.1$ Hz,1H, $C_{12}H_a$), 2.18 (dd, J
= 12.3, 5.2 Hz, 1H, C_{11} H), 0.77 (s, 9H, SiC(CH ₃) ₃),
-0.26 (s, 3H, SiCH _{3a}), -0.27 (s, 3H, SiCH _{3b}).

¹³ C NMR (125 MHz, Acetone- d_6 , 20 °C):	δ 167.5 (C ₁₃), 165.9 (C ₁₆), 153.7 (C=O _{Cbz}), 143.1
	(C ₉), 137.4 (Ph _{Cbz} -ipso-C), 136.0 (C ₁₈), 134.4 (C ₄),
	131.4 (C ₇), 131.0 (C ₁₉ , C ₂₃), 129.4 (C ₂₀ , C ₂₂), 129.3
	(C ₆ , Ph _{Cbz} -o-CH), 129.1 (Ph _{Cbz} -m-CH), 129.0
	(Ph _{Cbz} - <i>p</i> -CH), 127.5 (C ₂₁), 125.5 (C ₅), 118.7 (C ₈),
	85.3 (C ₃), 81.4 (C ₂), 68.6 (Ph _{Cbz} CH ₂), 58.8 (C ₁₅),
	57.9 (C ₁₁), 42.4 (C ₁₂), 41.2 (C ₁₇), 25.8 (SiC(CH ₃) ₃),
	18.5 (SiC(CH ₃) ₃), -3.4 (SiC _a H ₃), -3.7 (SiC _b H ₃).
FTIR (thin film) cm ⁻¹	3227 (br-m), 3063 (w), 2857 (w), 1717 (m), 1682
	(s), 1473 (s), 1420 (m), 1252 (s), 1146 (m), 1095

(m).

HRMS (ESI) (m/z): [α]_D²³: $calc'd for C_{34}H_{39}ClN_3O_5Si, [M+H]^+: 632.2342, found: 632.2344.$ $-36 (c = 0.71, CHCl_3).$

TLC (15% acetone in dichloromethane), Rf:

0.40 (UV, CAM).

Concise Total Synthesis of (+)-Asperazine A and (+)-Pestalazine B. Brandon M. Nelson, Richard P. Loach , Stefan Schiesser, and Mohammad Movassaghi^{*}

D-Phenylalanine tetracyclic indoline (–)-15:

Tetracyclic ether (–)-14 (580 mg, 917 µmol, 1 equiv) was dissolved in anhydrous dichloromethane (4.50 mL) at 23 °C. In a separate flame-dried, pear-shaped flask, triethylamine (32.0 µL, 229 µmol, 25.0 mol%) and triethylsilane (220 µL, 1.38 mmol, 1.50 equiv) were added sequentially to palladium(II) acetate (14.4 mg, 64.2 µmol, 7.0 mol%) in anhydrous dichloromethane (1.00 mL). The orange solution instantly turned black, and this was cannulated rapidly into the main reaction mixture and stirred at 23 °C. After 4 h, the reaction mixture was concentrated under reduced pressure to give a black residue. The residue was purified by flash column chromatography on silica gel (eluent: $30 \rightarrow 50\%$ acetone in dichloromethane) to afford tetracyclic indoline (–)-15 as a white powder (356 mg, 78.0%).

¹ H NMR (500 MHz, DMSO- <i>d</i> ₆ , 20 °C):	δ 8.22 (s, 1H, N ₁₄ H), 7.18 (app-dd, $J = 9.1$, 1.8 Hz, 2H, C ₅ H, C ₇ H), 7.13–7.04 (m, 3H, N ₁ H, C ₁₉ H, C ₂₃ H), 6.97–6.89 (m, 3H, C ₂₀₋₂₂ H), 6.69 (d, $J = 9.0$ Hz, 1H, C ₈ H), 5.08 (s, 1H, C ₂ H), 4.12 (q, $J = 4.0$ Hz, 1H, C ₁₅ H), 3.07 (dd, $J = 13.4$, 3.6 Hz, 1H, C ₁₇ H _a), 2.80 (dd, $J = 13.4$, 5.1 Hz, 1H, C ₁₇ H _b), 2.48 (dd, $J = 12.3$, 5.4 Hz, 1H, C ₁₂ H _a), 2.02 (t, $J = 12.0$ Hz, 1H, C ₁₂ H _b), 1.95 (dd, $J = 12.3$, 5.0 Hz, 1H, C ₁₁ H), 0.77 (s, 9H, SiC(CH ₃) ₃), -0.15 (s, 3H, SiCH _{3a}), -0.28 (s, 3H, SiCH _{3b}).
¹³ C NMR (125 MHz, DMSO- <i>d</i> ₆ , 20 °C):	$ \begin{split} &\delta \ 167.1 \ (\mathbf{C_{13}}), \ 165.1 \ (\mathbf{C_{16}}), \ 150.0 \ (\mathbf{C_9}), \ 134.8 \ (\mathbf{C_{18}}), \\ &130.2 \ (\mathbf{C_{19}}, \ \mathbf{C_{23}}), \ 130.0 \ (\mathbf{C_5}), \ 129.2 \ (\mathbf{C_4}), \ 128.0 \ (\mathbf{C_{20}}, \\ &\mathbf{C_{22}}), \ 126.4 \ (\mathbf{C_{21}}), \ 124.4 \ (\mathbf{C_7}), \ 120.6 \ (\mathbf{C_6}), \ 110.5 \ (\mathbf{C_8}), \\ &86.1 \ (\mathbf{C_3}), \ 79.5 \ (\mathbf{C_2}), \ 56.7 \ (\mathbf{C_{15}}), \ 56.2 \ (\mathbf{C_{11}}), \ 42.1 \\ &(\mathbf{C_{12}}), \ \ 39.6 \ \ (\mathbf{C_{17}}), \ \ 25.4 \ \ (\mathrm{SiC}(\mathrm{CH_3})_3), \ \ 17.5 \\ &(\mathrm{SiC}(\mathrm{CH_3})_3), \ -3.7 \ (\mathrm{SiC_{a}H_3}), \ -4.0 \ (\mathrm{SiC_{b}H_3}). \end{split} $
FTIR (thin film) cm ⁻¹	3289 (br-m), 3236 (br-m), 2854 (w), 1682 (s), 1641 (m), 1452 (m), 1252 (w), 1176 (w), 1106 (m).
HRMS (ESI) (m/z) :	calc'd for C ₂₆ H ₃₃ ClN ₃ O ₃ Si, [M+H] ⁺ : 498.1974, found: 498.1972.
$[\alpha]_D^{23}$:	-249 (c = 0.11, MeOH).
TLC (30% acetone in dichloromethane), Rf:	0.65 (UV, CAM).

Bis-D-phenylalanine dimer (–)-22:

Two 50-mL flame-dried Schlenk (Kjeldahl shape) flasks were equipped with a magnetic stir bar. The first flask was charged with tetracyclic indoline (-)-15 (196 mg, 394 µmol, 1 equiv), 2,6-ditert-butyl-4-methylpyridine (162 mg, 788 µmol, 2.00 equiv), and tetracyclic bromide (+)-20 (298 mg, 512 µmol, 1.30 equiv).⁶ The second flask was also charged with tetracyclic indoline (-)-15 (136 mg, 272 µmol, 1 equiv), 2,6-di-tert-butyl-4-methylpyridine (112 mg, 272 µmol, 2.00 equiv), and tetracyclic bromide (+)-20 (206 mg, 354 µmol, 1.30 equiv). The mixture of solids in each flask was crushed with the end of a glass rod into a fine powder, anhydrous acetonitrile (10 mL, 10 mL, respectively) was added and the mixture was stirred and sonicated to give a milky solution. Benzene (10 mL, 10 mL, respectively) was introduced into each reaction flask and the contents were dried azeotropically by concentration under reduced pressure. This addition of acetonitrile (10 mL), sonication for 3 min, followed by addition of benzene (10 mL), and concentration under reduced pressure was repeated two more times for each reaction flask. The resulting finely-powdered offwhite contents were dried by concentration from freshly-distilled benzene (3×10 mL) under reduced pressure, and the respective mixtures in the two reaction flasks were placed under vacuum (1–2 Torr) for 14 hours. Each flask was then placed under an argon atmosphere, nitroethane (19.5 mL, 12.5 mL, respectively) was added to each flask, and the resulting reaction mixtures were warmed to 68 °C and stirred vigorously to completely dissolve the contents. In two pear-shaped 10 mL flasks, separate suspensions of silver(I) hexafluoroantimonate (271 mg, 788 µmol, 2.00 equiv) in nitroethane (3.10 mL) and silver(I) hexafluoroantimonate (187 mg, 544 µmol, 2.00 equiv) in nitroethane (2.00 mL) were prepared under argon atmosphere. These suspensions were warmed to 68 °C. The two suspensions were transferred rapidly (<10 seconds) and in one portion via cannulae to the respective reactions vessels containing the indoline (-)-15. The resulting light yellow reaction mixtures were stirred vigorously at 68 °C and resulted in dark brown mixtures. After 70 min, the dark purple-brown reaction mixtures were cooled to 23 °C independently. Each reaction mixture was diluted with a saturated aqueous solution of sodium chloride (20 mL, 20 mL, respectively) and dichloromethane (10 mL, 10 mL, respectively) were added sequentially to each mixture separately and the organic phases were separated. In each case the aqueous phase was extracted with dichloromethane $(3 \times 50 \text{ mL})$, and the combined organic layers for each batch were washed with a saturated solution of sodium chloride (150 mL), were dried over anhydrous sodium sulfate, were filtered over celite, and were concentrated under reduced pressure to give the corresponding two batches of crude product as light yellow solids. The two batches of solid crude material were combined and purified together by flash column chromatography on silica gel (eluent: $8 \rightarrow 12 \rightarrow 18 \rightarrow 25\%$ acetone in dichloromethane), including a

⁶ For optimal synthesis of endocyclic bromide (+)-20, see: Loach, R. P.; Fenton, O. S.; Movassaghi, M. J. Am. Chem. 2016, 138, 1057.

second chromatographic purification of a mixed fraction of product (–)-22 and indoline (–)-15 on silica gel (eluent: 25% acetone in dichloromethane), to yield dimer (–)-22 as a tan powder (331 mg, 49.9%).

¹ H NMR (500 MHz, Acetone- <i>d</i> ₆ , 20 °C):	δ 7.82 (d, $J = 8.7$ Hz, 2H, C ₈ H), 7.47–7.28 (m, 10H, C ₅ H, C ₇ H, Ph _{Cbz} H ₅ , C ₂₀₋₂₂ H), 7.24 (d, $J = 7.6$ Hz, 2H, C ₁₉ H, C ₂₃ H), 7.22 (d, $J = 2.2$ Hz, 1H, C ₅ 'H), 7.18 (d, $J = 8.3$ Hz, 1H, C ₇ 'H), 6.94 (d, $J = 7.4$ Hz, 2H, C ₁₉ 'H, C ₂₃ 'H), 6.88 (t, $J = 7.4$ Hz, 1H, C ₂₁ 'H), 6.79 (t, $J = 7.5$ Hz, 2H, C ₂₀ 'H, C ₂₂ 'H), 6.61 (s, 1H, C ₂ H), 6.13 (d, $J = 8.5$ Hz, 1H, C ₈ 'H), 5.30 (d, $J =$ 12.3 Hz, 1H, Ph _{Cbz} H _a), 5.27 (d, $J = 12.3$ Hz, 1H, Ph _{Cbz} H _b), 5.21 (s, 1H, C ₂ 'H), 4.26 (q, $J = 3.4$ Hz, 1H, C ₁₅ H), 4.10 (q, $J = 5.1$ Hz, 1H, C ₁₅ 'H), 3.82 (t, $J =$ 8.6 Hz, 1H, C ₁₁ H), 3.21 (dd, $J = 13.5$, 6.5 Hz, 1H, C ₁₇ 'H _a), 3.17 (t, $J = 8.3$ Hz, 1H, C ₁₂ H _a), 3.04 (t, $J =$ 4.0 Hz, 1H, C ₁₇ H _a), 3.01 (t, $J = 4.0$ Hz, 1H, C ₁₇ H _b), 2.99–2.95 (m, 1H, C ₁₂ H _b), 2.87 (dd, $J = 13.6$, 5.0 Hz, 1H, C ₁₇ 'H _b), 2.52 (dd, $J = 11.9$, 5.5 Hz, 1H, C ₁₂ 'H _a), 2.17 (t, $J = 12.0$ Hz, 1H, C ₁₂ 'H _b), 1.99 (dd, J = 12.3, 5.8 Hz, 1H, C ₁₁ 'H), 0.70 (s, 9H, SiC(CH ₃) ₃), 0.06 (s, 3H, SiCH _{3a}), -0.29 (s, 3H, SiCH _{3b}).
¹³ C NMR (125 MHz, Acetone- <i>d</i> ₆ , 20 °C):	δ 168.4 (C ₁₃), 168.0 (C ₁₃ '), 167.6 (C ₁₆), 167.2 (C ₁₆ '), 153.3 (C=O _{Cbz}), 147.2 (C9'), 141.7 (C9), 137.4 (Ph _{Cbz} - <i>ipso</i> -C), 137.1 (C ₁₈), 136.1 (C ₁₈ '), 135.4 (C4), 134.3 (C4'), 130.9 (C7, C19, C23), 130.4 (C19', C23'), 129.7 (C7'), 129.4 (C6'), 129.3 (C20, C22), 129.0 (Ph _{Cbz} - <i>o</i> -CH, Ph _{Cbz} - <i>m</i> -CH), 128.9 (C6, Ph _{Cbz} - <i>p</i> -CH), 128.0 (C21, C20', C22'), 127.4 (C21'), 125.4 (C5), 125.2 (C5'), 118.0 (C8), 115.3 (C8'), 85.8 (C2'), 84.3 (C3'), 80.2 (C2), 72.3 (C3), 68.5 (Ph _{Cbz} CH2), 59.8 (C15'), 59.0 (C15), 58.8 (C11'), 55.9 (C11), 40.9 (C17'), 40.3 (C17), 38.8 (C12'), 36.5 (C12), 26.1 (SiC(CH3)3), 18.5 (SiC(CH3)3), -2.7(SiC _a H3), -3.0(SiC _b H3).
FTIR (thin film) cm ⁻¹	3225 (br-w), 3062 (w), 2857 (w), 1675 (br-s), 1476 (m), 1437 (m), 1319 (m), 1265 (m), 1101 (m).
HRMS (ESI) (m/z) :	calc'd for $C_{54}H_{55}Cl_2N_6O_7Si$, $[M+H]^+$: 997.3273, found: 997.3258.
$[\alpha]_D^{23}$:	$-4 (c = 0.13, \text{CHCl}_3).$
TLC (18% acetone in dichloromethane), Rf:	0.22 (UV, CAM).

D-Phenylalanine D-leucine dimer (–)-23:

A 25 mL flame-dried Schlenk (Kjeldahl shape) flask equipped with a magnetic stir bar was charged with tetracyclic indoline (-)-15 (38.5 mg, 79.0 µmol, 1 equiv), 2,6-di-tert-butyl-4methylpyridine (32.5 mg, 158 µmol, 2.00 equiv) and tetracyclic bromide (+)-21 (56.2 mg, 103 µmol, 1.30 equiv).⁷ The mixture of solids was crushed with the end of a glass rod into a fine powder, anhydrous acetonitrile (5 mL) was added and the mixture was stirred and sonicated to give a milky solution. Benzene (5 mL) was added and the contents were dried azeotropically. This addition of acetonitrile (5 mL), sonication, addition of benzene (5 mL) and azeotropic drying was repeated twice more. The resulting finely-powdered off-white contents were dried azeotropically with freshlydistilled benzene $(3 \times 5 \text{ mL})$, and this mixture was placed under vacuum (1-2 Torr) overnight. The flask was then placed under an argon atmosphere, nitroethane (3.6 mL) was added, and the reaction mixture was heated to 65 °C and stirred vigorously to completely dissolve the contents. In a pearshaped 10 mL flask, a separate solution/suspension of silver(I) hexafluoroantimonate (54.3 mg, 158 µmol, 2.00 equiv) in nitroethane (1.30 mL) was prepared under an argon atmosphere, was heated to 65 °C, and then cannulated rapidly into the reaction mixture (also at 65 °C) in one portion using a short cannula (<10 sec). The light yellow reaction mixture was stirred vigorously at 65 °C, rapidly turning dark brown. After 70 min, the dark purple/brown reaction mixture was cooled to 23 °C, a saturated aqueous solution of sodium chloride (10 mL) and dichloromethane (10 mL) were added sequentially to the reaction mixture and the organic phase was separated. The aqueous phase was extracted with dichloromethane (3 \times 10 mL), and the combined organic layers were washed with a saturated solution of sodium chloride (50 mL), were dried over anhydrous sodium sulfate, were filtered over celite, and were concentrated under reduced pressure to give a light yellow solid. This crude material was purified by flash column chromatography on silica gel (eluent: $8 \rightarrow 12 \rightarrow 18 \rightarrow 25\%$ acetone in dichloromethane), including a second chromatographic purification of a mixed fraction of product (-)-23 and indoline (-)-15 on silica gel (eluent: 20% acetone in dichloromethane), to yield dimer (-)-23 as a tan powder (33.7 mg, 45.7%).

¹H NMR (500 MHz, Acetone- d_6 , 20 °C):

δ 7.81 (d, J = 8.6 Hz, 1H, C₈H), 7.77 (d, J = 2.3 Hz, 1H, C₅H), 7.41–7.26 (m, 7H, C₇H, Ph_{Cbz}H, N₁₄'H), 7.21 (d, J = 2.3 Hz, 1H, C₅'H), 7.10–7.05 (m, 2H, C₇'H, N₁₄H), 6.95 (d, J = 7.5 Hz, 2H, C₁₉'H, C₂₃'H), 6.86 (dd, J = 8.1, 5.9 Hz, 1H, C₂₁'H), 6.79 (t, J = 7.4Hz, 2H, C₂₀'H, C₂₂'H), 6.73 (s, 1H, C₂H), 6.38 (d, J= 8.6 Hz, 1H, C₈'H), 5.36 (s, 1H, C₂'H), 5.25 (app-q,

⁷ For optimal synthesis of endocyclic bromide (+)-21, see: Loach, R. P.; Fenton, O. S.; Movassaghi, M. J. Am. Chem. 2016, 138, 1057.

	$J = 12.4 \text{ Hz}, 2\text{H}, Ph_{Cbz}CH_2), 4.90 \text{ (dd}, J = 10.1, 4.7 \text{ Hz}, 1\text{H}, C_{11}\text{H}), 4.23 \text{ (t}, J = 4.2 \text{ Hz}, 1\text{H}, C_{15}'\text{H}), 3.76 \text{ (dt}, J = 9.6, 5.0 \text{ Hz}, 1\text{H}, C_{15}\text{H}), 3.57 \text{ (dd}, J = 14.1, 10.4 \text{ Hz}, 1\text{H}, C_{12}\text{H}_a), 3.48 \text{ (dd}, J = 14.1, 4.7 \text{ Hz}, 1\text{H}, C_{12}\text{H}_b), 2.98 \text{ (dd}, J = 13.5, 3.7 \text{ Hz}, 1\text{H}, C_{17}'\text{H}_a), 2.83 \text{ (app-d}, J = 5.0 \text{ Hz}, 1\text{H}, C_{17}'\text{H}_b), 2.53 \text{ (dd}, J = 11.9, 5.6 \text{ Hz}, 1\text{H}, C_{12}'\text{H}_a), 2.18 \text{ (app-t}, J = 12.0 \text{ Hz}, 1\text{H}, C_{12}'\text{H}_b), 2.00 \text{ (dd}, J = 12.2, 5.7 \text{ Hz}, 1\text{H}, C_{11}'\text{H}), 1.78 \text{ (app-ddd}, J = 19.0, 10.0, 5.7 \text{ Hz}, 2\text{H}, C_{17}\text{H}_a, C_{18}\text{H}), 1.61 \text{ (ddd}, J = 13.8, 8.5, 5.5 \text{ Hz}, 1\text{H}, C_{17}\text{H}_b), 0.99 \text{ (d}, J = 6.3 \text{ Hz}, 3\text{H}, C_{19}\text{H}), 0.95 \text{ (d}, J = 6.4 \text{ Hz}, 3\text{H}, C_{20}\text{H}), 0.77 \text{ (s}, 9\text{H}, \text{SiC}(C\text{H}_3)_3), 0.11 \text{ (s}, 3\text{H}, \text{SiCH}_{3a}), -0.25 \text{ (s}, 3\text{H}, \text{SiCH}_{3b}).$
¹³ C NMR (125 MHz, Acetone- <i>d</i> ₆ , 20 °C):	δ 168.8 (C ₁₃ , C ₁₆), 168.0 (C ₁₃ '), 167.4 (C ₁₆ '), 153.5 (C=O _{Cbz}), 147.5 (C ₉ '), 141.8 (C ₉), 137.1 (Ph _{Cbz} - <i>ipso</i> -C), 136.0 (C ₁₈ '), 134.8 (C ₄), 134.0 (C ₄ '), 130.9 (C ₁₉ ', C ₂₃ ', C ₇), 130.5 (C ₅ '), 129.2 (Ph _{Cbz} - <i>o</i> -C), 129.0 (Ph _{Cbz} - <i>m</i> -C, Ph _{Cbz} - <i>p</i> -C, C ₆), 128.9 (C ₂₀ ', C ₂₂ '), 128.8 (C ₅), 127.3 (C ₂₁ '), 125.2 (C ₆ '), 125.0 (C ₇ '), 118.2 (C ₈), 115.2 (C ₈ '), 85.8 (C ₂ '), 84.2 (C ₃ '), 80.8 (C ₂), 72.8 (C ₃), 68.4 (Ph _{Cbz} CH ₂), 58.9 (C ₁₁ ', C ₁₅ '), 57.1 (C ₁₅), 56.5 (C ₁₁), 41.9 (C ₁₇), 41.0 (C ₁₇ '), 38.9 (C ₁₂ '), 34.7 (C ₁₂), 26.1 (SiC(CH ₃) ₃), 25.3 (C ₁₈), 23.4 (C ₁₉), 21.9 (C ₂₀), 18.5 (SiC(CH ₃) ₃), -2.7 (SiC _a H ₃), -3.00 (SiC _b H ₃).
FTIR (thin film) cm ⁻¹	3279 (br-m), 2859 (w), 1685 (br-s), 1616 (m), 1473 (m), 1303 (m), 1249 (m), 1092 (m).
HRMS (ESI) (m/z) :	calc'd for $C_{51}H_{57}Cl_2N_6O_7Si$, $[M+H]^+$: 963.3430, found: 963.3449.
$[\alpha]_D^{23}$:	$-26 (c = 0.17, CHCl_3).$
TLC (18% acetone in dichloromethane), Rf:	0.26 (UV, CAM).

Bis-D-Phenylalanine-indole dimer (–)-25:

To a solution of tris(dimethylamino)sulfonium difluorotrimethylsilicate (9.6 mg, 35 μ mol, 5.00 equiv) in acetonitrile (300 μ L) was added dimer (–)-**22** (7.0 mg, 7.0 μ mol, 1 equiv) as a solid. The reaction mixture was stirred under an argon atmosphere at 23 °C. After 5 hr, a saturated aqueous solution of sodium bicarbonate (10 mL) and dichloromethane (20 mL) were added sequentially, and the organic phase was separated. The aqueous phase was extracted with dichloromethane (3 × 20 mL), the organic layers were combined, were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure to give a brown residue.

Crude dimeric diketopiperazine **S2** was dissolved in dichloromethane (500 µL) and to the solution was added triethylsilane (87.9 µL, 550 µmol, 50.0 equiv) and methanesulfonic acid (17.9 µL, 275 µmol, 25.0 equiv). After 18 hr, a saturated aqueous solution of sodium bicarbonate (10 mL) and dichloromethane (10 mL) were added sequentially. The organic layer was separated and the aqueous layer was extracted with dichloromethane (2 × 10 mL). The organic fractions were combined, were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure to give a yellow oil. The residue was purified by flash column chromatography on silica gel (eluent: $20 \rightarrow 30\%$ acetone in dichloromethane) to furnish indole dimer (–)-**25** (5.0 mg, 5.8 µmol, 82.7%) as a white solid.

¹H NMR (500 MHz, Acetone- d_6 , 20 °C):

 δ 7.82 (d, J = 8.7 Hz, 1H, C₈H), 7.64 (d, J = 2.1 Hz, 1H, C₅H), 7.55 (d, J = 2.0 Hz, 1H, C₅'H), 7.52 (s, 1H, N_{14} 'H), 7.50 (d, J = 7.1 Hz, 2H, Ph_{Cbz} -o-CH), 7.45 (dd, J = 8.7, 2.1 Hz, 2H, C₇H, C₂₁H), 7.38 (app-t, J = 7.2 Hz, 2H, Ph_{Cbz}-*m*-CH), 7.36–7.32 (m, 3H, C₂₀H, C₂₂H, Ph_{Cbz}-p-CH), 7.26–7.21 (m, 4H, $C_{19}H$, $C_{23}H$, $C_{20}'H$, $C_{22}'H$), 7.19 (dd, J = 8.8, 2.0 Hz, 1H, C₇'H), 7.15–7.07 (m, 3H, C₁₉'H, C₂₁'H, C₂₃'H), 7.08 (d, J = 9.0 Hz, 1H, C_8 'H), 6.87 (s, 1H, N_{10} 'H), 6.81 (s, 1H, N_{14} H), 6.71 (s, 1H, C_2 'H), 6.33 (s, 1H, C_2H), 5.36 (d, J = 12.1 Hz, 1H, $Ph_{Cbz}H_a$), 5.29 (d, J= 12.1 Hz, 1H, $Ph_{Cbz}H_b$), 4.16 (dt, J = 5.7, 4.2 Hz, 1H, $C_{15}H$), 3.54 (dd, J = 9.8, 7.6 Hz, 1H, $C_{11}H$), 3.50 (dt, J = 4.8, 3.0 Hz, 1H, C_{11} 'H), 3.32–3.28 (m, 1H, C_{15} 'H), 3.25 (dd, J = 13.5, 6.1 Hz, 1H, C_{17} Ha), 3.14 (dd, J = 13.6, 8.7 Hz, 1H, $C_{12}H_a$), 3.09 (dd, J =9.5, 4.5 Hz, 1H, $C_{12}H_b$), 3.07–3.05 (m, 1H, $C_{12}H_a$),

	3.03 (dd, $J = 4.9$, 2.2 Hz, 1H, $C_{17}H_b$), 3.01–2.97 (m, 1H, $C_{17}'H_a$), 2.96 (d, $J = 4.4$ Hz, 1H, $C_{12}'H_b$), 2.87 (dd, $J = 13.8$, 4.7 Hz, 1H, $C_{17}'H_b$).
¹³ C NMR (125 MHz, Acetone- <i>d</i> ₆ , 20 °C):	δ 168.5 (C ₁₃ '), 168.0 (C ₁₆ ', C ₁₆), 167.5 (C ₁₃), 153.3 (C=O _{Cbz}), 140.9 (C ₉), 137.3 (C ₁₈), 137.1 (C ₁₈ ', Ph _{Cbz} - <i>ipso</i> -C) 134.5 (C ₄), 133.7 (C ₉ '), 132.5 (C ₄ '), 131.9 (C ₇), 131.0 (C ₁₉ ', C ₂₃ ', C ₁₉ , C ₂₃), 129.7 (Ph _{Cbz} - o-CH), 129.6 (C ₆), 129.4 (C ₂₀ , C ₂₂ , Ph _{Cbz} - <i>m</i> -CH), 129.3 (C ₂ '), 129.2 (C ₂₀ ', C ₂₂ '), 129.1 (Ph _{Cbz} - <i>p</i> -CH), 128.2 (C ₂₁), 127.8 (C ₂₁ '), 127.0 (C ₅), 126.6 (C ₆ '), 123.0 (C ₇ '), 120.6 (C ₅ '), 119.0 (C ₈), 113.2 (C ₈ '), 110.4 (C ₃ '), 81.2 (C ₂), 71.0 (C ₃), 69.0 (Ph _{Cbz} CH ₂), 59.8 (C ₁₅), 56.4 (C ₁₅ '), 56.1 (C ₁₁), 55.7 (C ₁₁ '), 40.6 (C ₁₇), 39.6 (C ₁₇ '), 35.7 (C ₁₂), 29.5 (C ₁₂ ').
FTIR (thin film) cm ⁻¹	3211 (br-m), 2923 (m), 1726 (m), 1679 (s), 1454 (m), 1319 (m), 1180 (w), 739 (w), 702 (m).
HRMS (ESI) (m/z) :	calc'd for, $C_{48}H_{40}Cl_2N_6NaO_6$ $[M+Na]^+$: 889.2279, found: 889.2274.
$[\alpha]_D^{23}$:	$-32 (c = 0.17, \text{CHCl}_3).$
TLC (20% acetone in dichloromethane), Rf:	0.33 (UV, CAM).

Concise Total Synthesis of (+)-Asperazine A and (+)-Pestalazine B. Brandon M. Nelson, Richard P. Loach , Stefan Schiesser, and Mohammad Movassaghi^{*}

D-Phenylalanine-D-leucine indole dimer (–)-26:

To a solution of tris(dimethylamino)sulfonium difluorotrimethylsilicate (21.5 mg, 77.8 μ mol, 5.00 equiv) in acetonitrile (300 μ L) was added dimer (–)-**23** (15.0 mg, 15.6 μ mol, 1 equiv) as a solid. The reaction mixture was stirred under an argon atmosphere at 23 °C. After 5 hr, a saturated aqueous solution of sodium bicarbonate (10 mL) and dichloromethane (20 mL) were added sequentially, and the organic phase was separated. The aqueous phase was extracted with dichloromethane (3 × 20 mL), the organic layers were combined, were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure to give a brown residue.

Crude dimeric diketopiperazine **S3** was dissolved in dichloromethane (1.00 mL) and to the solution was added triethylsilane (125 μ L, 780 μ mol, 50.0 equiv) and methanesulfonic acid (25.3 μ L, 390 μ mol, 25.0 equiv). After 18 hr, a saturated aqueous solution of sodium bicarbonate (10 mL) and dichloromethane (10 mL) were added sequentially. The organic layer was separated and the aqueous layer was extracted with dichloromethane (2 × 10 mL). The organic fractions were combined, were dired over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure to give a yellow oil. The residue was purified by flash column chromatography on silica gel (eluent: 25 \rightarrow 40% acetone in dichloromethane) to furnish indole dimer (–)-26 (8.5 mg, 10.2 μ mol, 65.4%) as a white solid.

¹H NMR (500 MHz, Acetone- d_6 , 20 °C):

δ 7.80 (d, J = 8.6 Hz, 1H, C₈H), 7.70 (d, J = 2.3 Hz, 1H, C₅H), 7.63 (d, J = 8.9 Hz, 1H, C₈'H), 7.55 (d, J= 2.1 Hz, 1H, C₅'H), 7.51 (d, J = 4.8 Hz, 1H, Ph_{Cbz}p-CH), 7.46 (dd, J = 8.7, 2.2 Hz, 1H, C₇H), 7.43 (dd, $J = 6.6, 3.1 \text{ Hz}, 2\text{H}, Ph_{Cbz}-o-CH), 7.34-7.29 \text{ (m, 2H, }$ Ph_{Cbz}-*m*-CH), 7.25–7.19 (m, 3H, C₂₀₋₂₂'H), 7.16– 7.06 (m, 3H, C₇'H, C₁₉'H, C₂₃'H), 6.83 (s, 2H, C₂'H, N₁₀'**H**), 6.71 (s, 1H, N₁₄**H**), 6.67 (s, 1H, C₂**H**), 5.30 (s, 2H, $Ph_{Cbz}H_2$), 5.06 (dd, J = 10.1, 5.4 Hz, 1H, $C_{11}H$), 3.79 (app-ddt, J = 12.0, 4.3, 3.6 Hz, 1H, $C_{15}H$), 3.55 (dd, J = 14.5, 5.5 Hz, 1H, $C_{12}H_a$), 3.52– 3.44 (m, 2H, C_{11} 'H, C_{12} H_b), 3.29 (t, J = 5.2 Hz, 1H, C_{15} '**H**), 3.08 (dd, J = 14.8, 4.9 Hz, 1H, C_{12} '**H**_a), 2.99 (app-tt, J = 9.3, 4.9 Hz, 2H, $C_{12}'H_b$, $C_{17}'H_a$), 2.87 (app-d, J = 4.6 Hz, 1H, C_{17} 'H_b), 1.79 (ddd, J = 14.9, 11.1, 5.6 Hz, 2H, $C_{17}H_a$, $C_{18}H$), 1.62 (tt, J = 8.2, 4.3Hz, 1H, $C_{17}H_b$), 0.99 (d, J = 6.3 Hz, 3H, $C_{19}H_3$), 0.93 (d, J = 6.3 Hz, 3H C₂₀H₃).

¹³ C NMR (125 MHz, Acetone- <i>d</i> ₆ , 20 °C):	δ 168.5 (C ₁₆), 168.4 (C ₁₃ , C ₁₃ '), 168.0 (C ₁₆ '), 153.4 (C=O _{Cbz}), 140.9 (C ₉), 137.1 (Ph _{Cbz} - <i>ipso</i> -C), 137.0 (C ₁₈ '), 134.3 (C ₄), 134.1 (C ₉ '), 132.4 (C ₄ '), 131.9 (C ₇), 131.0 (C ₁₉ ', C ₂₃ '), 129.5 (C ₆), 129.3 (Ph _{Cbz} - <i>o</i> -CH), 129.2 (Ph _{Cbz} - <i>m</i> -CH), 129.1 (C ₂₀ ', C ₂₂ ', C ₂ '), 129.0 (Ph _{Cbz} - <i>p</i> -CH), 127.7 (C ₂₁ '), 127.0 (C ₅), 126.6 (C ₆ '), 123.1 (C ₇ '), 120.4 (C ₅ '), 119.1 (C ₈), 113.9 (C ₈ '), 110.4 (C ₃ '), 81.6 (C ₂), 71.6 (C ₃), 68.8 (Ph _{Cbz} CH ₂), 57.0 (C ₁₅), 56.7 (C ₁₁), 56.4 (C ₁₅ '), 55.7 (C ₁₁ '), 42.3 (C ₁₇), 39.6 (C ₁₇ '), 34.3 (C ₁₂), 29.4 (C ₁₂ '), 25.2 (C ₁₈), 23.3 (C ₁₉), 21.8 (C ₂₀).
FTIR (thin film) cm ⁻¹	3304 (br-w), 3059 (w), 2923 (w), 1710 (s), 1684 (m), 1419 (m), 1360 (s), 1221 (s), 1091 (w).
HRMS (ESI) (m/z) :	calc'd for $C_{45}H_{43}Cl_2N_6O_6$, $[M+H]^+$: 833.2616, found: 833.2600.
$[\alpha]_D^{23}$:	$-16 (c = 0.16, CHCl_3).$
TLC (25% acetone in dichloromethane), Rf:	0.39 (UV, CAM).

(+)-Asperazine A (1):

To a solution of dimer (–)-25 (9.7 mg, 11.2 µmol, 1 equiv) in degassed methanol (300 µL) and triethylamine (15.6 µL, 112 µmol, 10.0 equiv) was added 10% palladium on carbon (17.9 mg, 16.8 µmol, 1.50 equiv) and ammonium formate (35.3 mg, 560 µmol, 50.0 equiv) sequentially. The reaction mixture was heated to 65 °C. After 4 h, the black suspension was cooled to 23 °C and was concentrated under reduced pressure affording a black residue. The residue was purified by flash column chromotagraphy on silica gel (eluent: $45 \rightarrow 60\%$ acetone in dichloromethane) to provide (+)-asperazine A (1) as a white solid (5.6 mg, 8.4 µmol, 75.2%).

¹H NMR (400 MHz, DMSO-*d*₆, 20 °C):

δ 8.36 (d, J = 4.2 Hz, 1H, N₁₄H), 8.00 (s, 1H, N_{10} '**H**), 7.96 (s, 1H, N_{14} '**H**), 7.52 (d, J = 7.8 Hz, 1H, C_5 '**H**), 7.32 (d, J = 4.0 Hz, 1H, N₁**H**), 7.27–7.16 (m, 5H, C₂₀₋₂₂H, C₂'H, C₂₁'H), 7.15–7.04 (m, 7H, C₇H, $C_{19}H$, $C_{23}H$, $C_{19-20}'H$, $C_{22-23}'H$), 6.99 (t, J = 7.5 Hz, 1H, C₆'H), 6.92 (t, J = 7.6 Hz, 1H, C₇'H), 6.72 (d, J= 7.7 Hz, 1H, C₅H), 6.58 (t, J = 7.4 Hz, 1H, C₆H), 6.53 (d, J = 8.2 Hz, 1H, C₈'**H**), 5.73 (d, J = 3.9 Hz, 1H, C₂H), 4.10 (q, J = 5.0 Hz, 1H, C₁₅H), 3.61 (t, J = 5.4 Hz, 1H, C₁₁'H), 3.42 (dd, J = 11.9, 5.7 Hz, 1H, $C_{11}H$), 3.30–3.25 (m, 2H, $C_{12}H_a$, $C_{15}'H$), 3.24 (dd, J = 15.0, 5.5 Hz, 1H, C_{12} 'H_a), 3.08 (dd, J = 13.3, 6.4Hz, 1H, C₁₇H_a), 3.02 (app-s, 1H, C₁₇'H_a), 2.98 (dd, J = 15.0, 4.5 Hz, 1H, C_{12} '**H**_b), 2.89 (dd, J = 13.5, 4.6 Hz, 1H, $C_{17}H_b$), 2.71 (dd, J = 13.6, 4.8 Hz, 1H, C_{17} '**H**_b), 2.06 (t, J = 13.1 Hz, 1H, C_{12} **H**_b).

¹³C NMR (125 MHz, DMSO- d_6 , 20 °C):

δ 167.9 (C₁₃'), 167.7 (C₁₃), 167.6 (C₁₆'), 166.8 (C₁₆), 148.0 (C₉), 136.0 (C₁₈, C₁₈'), 134.6 (C₉'), 130.1 (C₁₉', C₂₃'), 129.7 (C₇), 129.6 (C₁₉, C₂₃), 129.5 (C₄'), 128.4 (C₄), 128.3 (C₂₀', C₂₂'), 127.9 (C₂₀, C₂₂), 126.9 (C₂₁), 126.5 (C₂₁'), 125.5 (C₂'), 122.2 (C₅), 121.3 (C₇'), 119.4 (C₆'), 119.3 (C₅'), 118.4 (C₆), 111.4 (C₈'), 110.1 (C₈), 108.3 (C₃'), 81.8 (C₂), 72.7 (C₃), 58.1 (C₁₅), 55.4 (C₁₁), 54.5 (C₁₁'), 54.4 (C₁₅'), 40.2 (C₁₂), 39.3 (C₁₇), 37.1 (C₁₇'), 29.1 (C₁₂').

FTIR (thin film) cm ⁻¹	3349 (br-w), 3246 (br-m), 2924 (w), 1674 (s), 1611 (w), 1436 (m), 1316 (m), 1176 (w), 1093 (w).
HRMS (ESI) (m/z) :	calc'd for $C_{40}H_{37}N_6O_4$, $[M+H]^+$: 665.2871, found: 665.2858.
$[\alpha]_D^{23}$:	+135 (<i>c</i> = 0.11, MeOH).
TLC (60% acetone in dichloromethane), Rf:	0.32 (UV, CAM).

	Lou's report ⁸	This work	
	(-)-Asperazine A (1)	(+)-Asperazine A (1)	
	¹ H NMR, 600 MHz	¹ H NMR, 500 MHz	
	DMSO- d_6	DMSO- <i>d</i> ₆ , 20 °C	
N1	7.35 (s)	7.32 (d, J = 4.0 Hz)	
C2	5.72 (s)	5.73 (d, <i>J</i> = 3.9 Hz)	
C5	6.71 (d, <i>J</i> = 7.2 Hz)	6.72 (app-d, J = 7.7 Hz)	
C6	6.58 (t, J = 7.2 Hz)	6.58 (t, J = 7.4 Hz)	
C7	7.08	7.15–7.04 (m)	
C8	6.71 (d, <i>J</i> = 7.2 Hz)	6.72 (app-d, J = 7.7 Hz)	
C11	3.43–3.37 (m)	3.42(dd, J = 11.9, 5.7 Hz)	
C12	3.29	3.30-3.25	
012	2.05 (t, J = 13.2 Hz)	2.06 (t, J = 13.1 Hz)	
N14	8.39 (s)	8.36 (d, J = 4.2 Hz)	
C15	4.15–4.09 (m)	4.10 (q, J = 5.0 Hz)	
C17	3.06	$3.08 (\mathrm{dd}, J = 13.3, 6.4 \mathrm{Hz})$	
017	2.88 (d, J = 13.2 Hz)	2.89 (dd, J = 13.6, 4.8 Hz)	
C19, C23	7.08	7.15–7.04 (m)	
C20, C22	7.21 (t, J = 7.0 Hz)	7.27–7.16 (m)	
C21	7.19 (t, $J = 7.0$ Hz)	7.27–7.16 (m)	
C2′	7.17 (s)	7.27–7.16 (m)	
C5′	7.52 (d, J = 7.8 Hz)	7.52 (d, J = 7.8 Hz)	
C6′	6.98 (t, $J = 7.8$ Hz)	6.99 (t, <i>J</i> = 7.5 Hz)	
C7′	6.92 (t, $J = 7.8$ Hz)	6.92 (t, J = 7.6 Hz)	
C8′	6.52 (d, <i>J</i> = 7.8 Hz)	6.53 (d, J = 8.2 Hz)	
N10′	8.03 (s)	8.00 (s)	
C11′	3.62–3.59 (m)	3.61 (t, J = 5.4 Hz)	
C12′	3.25	3.24 (dd, J = 15.0, 5.5 Hz)	
012	3.00	2.98 (dd, <i>J</i> = 15.0, 4.5 Hz)	
N14′	7.99 (s)	7.96 (s)	
C15′	3.30–3.26 (m)	3.30-3.259	
C17′	3.04	3.02 (app-s)	
C1/	2.70 (d, J = 13.2 Hz)	2.71 (dd, J = 13.6, 4.8 Hz)	
C19′, C23′	7.12	7.15–7.04 (m)	
C20', C22'	7.08	7.15–7.04 (m)	
C21′	7.19 (t, $J = 7.0$ Hz)	7.27–7.16 (m)	

Table S1. Comparison of our ¹H NMR data for (+)-Asperazine A (1) with literature:

 ⁸ Li, X.-B.; Li, Y.-L.; Zhou, J.-C.; Yuan, H.-Q.; Wang, X.-N.; Lou, H.-X. J. Asian. Nat. Prod. Res. 2015, 17, 182.
⁹ This resonance overlaps with that of water in DMSO-d₆; the exact position of resonance was determined by HSQC data.

Table S2. Comparison of our ¹³C NMR data for (+)-Asperazine A (1) with literature:

	Lou's report ⁸	This work	
	(-)-Asperazine A (1)	(+)-Asperazine A (1)	$\Delta \delta^{10}$
	¹³ C NMR, 150 MHz	¹³ C NMR, 125 MHz	(ppm)
	$DMSO-d_6$	DMSO- <i>d</i> ₆ , 20 °C	
C2	81.8	81.8	0
C3	72.7	72.7	0
C4	128.4	128.4	0
C5	122.2	122.2	0
C6	118.4	118.4	0
C7	129.5	129.7	+0.2
C8	110.1	110.1	0
C9	148.0	148.0	0
C11	55.0	55.4	+0.4
C12	40.1	40.2	+0.1
C13	167.7	167.7	0
C15	58.1	58.1	0
C16	166.8	166.8	0
C17	39.0	39.3	+0.3
C18	136.1	136.0	-0.1
C19, C23	129.7	129.6	-0.1
C20, C22	127.9	127.9	0
C21	126.9	126.9	0
C2′	125.6	125.5	-0.1
C3′	108.3	108.3	0
C4′	129.8	129.5	-0.3
C5′	119.4	119.3	-0.1
C6′	119.5	119.4	-0.1
C7′	121.3	121.3	0
C8′	111.5	111.4	-0.1
C9′	134.7	134.6	-0.1
C11′	54.5	54.5	0
C12′	29.1	29.1	0
C13′	167.9	167.9	0
C15′	54.4	54.4	0
C16′	167.6	167.6	0
C17′	37.0	37.1	+0.1
C18′	136.1	136.0	-0.1
C19′, C23′	130.2	130.1	-0.1
C20′, C22′	128.3	128.3	0
C21′	126.6	126.5	-0.1

¹⁰ Chemical Shift Difference $\Delta \delta = \delta$ (this work, solvent ref: δ 39.50) – δ (Lou's report, solvent ref: not available)

(+)-Pestalazine B (2):

To a solution of dimer (–)-26 (6.0 mg, 7.2 µmol, 1 equiv) in degassed methanol (250 µL) and triethylamine (10.0 µL, 72.0 µmol, 10.0 equiv) was added 10% palladium on carbon (11.5 mg, 10.8 µmol, 1.50 equiv) and ammonium formate (22.7 mg, 360 µmol, 50.0 equiv) sequentially. The reaction mixture was heated to 65 °C. After 4 h, the black suspension was cooled to 23 °C and was concentrated under reduced pressure affording a black residue. The residue was purified by flash column chromotagraphy on silica gel (eluent: $45 \rightarrow 60\%$ acetone in dichloromethane) to provide (+)-pestalazine B (2) as a white solid (3.3 mg, 5.2 µmol, 72.7%). Due to poor solubility in acetone NMR spectra are also provided in DMSO- d_6 .

¹H NMR (500 MHz, Acetone- d_6 , 20 °C):

 δ 7.69 (d, J = 4.6 Hz, 1H, N₁₄H), 7.67 (s, 1H, C₂'H), 7.51 (d, J = 7.7 Hz, 1H, C₅'H), 7.20 (app-dd, J = 5.1, 1.9 Hz, 3H, C_{20-22} '**H**), 7.18 (dd, J = 7.7, 6.3 Hz, 1H, C_7H), 7.10 (dd, J = 6.8, 2.8 Hz, 2H, $C_{19}'H$, $C_{23}'H$), 7.00–6.96 (m, 2H, N₁₀'H, C₆'H), 6.95 (d, J = 6.7 Hz, 1H, C_7 'H), 6.92 (d, J = 6.8 Hz, 1H, C_5 H), 6.85 (d, J= 8.0 Hz, 1H, C₈H), 6.81 (s, 1H, N₁₄'H), 6.78 (d, J =8.2 Hz, 1H, C_8 'H), 6.64 (t, J = 7.4 Hz, 1H, C_6 H), 6.60 (d, J = 3.8 Hz, 1H, N₁H), 6.05 (d, J = 3.5 Hz, 1H, C₂H), 4.85 (dd, J = 11.7, 6.0 Hz, 1H, C₁₁H), 3.91 (dt, J = 9.7, 5.0 Hz, 1H, C₁₅H), 3.73–3.64 (m, 2H, C_{11} 'H, C_{12} Ha), 3.51 (t, J = 5.1 Hz, 1H, C_{15} 'H), 3.22 (d, J = 5.2 Hz, 2H, C_{12} 'H₂), 3.06 (dd, J = 13.9, 5.5 Hz, 1H, C_{17} 'H_a), 2.98 (dd, J = 13.9, 4.6 Hz, 1H, C_{17} 'H_b), 2.46 (dd, J = 14.8, 11.7 Hz, 1H, C_{12} H_b), 1.87–1.69 (m, 2H, $C_{18}H$, $C_{17}H_a$), 1.53 (ddd, J =13.7, 8.5, 5.3 Hz, 1H, $C_{17}H_b$), 0.95 (d, J = 6.5 Hz, 3H, C_{19} H), 0.90 (d, J = 6.5 Hz, 3H, C_{20} H).

¹³C NMR (125 MHz, Acetone- d_6 , 20 °C): δ 169.0 (C₁₃, C₁₆'), 168.6 (C₁₆), 168.5 (C₁₃'), 149.0 (C₉), 137.1 (C₁₈'), 136.7 (C₉'), 130.9 (C₁₉', C₂₃'), 130.8 (C₄'), 130.3 (C₇), 129.9 (C₄), 129.2 (C₂₀', C₂₂'), 127.7 (C₂₁'), 126.6 (C₂'), 123.6 (C₅), 122.5 (C₇'), 120.6 (C₆'), 120.4 (C₅'), 119.8 (C₆), 113.0 (C₈'), 111.0 (C₈), 110.0 (C₃'), 83.6 (C₂), 74.5 (C₃),

	57.4 (C_{11}), 56.9 (C_{15}), 56.3 (C_{15} '), 55.9 (C_{11} '), 43.0 (C_{17}), 41.4 (C_{12}), 39.3 (C_{17} '), 30.1 (C_{12} '), 25.3 (C_{18}), 23.3 (C_{19}), 21.8 (C_{20}).
FTIR (thin film) cm ⁻¹	3350 (br-w), 3254 (br-m), 2956 (w), 2926 (w), 1671 (s), 1612 (w), 1431 (m), 1315 (m), 1215 (w), 1090 (w).
HRMS (ESI) (m/z) :	calc'd for $C_{37}H_{39}N_6O_4$, $[M+H]^+$: 631.3027, found: 631.3036.
$[\alpha]_D^{23}$:	+191 (c = 0.10, MeOH).
TLC (50% acetone in dichloromethane), Rf:	0.46 (UV, CAM).

Table S3. Comparison of our ¹H NMR data for (+)-Pestalazine B (2) with literature:

	Che´s report ¹¹	de Lera's report ¹²	This work
	(+)-Pestalazine B (2)	(+)-Pestalazine B (2)	(+)-Pestalazine B (2)
	¹ H NMR, 600 MHz	¹ H NMR, 600 MHz	¹ H NMR, 400 MHz
	acetone- d_6	acetone- d_6	acetone- d_6 , 20 °C
N1	6.83 (d, $J = 3.0$ Hz)	6.65 (d, J = 3.0 Hz)	6.60 (d, J = 3.8 Hz)
C2	6.03 (d, J = 3.0 Hz)	6.05 (d, J = 3.3 Hz)	6.05 (d, J = 3.5 Hz)
C5	6.90 (d, $J = 7.2$ Hz)	$6.93 (m)^{13}$	6.92 (d, J = 6.8 Hz)
C6	6.62 (d, J = 7.2 Hz)	6.64 (t, J = 7.2 Hz)	6.64 (t, J = 7.4 Hz)
C7	7.14 (m)	$7.17 (m)^{14}$	$7.18 (\mathrm{dd}, J = 7.7, 6.3 \mathrm{Hz})$
C8	6.83 (d, $J = 7.8$ Hz)	6.85 (d, J = 7.8 Hz)	6.85 (d, J = 8.0 Hz)
C11	4.82 (dd, J = 12, 6.0 Hz)	4.84 (dd, <i>J</i> = 11.7, 6.0 Hz)	4.85 (dd, <i>J</i> = 11.7, 6.0 Hz)
C12	$3.68 (\mathrm{dd}, J = 14.0, 6.0 \mathrm{Hz})$	3.69 (dd, J = 14.8, 6.0 Hz)	3.68 (m)
012	2.42 (dd, J = 14.0, 12.0 Hz)	2.41 (dd, J = 14.8, 11.7 Hz)	2.46 (dd, <i>J</i> = 14.8, 11.7 Hz)
N14	7.32 (br-s)	$6.98 (m)^{13}$	7.69 (d, J = 4.6 Hz)
C15	3.85 (m)	3.89 (dt, J = 9.6, 4.8 Hz)	3.91 (dt, J = 9.7, 5.0 Hz)
C17	1.73(m)	1.75 (m)	1.77 (m)
	1.50 (m)	1.52 (ddd, J = 13.6, 8.5, 5.3 Hz)	1.53 (ddd, J = 13.7, 8.5, 5.3 Hz)
C18	1.80 (m)	1.80 (m)	1.77 (m)
C19	0.95 (d, J = 6.6 Hz)	0.95 (d, J = 6.5 Hz)	0.95(d, J = 6.5 Hz)
C20	0.90 (d, J = 6.0 Hz)	0.90 (d, J = 6.5 Hz)	0.90 (d, J = 6.5 Hz)
C2′	7.64 (s)	7.66 (s)	7.67 (s)
C5′	7.53 (d, $J = 7.8$ Hz)	7.52 (d, J = 7.8 Hz)	7.51 (d, J = 7.7 Hz)
C6′	6.98 (t, $J = 7.8$ Hz)	$7.0-6.9 (m)^{13}$	6.98 (m)
C7′	6.95 (t, $J = 7.8$ Hz)	$7.0-6.9 (m)^{13}$	6.95 (app-d, $J = 6.7$ Hz)
C8′	6.75 (d, J = 7.8 Hz)	6.78 (d, J = 8.2 Hz)	6.78 (app-d, J = 8.2 Hz)
N10′	7.38 (br. s)	$7.2-7.1 \text{ (m)}^{14}$	6.98 (m)
C11′	3.62 (dd, J = 5.2, 4.8 Hz)	3.7–3.6 (m)	3.69 (m)
C12′	3.21 (dd, J = 14.0, 5.4 Hz)	3.21 (app. d, J = 3.2 Hz)	3.22 (app-d, J = 5.2 Hz)
012	3.15 (dd, J = 14.0, 4.8 Hz)	3.21 (app. d, J = 3.2 Hz)	3.22 (app-d, J = 5.2 Hz)
N14′	8.05 (d, J = 3.5 Hz)	7.81 (d, J = 4.3 Hz)	6.81 (s)
C15′	3.47 (br-t, J = 4.8 Hz)	3.50 (br-t, J = 4.7 Hz)	3.51 (br-t, J = 5.1 Hz)
C17′	3.06 (dd, J = 14.5, 4.8 Hz)	$3.06 (\mathrm{dd}, J = 13.9, 5.4 \mathrm{Hz})$	3.06 (dd, J = 13.9, 5.5 Hz)
	2.88 (m)	2.96 (dd, <i>J</i> = 13.9, 4.6 Hz)	2.98 (dd, <i>J</i> = 13.9, 4.6 Hz)
C19′, C23′	7.14 (m)	7.12 (m) ¹⁴	7.10 (app-dd, J = 6.8, 2.8 Hz)
C20', C22'	7.20 (m)	7.20 (m) ¹⁴	7.20 (app-dd, J = 5.1, 1.9 Hz)
C21′	7.20 (m)	7.20 (m) 14	7.20 (app-dd, J = 5.1, 1.9 Hz)

¹¹ Ding, G.; Jiang, L.; Guo, L.; Chen, X.; Zhang, H.; Che, Y. J. Nat. Prod. 2008, 71, 1861.

 ¹² Pérez-Balado, C.; de Lera, Á. R. *Bioorg. Med. Chem.* 2010, *8*, 5179.
¹³ This resonance was reported as a multiplet at 7.0–6.9 (4H) in the cited report.

¹⁴ This resonance was reported as a multiplet at 7.2–7.1 (7H) in the cited report.

Table S4. Comparison of our ¹³C NMR data for (+)-Pestalazine B (2) with literature:

	Che's report ¹¹	de Lera's report ¹²	This work		
	(+)-Pestalazine B (2)	(+)-Pestalazine B (2)	(+)-Pestalazine B (2)	$\Delta \delta^{15}$	$\Delta \delta^{16}$
	¹³ C NMR, 150 MHz	¹³ C NMR, 150 MHz	¹³ C NMR,125 MHz	(ppm)	(ppm)
	acetone- d_6	acetone- d_6	acetone-d ₆ , 20 °C	ur /	u <i>i i</i>
C2	83.4	83.5	83.6	+0.2	+0.1
C3	74.2	74.4	74.5	+0.3	+0.1
C4	129.8	129.9	129.9	+0.1	0
C5	123.3	123.6	123.6	+0.3	0
C6	119.4	119.7	119.8	+0.4	+0.1
C7	130.5	130.8	130.3	-0.2	-0.5
C8	110.9	111.0	111.0	+0.1	0
C9	148.9	148.9	149.0	+0.1	+0.1
C11	57.2	57.3	57.4	+0.2	+0.1
C12	41.2	41.3	41.4	+0.2	+0.1
C13	168.8	169.0	169.0	+0.2	0
C15	56.7	56.9	56.9	+0.2	0
C16	168.4	168.6	168.6	+0.2	0
C17	42.8	42.9	43.0	+0.2	+0.1
C18	24.9	25.1	25.3	+0.4	+0.2
C19	23.2	23.3	23.3	+0.1	0
C20	21.7	21.8	21.8	+0.1	0
C2′	126.4	126.6	126.6	+0.2	0
C3′	109.9	110.0	110.0	+0.1	0
C4′	130.8	130.8	130.8	0	0
C5′	120.3	120.4	120.4	+0.1	0
C6′	120.3	120.5	120.6	+0.3	+0.1
C7′	122.2	122.4	122.5	+0.3	+0.1
C8′	112.8	112.8	113.0	+0.2	+0.2
C9'	136.3	136.6	136.7	+0.4	+0.1
C11′	55.8	55.8	55.9	+0.1	+0.1
C12′	30.2	30.3	30.1	-0.1	-0.2
C13′	168.6	168.6	168.5	-0.1	-0.1
C15′	56.1	56.3	56.3	+0.2	0
C16′	168.9	169.0	169.0	+0.1	0
C17′	38.9	39.1	39.3	+0.4	+0.2
C18′	137.1	137.1	137.1	0	0
C19′,	130.9	131.0	130.9	0	-0.1
C23′					
C20′,	130.9	129.1	129.2	-1.7^{17}	+0.1
C22′					
C21′	127.4	127.7	127.7	+0.3	0

¹⁵ Chemical Shift Difference $\Delta \delta = \delta$ (this work, solvent ref: δ 29.92) – δ (Che's report, solvent ref: 29.8) ¹⁶ Chemical Shift Difference $\Delta \delta = \delta$ (this work, solvent ref: δ 29.92) – δ (de Lera, solvent ref δ 29.92) ¹⁷ Our assignment for this resonance is consistent with the value reported in reference 12.

Calculated Structures of Tetracyclic Indolines 18-19:

The conformation distribution and equilibrium geometries (gas phase) in the ground state of the tetracyclic indolines were optimized with Merck Molecular Force Field (MMFF)¹⁸ followed by density functional theory at B3LYP level with 6-31G(d) as basis set (Spartan '14, Version 1.1.1, by Wavefunction, Inc.).¹⁹ The 3D representations of the molecular structures were generated from CYLview²⁰ and the highest occupied molecular orbital (HOMO) are shown.

Figure S1. Calculated Structures of Indolines **18** and **19**. The distance between N1 and C16=O is displayed in red.

Figure S2. Calculated Structures of Indolines 18 and 19. The highest occupied molecular orbital for each indoline is shown.

 ¹⁹ Spartan'14 Wavefunction, Inc. Irvine, CA. Except for molecular mechanics and semi-empirical models, the calculation methods used in Spartan have been documented in: Shao, Y.; Molnar, L. F.; Jung, Y.; Kussmann, J.; Ochsenfeld, C.; Brown, S. T.; Gilbert, A. T. B.; Slipchenko, L. V.; Levchenko, S. V.; O'Neill, D. P.; DiStasio Jr., R. A.; Lochan, R. C.; Wang, T.; Beran, G. J. O.; Besley, N. A.; Herbert, J. M.; Lin, C. Y.; Van Voorhis, T.; Chien, S. H.; Sodt, A.; Steele, R. P.; Rassolov, V. A.; Maslen, P. E.; Korambath, P. P.; Adamson, R. D.; Austin, B.; Baker, J.; Byrd, E. F. C.; Dachsel, H.; Doerksen, R. J.; Dreuw, A.; Dunietz, B.D.; Dutoi, A. D.; Furlani, T. R.; Gwaltney, S. R.; Heyden, A.; Hirata, S.; Hsu, C-P.; Kedziora, G.; Khalliulin, R. Z.; Klunzinger, P.; Lee, A. M.; Lee, M. S.; Liang, W. Z.; Lotan, I.; Nair, N.; Peters, B.; Proynov, E. I.; Pieniazek, P. A.; Rhee, Y. M.; Ritchie, J.; Rosta, E.; Sherrill, C. D.; Simmonett, A. C.; Subotnik, J. E.; Woodcock III, H. L.; Zhang, W.; Bell, A. T.; Chakraborty, A. K.; Chipman, D. M.; Keil, F. J.; Warshel, A.; Hehre, W. J.; Schaefer, H. F.; Kong, J.; Krylov, A. I.; Gill, P. M. W.; Head-Gordon, M. *Phys. Chem. Chem. Phys.* **2006**, *8*, 3172.
²⁰ CYLview, 1.0b; Legault, C. Y., Université de Sherbrooke, 2009 (http://www.cylview.org).

¹⁸ Halgren, T. A. J. Comput. Chem. **1996**, 17, 490.

Page S30/ S52

Page S32/ S52

Page S34/ S52

Richard P. Loach, Brandon M. Nelson, Stefan Scheisser, and Mohammad Movassaghi*

Page S36/ S52

Richard P. Loach, Brandon M. Nelson, Stefan Scheisser, and Mohammad Movassaghi*

Richard P. Loach, Brandon M. Nelson, Stefan Scheisser, and Mohammad Movassaghi*

Page S38/ S52

Page S40/ S52

Richard P. Loach, Brandon M. Nelson, Stefan Scheisser, and Mohammad Movassaghi*

Page S42/ S52

Page S44/ S52

Richard P. Loach, Brandon M. Nelson, Stefan Scheisser, and Mohammad Movassaghi*

Concise Total Synthesis of (+)-Asperazine A and (+)-Pestalazine B. Richard P. Loach, Brandon M. Nelson, Stefan Scheisser, and Mohammad Movassaghi^{*}

Concise Total Synthesis of (+)-Asperazine A and (+)-Pestalazine B. Richard P. Loach, Brandon M. Nelson, Stefan Scheisser, and Mohammad Movassaghi*

Richard P. Loach, Brandon M. Nelson, Stefan Scheisser, and Mohammad Movassaghi*

Richard P. Loach, Brandon M. Nelson, Stefan Scheisser, and Mohammad Movassaghi*

