Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Effective and Diastereoselective Preparation of

Dispiro[cyclopent-3'-ene]bisoxindoles via Novel [3 + 2] Annulation of

Isoindigos and MBH Carbonates

Hong-Xia Ren,^{a,b} Lin Peng,^a Xiang-Jia Song,^{a,b} Li-Guo Liao,^{a,b} Ying Zou,^{a,b} Fang Tian^{a*} and Li-Xin Wang^{a*}

^{*a*} Key Laboratory of Asymmetric Synthesis & Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P.R. China.

E-mail: wlxioc@cioc.ac.cn, 452553462@qq.com

^b University of Chinese Academy of Sciences, Beijing 100039, P.R. China.

Supporting Information

Table of contents

1. General Information
2. General Procedures for the preparations of Isoindigos 1 and Morita–Baylis–Hillman Carbonates 2 S2
3. Procedure for Gram-Scale [3 + 2] Annulation and the deprotection of [3 + 2] product 3a
4. Crystal Information for 3f
5. ¹ H and ¹³ C NMR spectra for related reactants and products

1. General Information

Commercial grade solvent was dried and purified by standard procedures as specified in Purification of Laboratory Chemicals, 4th Ed (Armarego, W. L. F.; Perrin, D. D. Butterworth Heinemann: 1997). ¹H NMR and ¹³C NMR spectra were recorded on a Bruker Avance (300 MHz for ¹H NMR, 75 MHz for ¹³C NMR) instrument. Data for ¹H NMR are reported as chemical shift (ppm, tetramethylsilane as the internal standard), integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m= multiplet), coupling constant (Hz). Data for ¹³C NMR are reported as chemical shift. High resolution mass spectra were obtained with the Q-TOF-Premier mass spectrometer. Flash column chromatography was carried out using silica gel eluting with ethyl acetate and petroleum ether. Reactions were monitored by TLC and visualized with ultraviolet light.

2. General Procedures for the preparations of Isoindigos 1 and Morita-Baylis-Hillman Carbonates 2

All isoindigos **1** were synthesized according to our previous report. ^[1]

Morita-Baylis-Hillman carbonates 2 were synthesized as reported method:^[2]

Benzaldehyde (1.06 g, 10 mmol), methyl acrylate (1.72 g, 20 mmol) and DABCO (1.25 g, 10 mmol) were stirred for 3-7 days in a round-bottom flask. The reaction was detected by TLC. When completed, 20 mL water was added, and the aqueous phase was extracted with CH_2Cl_2 (20 mL × 2). The combined organic phase was washed with brine and dried over anhydrous Na_2SO_4 . After removal of solvent, the crude product was further purified by flash column chromatography (petroleum ether : ethyl acetate = 10:1) to obtain the MBH alcohol.

To the solution of MBH alcohol (1 g, 5.4 mmol) and Boc₂O (1.62 g, 5.73 mmol) in 10 mL CH₂Cl₂ was added DMAP (0.12 g, 1.04 mmol) in 2 mL CH₂Cl₂ dropwise. The mixture was stirred at room temperature for 90 mins and washed with water (20 mL×2). The CH₂Cl₂ phase was washed with brine and dried over anhydrous Na₂SO₄. After removal of solvent, the crude product was further purified by flash column chromatography (petroleum ether : ethyl acetate = 15:1) to obtain the MBH carbonates **2**.

Other MBH carbonates were synthesized with the same procedures.

Methyl 2-((tert-butoxycarbonyloxy)(phenyl)methyl)acrylate (2a). ¹H NMR (300 MHz, Chloroform-*d*) δ 7.34 (m, 5H), 6.48 (s, 1H), 6.40 (s, 1H), 5.91 (s, 1H), 3.71 (s, 3H), 1.46 (s, 9H)

Methyl 2-((tert-butoxycarbonyloxy)(2-fluorophenyl)methyl)acrylate (2b). ¹H NMR (300 MHz, Chloroform-*d*) δ 7.32 (m, 2H), 7.08 (m, 1H), 7.05 (m, 1H), 6.77 (s, 1H), 6.46 (s, 1H), 5.86 (d, *J* = 0.6 Hz, 1H), 3.71 (s, 3H), 1.46 (s, 9H)

Methyl 2-((tert-butoxycarbonyloxy)(4-fluorophenyl)methyl)acrylate (2c). ¹H NMR (300 MHz, Chloroform-d) δ 7.45-7.31 (m, 2H), 7.09-6.92 (m, 2H), 6.44 (s, 1H), 6.40 (d, J = 0.9 Hz, 1H), 5.94 (dd, J = 1.5, 0.8 Hz, 1H), 3.70 (s, 3H), 1.45 (s, 9H).

Boc [`]O

Methyl 2-((tert-butoxycarbonyloxy)(3-chlorophenyl)methyl)acrylate (2e). ¹H NMR (300 MHz, Chloroform-d) δ 7.39 (s, 1H), 7.33-7.20 (m, 3H), 6.43 (dq, J = 1.5, 0.9 Hz, 2H), 5.95 (dd, J = 1.4, 0.6 Hz, 1H), 3.72 (s, 3H), 1.47 (s, 9H).

Methyl 2-((tert-butoxycarbonyloxy)(4-chlorophenyl)methyl)acrylate (2f). ¹H NMR (300 MHz, Chloroform-*d*) δ 7.36–7.29 (m, 4H), 6.42 (d, J = 6.2 Hz, 2H), 5.94 (d, J = 1.4 Hz, 1H), 3.71 (s, 3H), 1.46 (s, 9H).

Boc \0

CI

Methyl 2-((2-bromophenyl) (tert-butoxycarbonyloxy)methyl)acrylate (2g). ¹H NMR (300 MHz, Chloroform-*d*) δ 7.58 (dd, J = 7.9, 1.3 Hz, 1H), 7.40 (dd, J = 7.8, 1.9 Hz, 1H), 7.32 (td, J = 7.5, 1.3 Hz, 1H), 7.19 (td, J = 7.6, 1.9 Hz, 1H), 6.84 (s, 1H), 6.48 (s, 1H), 5.62 (s, 1H), 3.76 (s, 3H), 1.48 (s, 9H).

Methyl 2-((3-bromophenyl) (tert-butoxycarbonyloxy) methyl)acrylate (2h). ¹H NMR (300 MHz, Chloroform-d) δ 7.53 (t, J = 1.9 Hz, 1H), 7.43 (ddd, J = 7.9, 2.0, 1.2 Hz, 1H), 7.34 (dt, J = 7.7, 1.4 Hz, 1H), 7.28–7.16 (m, 1H), 6.42 (q, J = 1.8, 1.3 Hz, 2H), 5.95 (d, J = 1.3 Hz, 1H), 3.72 (s, 3H), 1.46 (s, 9H).

Methyl 2-((tert-butoxycarbonyloxy)(o-tolyl)methyl)acrylate (2i). ¹H NMR (300 MHz, Chloroform-*d*) δ 7.31 (dd, *J* = 7.0, 2.1 Hz, 1H), 7.19 (dd, *J* = 5.6, 3.2 Hz, 3H), 6.72 (s, 1H), 6.42 (s, 1H), 5.72 (s, 1H), 3.73 (s, 3H), 2.40 (s, 3H), 1.46 (s, 9H).

Methyl 2-((tert-butoxycarbonyloxy)(p-tolyl)methyl)acrylate (2j). ¹H NMR (300 MHz, Chloroform-d) δ 7.39–7.22 (m, 2H), 7.14 (d, J = 7.6 Hz, 2H), 6.45 (s, 1H), 6.39 (s, 1H), 5.91 (s, 1H), 3.70 (s, 3H), 2.33 (s, 3H), 1.46 (s, 9H).

Methyl 2-((tert-butoxycarbonyloxy)(3-(tert-butoxycarbonyloxy)phenyl)methyl) acrylate (2k). ¹H NMR (300 MHz, Chloroform-*d*) δ 7.34 (t, J = 7.8 Hz, 1H), 7.29–7.23 (m, 1H), 7.20 (t, J = 1.9 Hz, 1H), 7.13 (ddd, J = 8.0, 2.4, 1.2 Hz, 1H), 6.47 (s, 1H), 6.41 (s, 1H), 5.91 (s, 1H), 3.72 (s, 3H), 1.55 (s, 9H), 1.46 (s, 9H).

Methyl 2-((tert-butoxycarbonyloxy)(3-nitrophenyl)methyl)acrylate (21). ¹H NMR (300 MHz, Chloroform-d) δ 8.24 (s, 1H), 8.14 (m, 1H), 7.74 (d, J = 7.7 Hz, 1H), 7.51 (t, J = 8.0 Hz, 1H), 6.51 (s, 1H), 6.46 (s, 1H), 6.04 (s, 1H), 3.70 (s, 3H), 1.44 (s, 9H).

Methyl 2-((tert-butoxycarbonyloxy)(4-nitrophenyl)methyl)acrylate (2m). ¹H NMR (300 MHz, Chloroform-*d*) δ 8.21 (d, J = 6.8 Hz, 2H), 7.60 (d, J = 6.8 Hz, 2H), 6.53 (s, 1H), 6.47 (s, 1H), 6.03 (s, 1H), 3.73 (s, 3H), 1.47 (s, 9H)

Methyl 2-((tert-butoxycarbonyloxy)(furan-2-yl)methyl)acrylate (2n). ¹H NMR (300 MHz, Chloroform-*d*) δ 7.39 (dd, J = 1.7, 1.0 Hz, 1H), 6.54 (s, 1H), 6.48 (t, J = 0.8 Hz, 1H), 6.37–6.28 (m, 2H), 6.06 (dd, J = 1.4, 0.7 Hz, 1H), 3.73 (s, 3H), 1.50 (s, 9H).

Butyl 2-((tert-butoxycarbonyloxy)(phenyl)methyl)acrylate (20). ¹H NMR (300 MHz, Chloroform-*d*) δ 7.44–7.29 (m, 5H), 6.48 (s, 1H), 6.41 (s, 1H), 5.89 (s, 1H), 4.10 (td, *J* = 6.6, 4.8 Hz, 2H), 1.63–1.50 (m, 2H), 1.46 (s, 9H), 1.37–1.21 (m, 2H), 0.88 (t, *J* = 7.4 Hz, 3H).

3. Procedure for Gram-Scale [3 + 2] Annulation and the deprotection of [3 + 2] product 3a

The Gram-Scale [3 + 2] Annulation: 3 mmol **1a** (1.38 g), 3.6 mmol **2a** (1.05 g) and 20 mol% Bu₃P was stirred in 25 mL toluene at room temperature under N₂ atmosphere, detected by TLC. After the reaction was completed (about 0.17 h), the crude product was directly purified by silica gel chromatography to give the desired [3 + 2] product **3a** (1.87 g, 98% yield, HPLC 99.5%).

To a solution of **3a** (63.6 mg, 0.1 mmol) in CH_2CI_2 (5 mL) was added CF_3COOH (1.4 mL, 20 mmol) at 0 °C. The reaction mixture was allowed to warm up to room temperature and stirred for 2h. Saturated Na_2CO_3 aqueous solution (10 mL) was added to quench the reaction, and the resulting mixture was extracted with CH_2CI_2 (10 mL×3) and the combined organic layer was washed with brine (20 mL) and dried by anhydrous Na_2SO_4 . After removal of solvent, the crude product was purified by flash column chromatography (PE: EA = 2:1) to afford the product **8** (41.9 mg, 96% yield, HPLC 99.3%).

Anti-1'-ethyl-spiro[4.3']oxindole-spiro[5.3'']1''-H-oxindole-cyclopent-2-methoxy carbonyl-3-benzene-1-ene 8: 96 % yield, white solid, m.p. 218.6-219.3 °C; ¹H NMR (300 MHz, Chloroform-*d*) δ 9.88 (s, 1H), 9.19 (s, 1H), 7.27–6.37 (m, 1H), 7.16 (d, J = 6Hz, 1H), 6.66 (m, 6H), 6.47 (m, 3H), 6.36 (m, 1H), 6.31 (m, 1H), 6.07 (m, 1H), 4.98 (d, J= 2.5 Hz, 1H), 3.28 (s, 3H); ¹³C NMR (75 MHz, Chloroform-*d*) δ 175.2, 174.0, 163.6, 142.4, 141.7, 141.6, 140.2, 135.5, 128.2, 127.9, 127.8, 126.3, 126.2, 126.0, 125.7,

125.0, 124.1, 121.1, 120.9, 108.8, 108.2, 66.8, 64.3, 56.0, 50.5, 39.5, 39.3, 39.0, 38.7, 38.4. HRMS-ESI (m/z): Calcd for $C_{27}H_{20}N_2O_4$, (M + H)⁺: 437.14958, found: 437.14978.

4. Crystal Information for 3f

Crystal data for **3f** (CCDC 1550592):

View of a molecule of **3f** with the atom-labelling scheme.

Displacement ellipsoids are drawn at the 30% probability level.

View of the pack drawing of **3f**.

Hydrogen-bonds are shown as dashed lines.

Table 1. Crystal data and structure refinement for mo_wlx_rhx1_0m.

Identification code	mo_wlx_rhx1_0m
Empirical formula	C37 H35 Cl N2 O8
Formula weight	671.12

Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume z Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges **Reflections collected** Independent reflections Completeness to theta = 25.242° Absorption correction Refinement method Data / restraints / parameters Goodness-of-fit on F^2 Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient Largest diff. peak and hole

100(2) K 0.71073 Å Monoclinic P21/c a = 15.0500(15) Å = 90°. b = 15.9438(16) Å = 113.382(2)°. c = 15.0274(15) Å = 90°. 3309.8(6) Å³ 4 1.347 Mg/m³ 0.172 mm⁻¹ 1408 $1.080 \times 0.510 \times 0.310 \text{ mm}^3$ 1.474 to 31.087°. -21<=h<=20, -21<=k<=22, -21<=l<=21 36531 9809 [R(int) = 0.0271] 99.8 % Semi-empirical from equivalents Full-matrix least-squares on F² 9809 / 0 / 440 1.026 R1 = 0.0410, wR2 = 0.1064 R1 = 0.0506, wR2 = 0.1126 n/a 1.296 and -0.507 e.Å $^{-3}$

5. ¹H and ¹³C NMR spectra for related reactants and products Reactant 2a

Reactant 2b

Reactant 2c

Reactant 2d

Reactant 2e

Reactant 2f

Reactant 2g

Reactant 2h

Reactant 2i

Reactant 2j

Reactant 2k

Reactant 2I

Reactant 2m

Reactant 2n

Reactant 2o

Product 3a

Product 3a' (the diastereomer of 3a)

Product 3b

Product 3c

Product 3d

Product 3e

Product 3f

Product 3g

Product 3h

Product 3i

Product 3j

Product 3k

Product 3I

Product 3m

Product 3n

Product 3o

Product 3p

Product 3q

Product 3r

Product 3s

Product 3t

Product 3w

Product 8

[1] Y.-Y. Gui, J. Yang, L.-W. Qi, X. Wang, F. Tian, X.-N. Li, L. Peng and L.-X. Wang, *Org. Biomol. Chem.*, 2015, **13**, 6371.

[2] J. T. M. Correia, L. V. Acconcia, F. Coelho, Eur. J. Org. Chem., 2016, 1972.