Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supplementary Information

Multiplexed detection of nucleic acids using ¹⁹F NMR chemical shift change based on DNA photo-cross-linking of 3-vinylcarbazole derivatives

Shigetaka Nakamura, Yasuharu Takashima, and Kenzo Fujimoto*

Department of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, Asahi-dai 1-1, Nomi, Ishikawa, 923-1292, Japan

General

General ¹H-NMR and 19F-NMR spectrum were recorded on a Bruker AVANCE III 400 system and Bruker AVANCE III 500 system, respectively. Mass spectra were recorded on a Voyager PRO-SF, Applied Biosystems. HPLC was performed on a Chemcosorb 5-ODS-H column with JASCO PU-980, HG-980-31, DG-980-50 system equipped with a JASCO UV 970 detector at 260 nm. Reagents for the DNA systemesizer such as A, G, C, T- β -cyanoethyl phosphoramidite , and CPG support were purchased form Glen research.

Preparation of modified oligonucleotides

The phosphoramidite of ^{CNV}K was prepared following to previous reports. The modified oligonucleotides containing ^{CNV}K or ^{OMeV}K were prepared, according to standard phosphoramidite chemistry using DNA synthesizer (ABI 3400 DNA synthesizer, Applied Biosystems, CA). The ODN containing ^{OMeV}K was postmodified to ODN containing ^{OMeV}K, ^{OHV}K, or ^{NH2V}K in deprotection step. Synthesized ODN were detached from the support by soaking in concentrated aqueous ammonia for 1 h at room temperature. Deprotection was conducted by heating the concentration aqueous for 4 h at 65°C concentrated aqueous ammonia was then removing it by speedvac, and the crude oligomer was purified by reverse phase HPLC equipped with InertSustainTM C18 column Cosmosil TM5C18-AR-II column (5 μ m, 10 × 150 mm, Nacalai tesque, Flow rate of 3.0 mL/min, 60°C) and lyophilized. Synthesis of ODN was confirmed by MALDI-TOF-MS. Other ODNs and miRNAs were purchased from Fasmac (Japan).

Synthesis ODN containing TFT

The phosphoramidite ^{TF}T was prepared according to a method reported in literature. The modified oligonucleotides containing ^{TF}T were prepared, according to standard phosphoramidite chemistry, on a DNA synthesizer using the phosphoramidite of ^{TF}T. Synthesized ODN were detached from the support and deprotected in 50 mM K_2CO_3 in MeOH for 8 h at room temperature. Then it was neutralize by trichloroacetic acid and removing solvent by speedvac, and the crude oligomer was purified by reverse phase HPLC and lyophilized.

19F-NMR measurements

19F-NMR spectra were measured on a Bruker AVANCE III 500 instrument with a 5 mm probe head (PA BBO 500S2 BBF-H-D-05 Z) at 470 MHz for fluorine. The solvent for 19F-NMR measurement was 10 mM Tris-HCl buffer (pH7.0) containing 100 mM NaCl and 10 μ M trifluoroacetic acid (for internal standard, -75.6 ppm) and 10% D₂O.

Photoirradiation

The ODN containing ^{TF}T (20 μ M) and ODN containing 3-vinylcarbazole derivatives (20 μ M) in buffer solution (10 mM Tris-HCl buffer (pH7.0) containing 100 mM NaCl and 10 μ M trifluoroacetic acid) was -irradiated at 366 nm using UV-LED illuminator(OMRON Inc, 1600 mW) at 4°C and then it was analyzed HPLC and NMR measurement.

UPLC analysis

The samples were analyzed with UPLC system (Aquity, Waters) equipped with BEH Shield RP18 column ($1.7\mu m$, 2.1×50 nm, elution was with 0.05M ammnonium formate containing 1-10% CH3CN, linear gradient (10min) at a flow rate of 0.4 mL/min, 60°C).

MicroRNA detection procedure based on ¹⁹F chemical shift coupled with HCR

Each hairpin probe was hated to 90% for 3 min and then allowed to cool to 37° C for 1h before use. Then 10 nM miRNA was incubated at 37° C for 24 h with 10 μ M each hairpin probes in 50 mM cacodylate buffer containing 100 mM NaCl. After incubation, the photo-irradiation at 366 nm was performed at 37° C for 10 s.

Entry	Sequence(5'-3')	Calcd [M+H]+	Found
ODN (^{NH2V} K)	TGCA ^{NH2V} KACGT	2823.55	2823.67
ODN (^{OHV} K)	TGCA ^{OHV} KACGT	2824.54	2824.84
ODN (^{OMeV}K)	TGCA ^{OMeV} KACGT	2838.55	2829.02
ODN (^{TF}T)	ACGTG ^{TF} TGCA	2792.47	2792.91
ODN (T)	ACGTGTGCA	2738.50	2738.82

Table S1 MALDI-TOF-MS analysis of ODN

Figure S1. UPLC chromatograms of the duplex consisting of ODN (^{NH2V}K) and ODN (^{TF}T) after the indicated time period of 366 nm photoirradiation. [dsDNA] = 20 μ M in 10 mM Tris-HCl buffer (pH7.0) containing 100 mM NaCl and 10 μ M trifluoroacetic acid.

Figure S2. UPLC chromatograms of the duplex consisting of ODN (NH2V K) and ODN(T) after the indicated time period of 366 nm photoirradiation. [dsDNA] = 20 μ M in 10 mM Tris-HCl buffer (pH7.0) containing 100 mM NaCl and 10 μ M trifluoroacetic acid.

Figure S3. 19F NMR spectra of the duplex consisting of ODN (NH2V K) and ODN(TF T) after the indicated time period of 366 nm photoirradiation. [dsDNA] = 20 μ M in 10 mM Tris-HCl buffer (pH7.0) containing 100 mM NaCl and 10 μ M trifluoroacetic acid.

Figure S4. UPLC chromatograms of the duplex consisting of ODN (^{OHV}K) and ODN (^{TF}T) after the indicated time period of 366 nm photoirradiation. [dsDNA] = 20 μ M in 10 mM Tris-HCl buffer (pH7.0) containing 100 mM NaCl and 10 μ M trifluoroacetic acid.

Figure S5. UPLC chromatograms of the duplex consisting of ODN (OHV K) and ODN (T) after the indicated time period of 366 nm photoirradiation. [dsDNA] = 20 μ M in 10 mM Tris-HCl buffer (pH7.0) containing 100 mM NaCl and 10 μ M trifluoroacetic acid.

Figure S6. 19F NMR spectra of the duplex consisting of ODN 1 (^{OHV}K) and ODN (^{TF}T) after the indicated time period of 366 nm photoirradiation. [dsDNA] = 20 μ M in 10 mM Tris-HCl buffer (pH7.0) containing 100 mM NaCl and 10 μ M trifluoroacetic acid.

Table S2. The sequence of hairpin probe

Entry	Sequnece(5'-3')
Hairpin- ^{CNV} K-a	${\rm TCTGGTAACGATGTTGAAA^{CNV}KCTACATCGTTACCAGACAG^{\rm TF}TGTTA}$
Hairpin- ^{CNV} K-b	$\mathbf{A}\mathbf{G}\mathbf{G}^{\mathrm{TF}}\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{C}\mathbf{A}\mathbf{A}\mathbf{C}\mathbf{A}\mathbf{T}\mathbf{C}\mathbf{C}\mathbf{A}\mathbf{G}\mathbf{A}\mathbf{T}\mathbf{A}\mathbf{C}\mathbf{A}\mathbf{C}\mathbf{A}\mathbf{C}\mathbf{N}^{\mathrm{C}}\mathbf{K}\mathbf{T}\mathbf{G}\mathbf{T}\mathbf{C}\mathbf{T}\mathbf{G}\mathbf{G}\mathbf{T}\mathbf{A}\mathbf{A}\mathbf{C}\mathbf{G}\mathbf{A}\mathbf{T}\mathbf{G}\mathbf{T}\mathbf{T}\mathbf{C}\mathbf{A}\mathbf{C}\mathbf{G}\mathbf{A}\mathbf{T}\mathbf{G}\mathbf{T}\mathbf{T}\mathbf{C}\mathbf{A}\mathbf{C}\mathbf{G}\mathbf{A}\mathbf{T}\mathbf{G}\mathbf{T}\mathbf{T}\mathbf{C}\mathbf{A}\mathbf{C}\mathbf{G}\mathbf{A}\mathbf{T}\mathbf{G}\mathbf{T}\mathbf{T}\mathbf{C}\mathbf{A}\mathbf{C}\mathbf{G}\mathbf{A}\mathbf{T}\mathbf{G}\mathbf{T}\mathbf{T}\mathbf{C}\mathbf{T}\mathbf{G}\mathbf{G}\mathbf{T}\mathbf{A}\mathbf{A}\mathbf{C}\mathbf{G}\mathbf{A}\mathbf{T}\mathbf{G}\mathbf{T}\mathbf{T}\mathbf{C}\mathbf{T}\mathbf{G}\mathbf{G}\mathbf{T}\mathbf{A}\mathbf{C}\mathbf{G}\mathbf{A}\mathbf{T}\mathbf{G}\mathbf{T}\mathbf{T}\mathbf{C}\mathbf{T}\mathbf{G}\mathbf{G}\mathbf{T}\mathbf{A}\mathbf{C}\mathbf{G}\mathbf{T}\mathbf{T}\mathbf{G}\mathbf{T}\mathbf{G}\mathbf{T}\mathbf{G}\mathbf{T}\mathbf{T}\mathbf{G}\mathbf{T}\mathbf{G}\mathbf{T}\mathbf{G}\mathbf{T}\mathbf{G}\mathbf{T}\mathbf{T}\mathbf{G}\mathbf{T}\mathbf{G}\mathbf{T}\mathbf{G}\mathbf{T}\mathbf{G}\mathbf{T}\mathbf{T}\mathbf{G}\mathbf{T}\mathbf{G}\mathbf{T}\mathbf{G}\mathbf{T}\mathbf{G}\mathbf{T}\mathbf{G}\mathbf{T}\mathbf{G}\mathbf{T}\mathbf{G}\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{G}\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{T}T$
Hairpin- ^{OHV} K-a	GTTGGCTAAGTTCTGCGCA ^{OHV} KTAGCAGAACTTAGCCACTG ^{TF} TGAA
Hairpin- ^{OHV} K-b	${\rm TA}^{\rm TF} {\rm TTGCGCAGAACTTAGCCACTTC}^{\rm OH} {\rm KCAGTGGCTAAGTTCTGC}$
Hairpin- ^{NH2V} K-a	${\rm AGTAGTTGTGCTGTTACA^{\rm NH2V}KGCAACTGCTCAAACTACTACC^{\rm TF}TCA}$
Hairpin- ^{NH2V} K-b	${\rm GCA}^{\rm TF}{\rm TGTAACAGCACAAACTACTTGA}^{\rm NH2V}{\rm KGTAGTAGTTTGTGCTGTT}$

Table S3 The sequence of target miRNA

Entry	Sequnece(5'-3')
miRNA 200a	UAACACUGUCUGGUAACGAUGU
miRNA let7i	UGAGGUAGUAGUUUGUGCUGUU
miRNA 27a	UUCACAGUGGCUAAGGUUCUGC