Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Asymmetric Synthesis of (-)-Sedacryptine through Diastereoselective Mannich Process of

N,O-acetal with Ketone

Yi-Wen Liu^a, Rui-Jun Ma^b, Jia-Hang Yan^a, Zhu Zhou^{a,*} and Bang-Guo Wei^{a,*}

^a Institutes of Biomedical Sciences and School of Pharmacy, Fudan University, 130 Dongan Road, Shanghai 200030, China ^b Center for Gastrointestinal Endoscopy, Shanxi Provincial People's Hospital, 29 Shuangta Road, Taiyuan 030012, China bgwei1974@fudan.edu.cn

Table of Contents

NMR Spectra of coupled products	
X-Ray Structures of (2S, 3S, 6S)-7a	S56-S69
X-Ray Structures of 10b.	
Proposed transition state for the formation of (2S,3S,6S)-7a-q.	

110 100 f1 (ppm) -20 _{S3} -30 170 160 -10 -40

f1 (ppm) -10 0_{S5}

f1 (ppm) -10 -20 _{S9} -30 -40

110 100 f1 (ppm) 170 160 -10 -20_{S13} -30 -40

		'						· · · ·	· · · ·	· · · ·	· · · ·	(·			1 1	1 1			1						· · · ·	
240	230	220	210	200	190	180	170	160	150	140	130	120	110	100 f1 (ppm	90)	80	70	60	50	40	30	20	10	0	-10	-20 _{S29} -30	-40

Τ	· · · · ·	·		· · · · ·	· · · · ·	· · · ·	· · ·	·	· .	·			- T	·	·	· · · ·	· · · · ·		·	· · ·	· · · ·		<u> </u>				· · · · · · · · · · · · · · · · · · ·		г т
50	240	230	220	210	200	190	180	170	160	150	140	130	120	110	100 f1 (ppm	90 I)	80	70	60	50	40	30	20	10	0	-10	-20 _{S31} 30	-40	-5

<u>г</u>	- T	- T		- <u> </u>	r	- I - I		· · · · ·			1	· · · ·			- T					· _ [· · · ·	- T
20	210	200	190	180	170	160	150	140	130	120	110	100 f1 (ppm)	90	80	70	60	50	40	30	20	10	9 35	-10

⊂5.879 −5.857 −5.841 −5.841 −5.820 ⊂5.798

f1 (ppm) 39 -10

f1 (ppm) 45 -10

f1 (ppm) -10 47

f1 (ppm) -10 -20_{S51} -30 -40

	·	·	·		'	1	'			·		1 1		· ·								·	·			1 1	- I I	
240	230	220	210	200	190	180	170	160	150	140	130	120	110 f	100 1 (ppm)	90	80	70	60	50	40	30	20	10	0	-10	-20 ₅₅₃	3 -30	-40

CCDC1585542 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

Table 1. Crystal data and structure refinement f	or mo_d8v17583_0m.				
Identification code	mo_d8v17583_0m				
Empirical formula	C27 H43 N O4 Si				
Formula weight	473.71				
Temperature	296(2) K				
Wavelength	0.71073 Å				
Crystal system	Monoclinic				
Space group	C 2				
Unit cell dimensions	a = 33.6160(19) Å	$\alpha = 90$ °.			
	b = 7.9053(4) Å	$\beta = 91.380(2)$ °.			
	c = 11.1852(7) Å	$\gamma = 90$ °.			
Volume	2971.5(3) Å ³				
Z	4				
Density (calculated)	1.059 Mg/m ³				
Absorption coefficient	0.107 mm ⁻¹				
F(000)	1032				
Crystal size	0.180 x 0.160 x 0.130 mm ³				
Theta range for data collection	2.424 to 25.997 °.				
Index ranges	-41<=h<=41, -9<=k<=9, -13<=l<=13				
Reflections collected	34676				
Independent reflections	5776 [R(int) = 0.0320]				
Completeness to theta = 25.242°	99.1 %				
Absorption correction	Semi-empirical from equivalents				
Max. and min. transmission	0.7456 and 0.6943				
Refinement method	Full-matrix least-squares on F ²				
Data / restraints / parameters	5776 / 1 / 307				
Goodness-of-fit on F ²	1.008				
Final R indices [I>2sigma(I)]	R1 = 0.0449, wR2 = 0.1270				
R indices (all data)	R1 = 0.0538, $wR2 = 0.1375$				
Absolute structure parameter	-0.04(3)				
Largest diff. peak and hole	0.204 and -0.142 e.Å ⁻³				

Table 2. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2x 103)for mo_d8v17583_0m. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	У	Z	U(eq)
Si(1)	7555(1)	2423(1)	7619(1)	79(1)

N(1)	6133(1)	3742(3)	7204(2)	62(1)
O(1)	7217(1)	3428(3)	6809(2)	83(1)
O(2)	5465(1)	3859(3)	3997(3)	121(1)
O(3)	5520(1)	3272(4)	7927(2)	84(1)
O(4)	6059(1)	3449(4)	9166(2)	75(1)
C(1)	5970(1)	3614(4)	5966(2)	64(1)
C(2)	6254(1)	2582(5)	5203(3)	80(1)
C(3)	6686(1)	3098(5)	5364(3)	83(1)
C(4)	6806(1)	2994(4)	6653(3)	75(1)
C(5)	6554(1)	4155(4)	7432(3)	67(1)
C(6)	6654(1)	6042(4)	7263(3)	75(1)
C(7)	6440(1)	7186(5)	8074(4)	99(1)
C(8)	6255(2)	8535(8)	7804(7)	146(2)
C(9)	5862(1)	5334(3)	5429(3)	63(1)
C(10)	5562(1)	5218(4)	4408(3)	69(1)
C(11)	5384(1)	6787(4)	3897(2)	62(1)
C(12)	5508(1)	8390(4)	4253(3)	80(1)
C(13)	5333(2)	9800(5)	3753(5)	102(1)
C(14)	5035(1)	9660(5)	2923(4)	99(1)
C(15)	4910(1)	8070(6)	2551(3)	93(1)
C(16)	5082(1)	6638(5)	3040(3)	75(1)
C(17)	5872(1)	3471(4)	8094(2)	61(1)
C(18)	5832(1)	3312(8)	10264(3)	100(1)
C(19)	6165(2)	3342(13)	11215(4)	155(3)
C(20)	5579(2)	4851(13)	10362(6)	179(4)
C(21)	5613(2)	1711(13)	10295(6)	174(3)
C(22)	7564(2)	143(6)	7232(7)	126(2)
C(23)	7436(2)	2639(10)	9231(4)	150(2)
C(24)	8026(1)	3551(6)	7227(4)	96(1)
C(25)	8099(2)	3361(8)	5893(5)	141(2)
C(26)	8372(2)	2879(17)	7983(12)	265(7)
C(27)	7979(2)	5454(7)	7460(5)	122(2)

Si(1)-O(1)	1.641(3)
Si(1)-C(22)	1.854(5)
Si(1)-C(23)	1.864(5)
Si(1)-C(24)	1.879(4)
N(1)-C(17)	1.359(3)
N(1)-C(5)	1.471(4)
N(1)-C(1)	1.481(3)
O(1)-C(4)	1.430(4)
O(2)-C(10)	1.211(4)
O(3)-C(17)	1.202(3)
O(4)-C(17)	1.340(3)
O(4)-C(18)	1.464(3)
C(1)-C(9)	1.527(4)
C(1)-C(2)	1.531(4)
C(1)-H(1)	0.9800
C(2)-C(3)	1.517(5)
C(2)-H(2A)	0.9700
C(2)-H(2B)	0.9700
C(3)-C(4)	1.489(5)
C(3)-H(3A)	0.9700
C(3)-H(3B)	0.9700
C(4)-C(5)	1.533(4)
C(4)-H(4)	0.9800
C(5)-C(6)	1.541(5)
C(5)-H(5)	0.9800
C(6)-C(7)	1.480(5)
C(6)-H(6A)	0.9700
C(6)-H(6B)	0.9700
C(7)-C(8)	1.266(8)
C(7)-H(7)	0.9300
C(8)-H(8A)	0.9300
C(8)-H(8B)	0.9300
C(9)-C(10)	1.508(4)
C(9)-H(9A)	0.9700
C(9)-H(9B)	0.9700
C(10)-C(11)	1.486(4)

Table 3. Bond lengths [Å] and angles [] for mo_d8v17583_0m.

C(11)-C(16)	1.384(5)
C(11)-C(12)	1.389(5)
C(12)-C(13)	1.372(5)
C(12)-H(12)	0.9300
C(13)-C(14)	1.354(7)
C(13)-H(13)	0.9300
C(14)-C(15)	1.387(7)
C(14)-H(14)	0.9300
C(15)-C(16)	1.379(5)
C(15)-H(15)	0.9300
C(16)-H(16)	0.9300
C(18)-C(21)	1.466(9)
C(18)-C(20)	1.490(9)
C(18)-C(19)	1.526(6)
C(19)-H(19A)	0.9600
C(19)-H(19B)	0.9600
C(19)-H(19C)	0.9600
C(20)-H(20A)	0.9600
C(20)-H(20B)	0.9600
C(20)-H(20C)	0.9600
C(21)-H(21A)	0.9600
C(21)-H(21B)	0.9600
C(21)-H(21C)	0.9600
C(22)-H(22A)	0.9600
C(22)-H(22B)	0.9600
C(22)-H(22C)	0.9600
C(23)-H(23A)	0.9600
C(23)-H(23B)	0.9600
C(23)-H(23C)	0.9600
C(24)-C(26)	1.517(8)
C(24)-C(25)	1.525(7)
C(24)-C(27)	1.536(7)
C(25)-H(25A)	0.9600
C(25)-H(25B)	0.9600
C(25)-H(25C)	0.9600
C(26)-H(26A)	0.9600
C(26)-H(26B)	0.9600
C(26)-H(26C)	0.9600

C(27)-H(27A)	0.9600
C(27)-H(27B)	0.9600
C(27)-H(27C)	0.9600
O(1)-Si(1)-C(22)	110.9(2)
O(1)-Si(1)-C(23)	109.1(3)
C(22)-Si(1)-C(23)	108.7(3)
O(1)-Si(1)-C(24)	102.60(15)
C(22)-Si(1)-C(24)	112.8(2)
C(23)-Si(1)-C(24)	112.6(3)
C(17)-N(1)-C(5)	123.0(2)
C(17)-N(1)-C(1)	116.3(2)
C(5)-N(1)-C(1)	120.7(2)
C(4)-O(1)-Si(1)	127.3(2)
C(17)-O(4)-C(18)	120.6(2)
N(1)-C(1)-C(9)	112.7(2)
N(1)-C(1)-C(2)	109.7(2)
C(9)-C(1)-C(2)	113.6(2)
N(1)-C(1)-H(1)	106.8
C(9)-C(1)-H(1)	106.8
C(2)-C(1)-H(1)	106.8
C(3)-C(2)-C(1)	113.6(3)
C(3)-C(2)-H(2A)	108.9
C(1)-C(2)-H(2A)	108.9
C(3)-C(2)-H(2B)	108.9
C(1)-C(2)-H(2B)	108.9
H(2A)-C(2)-H(2B)	107.7
C(4)-C(3)-C(2)	109.6(3)
C(4)-C(3)-H(3A)	109.8
C(2)-C(3)-H(3A)	109.8
C(4)-C(3)-H(3B)	109.8
C(2)-C(3)-H(3B)	109.8
H(3A)-C(3)-H(3B)	108.2
O(1)-C(4)-C(3)	110.0(3)
O(1)-C(4)-C(5)	109.3(3)
C(3)-C(4)-C(5)	112.2(3)
O(1)-C(4)-H(4)	108.4
C(3)-C(4)-H(4)	108.4

C(5)-C(4)-H(4)	108.4
N(1)-C(5)-C(4)	108.1(2)
N(1)-C(5)-C(6)	113.8(3)
C(4)-C(5)-C(6)	112.7(2)
N(1)-C(5)-H(5)	107.3
C(4)-C(5)-H(5)	107.3
C(6)-C(5)-H(5)	107.3
C(7)-C(6)-C(5)	114.0(3)
C(7)-C(6)-H(6A)	108.8
C(5)-C(6)-H(6A)	108.8
C(7)-C(6)-H(6B)	108.8
C(5)-C(6)-H(6B)	108.8
H(6A)-C(6)-H(6B)	107.7
C(8)-C(7)-C(6)	127.7(5)
C(8)-C(7)-H(7)	116.2
C(6)-C(7)-H(7)	116.2
C(7)-C(8)-H(8A)	120.0
C(7)-C(8)-H(8B)	120.0
H(8A)-C(8)-H(8B)	120.0
C(10)-C(9)-C(1)	113.0(2)
C(10)-C(9)-H(9A)	109.0
C(1)-C(9)-H(9A)	109.0
C(10)-C(9)-H(9B)	109.0
C(1)-C(9)-H(9B)	109.0
H(9A)-C(9)-H(9B)	107.8
O(2)-C(10)-C(11)	119.5(3)
O(2)-C(10)-C(9)	120.7(3)
C(11)-C(10)-C(9)	119.8(2)
C(16)-C(11)-C(12)	119.0(3)
C(16)-C(11)-C(10)	118.6(3)
C(12)-C(11)-C(10)	122.4(3)
C(13)-C(12)-C(11)	120.2(3)
C(13)-C(12)-H(12)	119.9
C(11)-C(12)-H(12)	119.9
C(14)-C(13)-C(12)	121.0(4)
C(14)-C(13)-H(13)	119.5
C(12)-C(13)-H(13)	119.5
C(13)-C(14)-C(15)	119.6(3)

C(13)-C(14)-H(14)	120.2
C(15)-C(14)-H(14)	120.2
C(16)-C(15)-C(14)	120.2(4)
C(16)-C(15)-H(15)	119.9
C(14)-C(15)-H(15)	119.9
C(15)-C(16)-C(11)	119.9(4)
C(15)-C(16)-H(16)	120.0
C(11)-C(16)-H(16)	120.0
O(3)-C(17)-O(4)	125.1(2)
O(3)-C(17)-N(1)	123.8(2)
O(4)-C(17)-N(1)	111.1(2)
C(21)-C(18)-O(4)	110.9(4)
C(21)-C(18)-C(20)	114.5(5)
O(4)-C(18)-C(20)	108.1(5)
C(21)-C(18)-C(19)	111.0(6)
O(4)-C(18)-C(19)	101.3(3)
C(20)-C(18)-C(19)	110.3(6)
C(18)-C(19)-H(19A)	109.5
C(18)-C(19)-H(19B)	109.5
H(19A)-C(19)-H(19B)	109.5
C(18)-C(19)-H(19C)	109.5
H(19A)-C(19)-H(19C)	109.5
H(19B)-C(19)-H(19C)	109.5
C(18)-C(20)-H(20A)	109.5
C(18)-C(20)-H(20B)	109.5
H(20A)-C(20)-H(20B)	109.5
C(18)-C(20)-H(20C)	109.5
H(20A)-C(20)-H(20C)	109.5
H(20B)-C(20)-H(20C)	109.5
C(18)-C(21)-H(21A)	109.5
C(18)-C(21)-H(21B)	109.5
H(21A)-C(21)-H(21B)	109.5
C(18)-C(21)-H(21C)	109.5
H(21A)-C(21)-H(21C)	109.5
H(21B)-C(21)-H(21C)	109.5
Si(1)-C(22)-H(22A)	109.5
Si(1)-C(22)-H(22B)	109.5
H(22A)-C(22)-H(22B)	109.5

Si(1)-C(22)-H(22C)	109.5
H(22A)-C(22)-H(22C)	109.5
H(22B)-C(22)-H(22C)	109.5
Si(1)-C(23)-H(23A)	109.5
Si(1)-C(23)-H(23B)	109.5
H(23A)-C(23)-H(23B)	109.5
Si(1)-C(23)-H(23C)	109.5
H(23A)-C(23)-H(23C)	109.5
H(23B)-C(23)-H(23C)	109.5
C(26)-C(24)-C(25)	111.8(7)
C(26)-C(24)-C(27)	109.2(7)
C(25)-C(24)-C(27)	106.4(4)
C(26)-C(24)-Si(1)	110.1(4)
C(25)-C(24)-Si(1)	109.7(3)
C(27)-C(24)-Si(1)	109.5(3)
C(24)-C(25)-H(25A)	109.5
C(24)-C(25)-H(25B)	109.5
H(25A)-C(25)-H(25B)	109.5
C(24)-C(25)-H(25C)	109.5
H(25A)-C(25)-H(25C)	109.5
H(25B)-C(25)-H(25C)	109.5
C(24)-C(26)-H(26A)	109.5
C(24)-C(26)-H(26B)	109.5
H(26A)-C(26)-H(26B)	109.5
C(24)-C(26)-H(26C)	109.5
H(26A)-C(26)-H(26C)	109.5
H(26B)-C(26)-H(26C)	109.5
C(24)-C(27)-H(27A)	109.5
C(24)-C(27)-H(27B)	109.5
H(27A)-C(27)-H(27B)	109.5
C(24)-C(27)-H(27C)	109.5
H(27A)-C(27)-H(27C)	109.5
H(27B)-C(27)-H(27C)	109.5

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for mo_d8v17583_0m. The anisotropic

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Si(1)	85(1)	66(1)	86(1)	10(1)	13(1)	6(1)
N(1)	61(1)	70(1)	55(1)	4(1)	5(1)	-9(1)
O(1)	64(1)	77(1)	110(2)	19(1)	19(1)	4(1)
O(2)	181(3)	54(1)	124(2)	-6(1)	-72(2)	-5(2)
O(3)	58(1)	119(2)	74(1)	5(1)	0(1)	-11(1)
O(4)	60(1)	111(2)	54(1)	10(1)	4(1)	-2(1)
C(1)	76(2)	56(1)	58(1)	2(1)	0(1)	-7(1)
C(2)	107(2)	62(2)	70(2)	-8(2)	2(2)	10(2)
C(3)	101(2)	72(2)	79(2)	-5(2)	27(2)	16(2)
C(4)	70(2)	62(2)	93(2)	8(1)	15(1)	2(1)
C(5)	58(1)	75(2)	66(2)	2(1)	7(1)	-8(1)
C(6)	65(2)	71(2)	89(2)	-12(2)	11(1)	-10(1)
C(7)	107(3)	85(3)	105(3)	-27(2)	18(2)	-12(2)
C(8)	145(4)	97(3)	198(6)	-43(4)	40(4)	4(3)
C(9)	74(2)	53(1)	61(2)	-3(1)	6(1)	-2(1)
C(10)	92(2)	50(1)	64(2)	-3(1)	-5(1)	-5(1)
C(11)	71(2)	59(1)	56(1)	4(1)	9(1)	-1(1)
C(12)	89(2)	55(2)	97(2)	3(2)	-3(2)	-5(2)
C(13)	122(3)	55(2)	128(3)	14(2)	1(3)	0(2)
C(14)	108(3)	82(3)	108(3)	28(2)	12(2)	23(2)
C(15)	93(2)	108(3)	79(2)	17(2)	3(2)	19(2)
C(16)	82(2)	81(2)	63(2)	1(2)	9(1)	2(2)
C(17)	57(1)	66(2)	61(1)	6(1)	3(1)	-1(1)
C(18)	79(2)	166(4)	54(2)	0(2)	15(1)	0(3)
C(19)	134(4)	267(9)	61(2)	18(4)	-12(2)	-2(5)
C(20)	167(6)	262(10)	108(4)	-44(5)	28(4)	84(6)
C(21)	172(6)	247(9)	104(4)	54(5)	30(4)	-79(6)
C(22)	123(4)	69(2)	185(5)	-2(3)	8(3)	13(2)
C(23)	208(6)	154(5)	88(3)	22(3)	31(3)	-4(5)
C(24)	75(2)	97(3)	115(3)	14(2)	-1(2)	5(2)
C(25)	154(4)	115(4)	158(4)	-12(4)	88(4)	-8(3)
C(26)	109(4)	286(13)	395(15)	190(13)	-81(7)	-31(6)
<u>C(27)</u>	143(4)	103(3)	121(4)	-14(3)	15(3)	-40(3)

displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	X	у	Z	U(eq)
H(1)	5722	2967	6005	77
H(2A)	6228	1395	5407	95
H(2B)	6175	2711	4367	95
H(3A)	6853	2354	4901	100
H(3B)	6722	4245	5078	100
H(4)	6769	1826	6922	89
H(5)	6617	3871	8269	80
H(6A)	6938	6200	7392	90
H(6B)	6590	6358	6443	90
H(7)	6440	6878	8876	119
H(8A)	6244	8907	7015	175
H(8B)	6131	9155	8395	175
H(9A)	5756	6049	6049	75
H(9B)	6102	5867	5145	75
H(12)	5709	8508	4831	96
H(13)	5421	10867	3988	122
H(14)	4915	10625	2605	119
H(15)	4709	7969	1968	112
H(16)	4996	5573	2795	90
H(19A)	6368	2548	11005	232
H(19B)	6060	3038	11975	232
H(19C)	6278	4457	11263	232
H(20A)	5745	5840	10367	268
H(20B)	5434	4803	11090	268
H(20C)	5395	4900	9692	268
H(21A)	5420	1682	9648	261
H(21B)	5479	1618	11041	261
H(21C)	5795	785	10218	261
H(22A)	7337	-407	7557	188
H(22B)	7803	-361	7560	188
H(22C)	7559	17	6378	188
H(23A)	7382	3804	9408	225

Table 5. Hydrogen coordinates ($x\ 10^4$) and isotropic displacement parameters (Å $^2x\ 10\ ^3$) for mo_d8v17583_0m.

H(23B)	7658	2256	9714	225
H(23C)	7206	1969	9400	225
H(25A)	8347	3888	5704	211
H(25B)	7886	3895	5445	211
H(25C)	8109	2182	5691	211
H(26A)	8618	3256	7654	397
H(26B)	8365	1665	7985	397
H(26C)	8352	3290	8786	397
H(27A)	7881	5625	8250	183
H(27B)	7794	5925	6883	183
H(27C)	8232	6002	7394	183

C(22)-Si(1)-O(1)-C(4)	52.3(3)
C(23)-Si(1)-O(1)-C(4)	-67.5(4)
C(24)-Si(1)-O(1)-C(4)	172.9(3)
C(17)-N(1)-C(1)-C(9)	97.5(3)
C(5)-N(1)-C(1)-C(9)	-82.1(3)
C(17)-N(1)-C(1)-C(2)	-135.0(3)
C(5)-N(1)-C(1)-C(2)	45.4(3)
N(1)-C(1)-C(2)-C(3)	-46.3(4)
C(9)-C(1)-C(2)-C(3)	80.7(3)
C(1)-C(2)-C(3)-C(4)	55.6(4)
Si(1)-O(1)-C(4)-C(3)	-134.1(3)
Si(1)-O(1)-C(4)-C(5)	102.2(3)
C(2)-C(3)-C(4)-O(1)	178.2(3)
C(2)-C(3)-C(4)-C(5)	-59.8(3)
C(17)-N(1)-C(5)-C(4)	131.3(3)
C(1)-N(1)-C(5)-C(4)	-49.1(3)
C(17)-N(1)-C(5)-C(6)	-102.6(3)
C(1)-N(1)-C(5)-C(6)	76.9(3)
O(1)-C(4)-C(5)-N(1)	177.0(2)
C(3)-C(4)-C(5)-N(1)	54.7(3)
O(1)-C(4)-C(5)-C(6)	50.3(4)
C(3)-C(4)-C(5)-C(6)	-72.0(4)
N(1)-C(5)-C(6)-C(7)	61.1(4)
C(4)-C(5)-C(6)-C(7)	-175.3(3)
C(5)-C(6)-C(7)-C(8)	-132.7(5)
N(1)-C(1)-C(9)-C(10)	-158.0(2)
C(2)-C(1)-C(9)-C(10)	76.6(3)
C(1)-C(9)-C(10)-O(2)	-8.6(5)
C(1)-C(9)-C(10)-C(11)	171.5(3)
O(2)-C(10)-C(11)-C(16)	6.2(5)
C(9)-C(10)-C(11)-C(16)	-173.9(3)
O(2)-C(10)-C(11)-C(12)	-174.1(4)
C(9)-C(10)-C(11)-C(12)	5.8(4)
C(16)-C(11)-C(12)-C(13)	-0.3(5)
C(10)-C(11)-C(12)-C(13)	180.0(4)
C(11)-C(12)-C(13)-C(14)	1.0(6)

Table 6. Torsion angles [^o] for mo_d8v17583_0m.

C(12)-C(13)-C(14)-C(15)	-1.5(7)
C(13)-C(14)-C(15)-C(16)	1.4(6)
C(14)-C(15)-C(16)-C(11)	-0.7(5)
C(12)-C(11)-C(16)-C(15)	0.2(5)
C(10)-C(11)-C(16)-C(15)	179.9(3)
C(18)-O(4)-C(17)-O(3)	-5.3(5)
C(18)-O(4)-C(17)-N(1)	175.0(3)
C(5)-N(1)-C(17)-O(3)	173.6(3)
C(1)-N(1)-C(17)-O(3)	-6.0(4)
C(5)-N(1)-C(17)-O(4)	-6.7(4)
C(1)-N(1)-C(17)-O(4)	173.7(2)
C(17)-O(4)-C(18)-C(21)	62.3(6)
C(17)-O(4)-C(18)-C(20)	-63.9(6)
C(17)-O(4)-C(18)-C(19)	-179.9(5)
O(1)-Si(1)-C(24)-C(26)	175.2(7)
C(22)-Si(1)-C(24)-C(26)	-65.4(8)
C(23)-Si(1)-C(24)-C(26)	58.1(8)
O(1)-Si(1)-C(24)-C(25)	-61.3(4)
C(22)-Si(1)-C(24)-C(25)	58.1(4)
C(23)-Si(1)-C(24)-C(25)	-178.5(4)
O(1)-Si(1)-C(24)-C(27)	55.1(4)
C(22)-Si(1)-C(24)-C(27)	174.5(4)
C(23)-Si(1)-C(24)-C(27)	-62.1(4)

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for mo_d8v17583_0m [Å and \degree].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)

ORTEP drawing of the X-ray crystallographic structure of 10b

CCDC1585539 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

Table 1. Crystal data and structure refinement	for cu_d8v17582_0m.	
Identification code	cu_d8v17582_0m	
Empirical formula	C14 H23 N O2	
Formula weight	237.33	
Temperature	296(2) K	
Wavelength	1.54178 Å	
Crystal system	Orthorhombic	
Space group	P 21 21 21	
Unit cell dimensions	$a = 7.7672(2) \text{ Å}$ $\alpha = 90 \degree$	
	$b = 9.3611(3) \text{ Å}$ $\beta = 90 \degree$	
	$c = 19.2665(6) \text{ Å}$ $\gamma = 90 \degree$	
Volume	1400.86(7) Å ³	
Z	4	
Density (calculated)	1.125 Mg/m ³	
Absorption coefficient	0.587 mm ⁻¹	
F(000)	520	
Crystal size	0.180 x 0.150 x 0.120 mm ³	
Theta range for data collection	6.594 to 70.077 °.	
Index ranges	-9<=h<=7, -10<=k<=11, -18<=l<=23	
Reflections collected	8103	
Independent reflections	2596 [R(int) = 0.0319]	
Completeness to theta = 67.679°	97.9 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7533 and 0.5926	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	2596 / 0 / 162	
Goodness-of-fit on F ²	1.061	
Final R indices [I>2sigma(I)]	R1 = 0.0448, wR2 = 0.1198	
R indices (all data)	R1 = 0.0484, wR2 = 0.1238	
Absolute structure parameter	0.16(12)	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.192 and -0.132 e.Å ⁻³	

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10^3)

	Х	у	Z	U(eq)
O(1)	1742(3)	1244(2)	4207(1)	75(1)
O(2)	4548(2)	6895(2)	2887(1)	63(1)
N(1)	3644(3)	3100(2)	3237(1)	48(1)
C(1)	3097(4)	599(2)	4209(1)	59(1)
C(2)	3191(5)	-968(3)	4384(2)	83(1)
C(3)	4494(5)	-1254(3)	4949(2)	84(1)
C(4)	6216(5)	-643(3)	4763(2)	78(1)
C(5)	6103(4)	961(3)	4611(2)	76(1)
C(6)	4794(3)	1305(2)	4038(1)	53(1)
C(7)	4599(3)	2911(2)	3891(1)	51(1)
C(8)	6316(3)	3679(3)	3820(1)	61(1)
C(9)	6035(4)	5255(3)	3639(1)	62(1)
C(10)	4942(3)	5430(2)	2997(1)	49(1)
C(11)	3256(3)	4601(2)	3067(1)	50(1)
C(12)	2203(3)	4660(3)	2399(1)	62(1)
C(13)	442(4)	4050(4)	2460(2)	87(1)
C(14)	-306(6)	3221(6)	2082(3)	131(2)

for cu_d8v17582_0m. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.
Table 3. Bond lengths [Å] and angles [] for cu_d8v17582_0m.

O(2)-C(10)-C(11)	108.56(18)
C(9)-C(10)-C(11)	110.77(18)
N(1)-C(11)-C(12)	109.34(19)
N(1)-C(11)-C(10)	109.15(18)
C(12)-C(11)-C(10)	111.48(18)
C(13)-C(12)-C(11)	114.3(2)
C(14)-C(13)-C(12)	129.7(4)

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	75(1)	62(1)	89(1)	11(1)	18(1)	-1(1)
O(2)	74(1)	41(1)	73(1)	7(1)	16(1)	3(1)
N(1)	53(1)	42(1)	50(1)	2(1)	2(1)	-6(1)
C(1)	78(2)	46(1)	52(1)	4(1)	10(1)	-1(1)
C(2)	96(2)	51(1)	103(2)	17(1)	9(2)	-7(2)
C(3)	123(3)	55(1)	76(2)	21(1)	12(2)	7(2)
C(4)	104(2)	58(2)	73(2)	12(1)	-12(2)	9(2)
C(5)	94(2)	57(1)	76(2)	11(1)	-21(2)	-3(1)
C(6)	70(1)	44(1)	44(1)	1(1)	5(1)	1(1)
C(7)	67(1)	42(1)	45(1)	1(1)	3(1)	-2(1)
C(8)	69(1)	53(1)	60(1)	6(1)	-13(1)	-7(1)
C(9)	74(2)	49(1)	62(1)	2(1)	-5(1)	-13(1)
C(10)	56(1)	40(1)	52(1)	2(1)	7(1)	0(1)
C(11)	53(1)	44(1)	53(1)	3(1)	9(1)	2(1)
C(12)	56(1)	61(1)	69(2)	16(1)	-1(1)	-1(1)
C(13)	58(2)	107(3)	97(2)	29(2)	-7(2)	-13(2)
C(14)	102(3)	159(4)	132(4)	23(3)	-24(3)	-63(3)

Table 4.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for cu_d8v17582_0m. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2 [h^2 \ a^{*2} U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}]$

	х	У	Z	U(eq)
H(2A)	3505	-1503	3972	100
H(2B)	2067	-1296	4535	100
H(3A)	4098	-832	5380	101
H(3B)	4602	-2276	5019	101
H(4A)	6660	-1133	4357	94
H(4B)	7013	-801	5142	94
H(5A)	7229	1306	4472	91
H(5B)	5777	1460	5032	91
H(6)	5220	861	3610	63
H(7)	3942	3350	4269	61
H(8A)	6994	3226	3459	73
H(8B)	6949	3607	4253	73
H(9A)	5478	5730	4026	74
H(9B)	7142	5710	3565	74
H(10)	5579	5066	2595	59
H(11)	2577	5018	3445	60
H(12A)	2110	5649	2252	75
H(12B)	2820	4146	2039	75
H(13)	-179	4349	2847	105
H(14A)	235	2876	1685	157
H(14B)	-1420	2930	2188	157
H(1)	2730(40)	2660(30)	3273(17)	66(9)
H(2)	5180(40)	7220(30)	2542(18)	70(9)

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for cu_d8v17582_0m.

O(1)-C(1)-C(2)-C(3)	-127.2(3)
C(6)-C(1)-C(2)-C(3)	52.7(3)
C(1)-C(2)-C(3)-C(4)	-53.8(4)
C(2)-C(3)-C(4)-C(5)	56.4(4)
C(3)-C(4)-C(5)-C(6)	-56.1(4)
O(1)-C(1)-C(6)-C(5)	129.3(3)
C(2)-C(1)-C(6)-C(5)	-50.7(3)
O(1)-C(1)-C(6)-C(7)	2.0(3)
C(2)-C(1)-C(6)-C(7)	-178.0(2)
C(4)-C(5)-C(6)-C(1)	51.3(3)
C(4)-C(5)-C(6)-C(7)	177.8(2)
C(11)-N(1)-C(7)-C(8)	-61.4(2)
C(11)-N(1)-C(7)-C(6)	175.49(19)
C(1)-C(6)-C(7)-N(1)	-68.2(2)
C(5)-C(6)-C(7)-N(1)	166.9(2)
C(1)-C(6)-C(7)-C(8)	171.76(19)
C(5)-C(6)-C(7)-C(8)	46.9(3)
N(1)-C(7)-C(8)-C(9)	56.6(2)
C(6)-C(7)-C(8)-C(9)	177.2(2)
C(7)-C(8)-C(9)-C(10)	-55.0(3)
C(8)-C(9)-C(10)-O(2)	173.6(2)
C(8)-C(9)-C(10)-C(11)	53.3(3)
C(7)-N(1)-C(11)-C(12)	-177.60(19)
C(7)-N(1)-C(11)-C(10)	60.2(2)
O(2)-C(10)-C(11)-N(1)	-175.57(18)
C(9)-C(10)-C(11)-N(1)	-54.2(2)
O(2)-C(10)-C(11)-C(12)	63.5(2)
C(9)-C(10)-C(11)-C(12)	-175.1(2)
N(1)-C(11)-C(12)-C(13)	67.3(3)
C(10)-C(11)-C(12)-C(13)	-171.9(3)
C(11)-C(12)-C(13)-C(14)	-132.9(5)

Table 6. Torsion angles [^o] for cu_d8v17582_0m.

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for cu_d8v17582_0m [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)

The preferred 2,6-*cis* selectivity of forming **7a-7q** can be rationalized by classical transition state **TS**. Due to the steric bulkiness of 3-siloxy group, axial attack of the nucleophile to **TS** would be happened from the same face as that of 2-Allyl group, generating predominantly the 2,6-*cis*-diastereomer (**7a-7q**).

Proposed transition state for the formation of (2S,3S,6S)-7a-q