Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Xinye Shang,[†] Kun Liu,[†] Zhongyin Zhang,[†] Xianhong Xu,[†] Pengfei Li^{*‡} and Wenjun $Li^{*\dagger}$

[†] Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, 266021, China.
 [‡] Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.

A: General Information and Starting Materials	2
B: General Procedure for Double 1,3-Dipolar Cycloadditions	2
C: Characterization Data	3
D: Control experiments.	9
E: Synthetic Transformations	13
F: Gram Scale Reaction	15
G: NMR Analysis	16
H: Absolute Configuration and X-Ray Analysis Data	36
I: References	38

A: General Information and Starting Materials

General Information. Proton nuclear magnetic resonance (¹H NMR) spectra and carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on a Bruker ACF300 spectrometer (500 MHz and 125 MHz). Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent (CDCl₃: δ 7.26). Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane and are referenced to the carbon resonances of the solvent (CDCl₃: δ 77.16). Data are represented as follows: chemical shift, integration, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants in Hertz (Hz). All high resolution mass spectra were obtained on a Finnigan/MAT 95XL-T mass spectrometer. For thin layer chromatography (TLC), Merck pre-coated TLC plates (Merck 60 F254) were used, and compounds were visualized with a UV light at 254 nm. Flash chromatography separations were performed on Merck 60 (0.040-0.063 mm) mesh silica gel.

Starting Materials. All solvents and inorganic reagents were from commercial sources and used without purification unless otherwise noted. The oxime halides and allenoates were prepared following the literature procedures.¹⁻²

B: General Procedure for Double 1,3-Dipolar Cycloadditions

To a solution of CHCl₃ (0.15 mL) were added oxime halides 1 (0.25 mmol), allenoates 2 (0.05 mmol), Et₃N (0.25 mmol) and DABCO (0.01 mmol). The reaction mixture was stirred at 50°C for 48 h and then the solvent was removed under vacuum. The residue was purified by silica gel chromatography to yield the desired product 3.

C: Characterization Data

Ethyl 6-benzyl-3,9-diphenyl-1,7-dioxa-2,8-diazaspiro[4.4]nona-2,8-diene-6-carboxylate (3aa)

White solid, 73% yield. mp = $85-86^{\circ}$ C. ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.74-7.72 (m, 2H), 7.54-7.46 (m, 3H), 7.44-7.39 (m, 4H), 7.36-7.34 (m, 1H), 7.33-7.29 (m, 5H), 4.27-4.17 (m, 2H), 3.99 (d, J = 20.0 Hz, 1H), 3.65 (d, J = 20.0 Hz, 1H), 1.17 (t, J = 10.0 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 166.8, 157.1, 156.6, 133.5, 132.2, 130.9, 130.5, 130.5, 129.1, 129.0, 128.4, 128.0, 127.5, 127.0, 127.0, 99.7, 93.5, 62.1, 39.6, 38.3, 14.0. HRMS (ESI): exact mass calculated for M⁺ (C₂₇H₂₅N₂O₄) requires m/z 441.1814, found m/z 441.1817.

Ethyl 6-benzyl-3,9-bis(4-fluorophenyl)-1,7-dioxa-2,8-diazaspiro[4.4]nona-2,8-diene-6-carboxylate (3ba)

White solid, 87% yield. mp = 88-89°C. ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.73-7.71 (m, 2H), 7.40-7.38 (m, 2H), 7.30-7.26 (m, 5H), 7.17-7.14 (m, 2H), 7.05-7.02 (m, 2H), 4.27-4.18 (m, 2H), 3.98 (d, *J* = 15.0 Hz, 1H), 3.57 (d, *J* = 15.0 Hz, 1H), 3.37 (d, *J* = 15.0 Hz, 1H), 2.98 (d, *J* = 15.0 Hz, 1H), 1.17 (t, *J* = 10.0 Hz, 3H). ¹³C NMR

(CDCl₃, 125 MHz): δ (ppm) 166.8, 164.3 (J = 1005.0 Hz), 164.1 (J = 1005.0 Hz), 156.2, 155.6, 133.3, 130.5, 129.1 (J = 30.0 Hz), 129.0 (J = 30.0 Hz), 128.4, 127.5, 124.3 (J = 10.0 Hz), 123.1 (J = 10.0 Hz), 116.4 (J = 30.0 Hz), 116.2 (J = 30.0 Hz), 99.7, 93.5, 62.2, 39.7, 38.3, 14.0. HRMS (ESI): exact mass calculated for M⁺ (C₂₇H₂₃F₂N₂O₄) requires m/z 477.1626, found m/z 477.1630.

Ethyl 6-benzyl-3,9-bis(4-chlorophenyl)-1,7-dioxa-2,8-diazaspiro[4.4]nona-2,8-diene-6-carboxylate (3ca)

White solid, 58% yield. mp = 95-96°C. ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.62-7.57 (m, 4H), 7.49-7.47 (m, 2H), 7.29-7.26 (m, 5H), 7.25-7.23 (m, 2H), 4.28-4.17 (m, 2H), 3.97 (d, *J* = 20.0 Hz, 1H), 3.54 (d, *J* = 20.0 Hz, 1H), 3.36 (d, *J* = 15.0 Hz, 1H), 2.98 (d, *J* = 15.0 Hz, 1H), 1.17 (t, *J* = 10.0 Hz, 3H). ¹³C NMR

(CDCl₃, 125 MHz): δ (ppm) 166.7, 156.2, 155.8, 133.2, 132.4, 132.3, 130.5, 128.5, 128.3, 128.2, 127.6, 126.9, 125.8, 125.5, 125.2, 99.7, 93.7, 62.3, 39.7, 38.0, 14.0. HRMS (ESI): exact mass calculated for M⁺(C₂₇H₂₃Br₂N₂O₄) requires m/z 597.0025, found m/z 597.0029.

Ethyl 6-benzyl-3,9-bis(4-methoxyphenyl)-1,7-dioxa-2,8-diazaspiro[4.4]nona-2,8-diene-6-carboxylate (3da)

White solid, 76% yield. mp = 91-92°C. ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.67 (d, J = 10.0 Hz, 2H), 7.38 (d, J = 10.0 Hz, 2H), 7.30-7.26 (m, 5H), 6.97 (d, J = 10.0 Hz, 2H), 6.86 (d, J = 10.0 Hz, 2H), 4.26-4.16 (m, 2H), 3.95 (d, J = 20.0 Hz, 1H), 3.87 (s, 3H), 3.78 (s, 3H), 3.62 (d, J = 20.0 Hz, 1H), 3.35 (d,

J = 15.0 Hz, 1H), 2.97 (d, J = 15.0 Hz, 1H), 1.17 (t, J = 10.0 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 167.0, 161.7, 161.3, 156.8, 156.0, 133.7, 130.5, 128.6, 128.5, 128.3, 127.4, 120.7, 119.3, 114.5, 114.4, 99.6, 93.2, 62.0, 55.5, 55.3, 39.6, 38.6, 14.0. HRMS (ESI): exact mass calculated for M⁺ (C₂₉H₂₉N₂O₆) requires m/z 501.2026, found m/z 501.2029.

Ethyl 6-benzyl-3,9-bis(3-fluorophenyl)-1,7-dioxa-2,8-diazaspiro[4.4]nona-2,8-diene-6-carboxylate (3ea)

White solid, 56% yield. mp = 87-88°C. ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.48-7.42 (m, 3H), 7.33-7.26 (m, 6H), 7.22-7.19 (m, 1H), 7.15-7.10 (m, 3H), 4.27-4.18 (m, 2H), 3.98 (d, *J* = 20.0 Hz, 1H), 3.59 (d, *J* = 20.0 Hz, 1H), 3.38 (d, *J* = 15.0 Hz, 1H), 2.99 (d, *J* = 15.0 Hz, 1H), 1.18 (t, *J* = 10.0 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 166.6, 162.8 (*J* = 1015.0 Hz), 162.8 (*J* = 1015.0 Hz), 156.0 (*J* =

15.0 Hz), 155.8 (J = 10.0 Hz), 133.2, 130.9, 130.8 (J = 20.0 Hz), 130.7, 130.5, 130.5, 128.5, 127.6, 122.7 (J = 10.0 Hz), 122.5 (J = 10.0 Hz), 118.1 (J = 80.0 Hz), 117.7 (J = 80.0 Hz), 114.3 (J = 90.0 Hz), 113.9 (J = 90.0 Hz), 99.7, 93.8, 62.3, 39.6, 38.0, 14.0. HRMS (ESI): exact mass calculated for M⁺ (C₂₇H₂₃F₂N₂O₄) requires m/z 477.1626, found m/z 477.1631.

Ethyl 6-benzyl-3,9-di-*m*-tolyl-1,7-dioxa-2,8-diazaspiro[4.4]nona-2,8-diene-6-carboxylate (3fa)

White solid, 67% yield. mp = 89-90°C. ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.55 (s, 1H), 7.51-7.49 (m, 1H), 7.36-7.29 (m, 8H), 7.22-7.18 (m, 3H), 4.27-4.18 (m, 2H), 3.97 (d, *J* = 20.0 Hz, 1H), 3.63 (d, *J* = 20.0 Hz, 1H), 3.36 (d, *J* = 15.0 Hz, 1H), 2.97 (d, *J* = 15.0 Hz, 1H), 2.41 (s, 3H), 2.30 (s, 3H), 1.18 (t, *J* = 10.0 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 166.9, 157.3, 156.7, 138.9,

138.8, 133.6, 131.7, 131.3, 130.5, 128.9, 128.8, 128.4, 128.1, 128.0, 127.5, 127.4, 126.9, 124.1, 123.9, 99.7, 93.3, 62.1, 39.6, 38.4, 21.4, 21.3, 14.0. HRMS (ESI): exact mass calculated for $M^+(C_{29}H_{29}N_2O_4)$ requires m/z 469.2127, found m/z 469.2133.

Ethyl 6-benzyl-3,9-bis(2-bromophenyl)-1,7-dioxa-2,8-diazaspiro[4.4]nona-2,8-diene-6-carboxylate (3ga)

White solid, 64% yield. mp = 97-98°C. ¹H NMR (CDCl₃, 500 MHz): δ (ppm)

7.68-7.66 (m, 1H), 7.57-7.54 (m, 2H), 7.43-7.40 (m, 1H), 7.36-7.27 (m, 9H), 4.31-4.23 (m, 2H), 4.02 (d, J = 15.0 Hz, 1H), 3.76 (d, J = 15.0 Hz, 1H), 3.36 (d, J = 10.0 Hz, 1H), 3.22 (d, J = 10.0 Hz, 1H), 1.23 (t, J = 10.0 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 166.8, 157.4, 156.9, 133.6, 133.5, 132.9, 132.0, 131.8, 131.6, 131.0, 130.5, 129.8,

128.4, 128.2, 128.0, 127.6, 127.5, 123.7, 121.7, 101.4, 91.9, 62.2, 39.6, 39.5, 14.2. HRMS (ESI): exact mass calculated for $M^+(C_{27}H_{23}Br_2N_2O_4)$ requires m/z 597.0025, found m/z 597.0029.

Ethyl 6-benzyl-3,9-di(naphthalen-2-yl)-1,7-dioxa-2,8-diazaspiro[4.4]nona-2,8-diene-6-carboxylate (3ha)

White solid, 90% yield. mp = 101-102°C. ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 8.08-8.06 (m, 1H), 7.96-7.78 (m, 7H), 7.70-7.68 (m, 1H), 7.61-7.43 (m, 5H), 7.38-7.30 (m, 5H), 4.33-4.21 (m, 2H), 4.17 (d, J = 20.0 Hz, 1H), 3.85 (d, J = 20.0 Hz, 1H), 3.45 (d, J = 15.0 Hz, 1H), 3.09 (d, J = 15.0 Hz, 1H), 1.20 (t, J = 10.0 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm)

166.8, 157.4, 156.8, 134.4, 134.0, 133.6, 132.9, 130.6, 129.0, 128.6, 128.5, 128.4, 128.0, 127.7, 127.6, 127.5, 127.4, 127.3, 127.1, 127.0, 126.8, 125.7, 124.4, 123.9, 123.4, 99.9, 93.6, 62.2, 39.7, 38.4, 14.0. HRMS (ESI): exact mass calculated for M^+ ($C_{35}H_{29}N_2O_4$) requires m/z 541.2127, found m/z 541.2132.

Ethyl 6-(4-chlorobenzyl)-3,9-diphenyl-1,7-dioxa-2,8-diazaspiro[4.4]nona-2,8-diene-6-carboxylate (3ab)

White solid, 55% yield. mp = 93-94°C. ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.72-7.71 (m, 2H), 7.50-7.41 (m, 6H), 7.38-7.35 (m, 2H), 7.32-7.24 (m, 4H), 4.26-4.18 (m, 2H), 3.95 (d, *J* = 20.0 Hz, 1H), 3.66 (d, *J* = 20.0 Hz, 1H), 3.33 (d, *J* = 15.0 Hz, 1H), 2.93 (d, *J* = 15.0 Hz, 1H), 1.18 (t, *J* =

10.0 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 166.7, 157.0, 156.5, 133.5, 132.1, 131.8, 131.0, 130.7, 129.1, 129.0, 128.6, 128.1, 127.5, 127.0, 126.9, 99.8, 93.1, 62.2, 38.9, 38.3, 14.0. HRMS (ESI): exact mass calculated for M⁺ (C₂₇H₂₄ClN₂O₄) requires m/z 475.1425, found m/z 475.1430.

Ethyl 6-(4-bromobenzyl)-3,9-diphenyl-1,7-dioxa-2,8-diazaspiro[4.4]nona-2,8-diene-6-carboxylate (3ac)

White solid, 61% yield. mp = 98-99°C. ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.72 (d, J = 10.0 Hz, 2H), 7.50-7.46 (m, 5H), 7.44-7.41 (m, 3H), 7.38-7.35 (m, 2H), 7.19 (d, J = 10.0 Hz, 2H), 4.26-4.18 (m, 2H), 3.95 (d, J = 20.0 Hz, 1H), 3.66 (d, J = 20.0 Hz, 1H), 3.32 (d, J = 15.0 Hz, 1H),

2.92 (d, J = 15.0 Hz, 1H), 1.18 (t, J = 10.0 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 166.6, 157.1, 156.5, 132.6, 132.2, 131.5, 131.0, 130.7, 129.1, 129.0, 128.1, 127.0, 126.9, 126.8, 121.7, 99.8, 93.1, 62.3, 39.0, 38.3, 14.0. HRMS (ESI): exact mass calculated for M⁺ (C₂₇H₂₄BrN₂O₄) requires m/z 519.0919, found m/z 519.0924.

Ethyl 6-(4-methylbenzyl)-3,9-diphenyl-1,7-dioxa-2,8-diazaspiro[4.4]nona-2,8-diene-6-carboxylate (3ad)

White solid, 55% yield. mp = 89-90°C. ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.73-7.72 (m, 2H), 7.49-7.39 (m, 6H), 7.36-7.33 (m, 2H), 7.20 (d, J = 10.0 Hz, 2H), 7.11 (d, J = 10.0 Hz, 2H), 4.27-4.18 (m, 2H), 3.99 (d, J = 20.0 Hz, 1H), 3.64 (d, J = 20.0 Hz, 1H), 3.33 (d, J = 20.0 Hz, 1H), 3.33 (d, J = 20.0 Hz, 1H), 3.34 (d

15.0 Hz, 1H), 2.95 (d, J = 15.0 Hz, 1H), 2.32 (s, 3H), 1.18 (t, J = 10.0 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 166.9, 157.0, 156.6, 137.1, 130.9, 130.5, 130.4, 130.3, 129.1, 129.0, 128.9, 128.2, 127.1, 127.0, 126.9, 99.7, 93.5, 62.1, 39.2, 38.2, 21.1, 14.0. HRMS (ESI): exact mass calculated for M⁺ (C₂₈H₂₇N₂O₄) requires m/z 455.1971, found m/z 455.1975.

Ethyl 6-(3-chlorobenzyl)-3,9-diphenyl-1,7-dioxa-2,8-diazaspiro[4.4]nona-2,8-diene-6-carboxylate (3ae)

 $\begin{array}{c} \mathsf{Ph} \\ \mathsf{Ph} \\ \mathsf{N} \\ \mathsf{O} \\ \mathsf{CO}_2\mathsf{Et} \end{array} \begin{array}{c} \mathsf{Cl} \\ \mathsf{White solid, 65\% yield. mp = 91-92^{\circ}\mathsf{C}. {}^{1}\mathsf{H} \ \mathsf{NMR} \ (\mathsf{CDCl}_3, \\ \mathsf{500 \ MHz}): \delta \ (\mathsf{ppm}) \ 7.73-7.71 \ (\mathsf{m}, 2\mathsf{H}), \ 7.50-7.41 \ (\mathsf{m}, 6\mathsf{H}), \\ \mathsf{7.38-7.35} \ (\mathsf{m}, 2\mathsf{H}), \ \mathsf{7.31} \ (\mathsf{s}, 1\mathsf{H}), \ \mathsf{7.25-7.20} \ (\mathsf{m}, 3\mathsf{H}), \\ \mathsf{4.28-4.19} \ (\mathsf{m}, 2\mathsf{H}), \ \mathsf{3.94} \ (\mathsf{d}, J = 20.0 \ \mathsf{Hz}, 1\mathsf{H}), \ \mathsf{3.67} \ (\mathsf{d}, J = 20.0 \ \mathsf{Hz}, 1\mathsf{H}), \ \mathsf{3.67} \ (\mathsf{d}, J = 20.0 \ \mathsf{Hz}, 1\mathsf{H}), \ \mathsf{3.94} \ (\mathsf{d}, J = 15.0 \ \mathsf{Hz}, 1\mathsf{H}), \ \mathsf{2.93} \ (\mathsf{d}, J = 15.0 \ \mathsf{Hz}, 1\mathsf{H}), \ \mathsf{2.93} \ \mathsf{d}, J = 15.0 \ \mathsf{Hz}, \\ \mathsf{Hz} \\ \mathsf{H$

1H), 1.19 (t, J = 10.0 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 166.6, 157.0, 156.5, 135.6, 134.1, 131.0, 130.7, 130.6, 129.6, 129.1, 129.0, 128.7, 128.1, 127.7, 127.0, 126.9, 126.8, 99.8, 93.0, 62.3, 39.2, 38.3, 14.0. HRMS (ESI): exact mass calculated for M⁺ (C₂₇H₂₄ClN₂O₄) requires m/z 475.1425, found m/z 475.1428.

Ethyl 6-(3-bromobenzyl)-3,9-diphenyl-1,7-dioxa-2,8-diazaspiro[4.4]nona-2,8-diene-6-carboxylate (3af)

White solid, 60% yield. mp = 97-98°C. ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.73-7.71 (m, 2H), 7.50-7.45 (m, 6H), 7.43-7.36 (m, 4H), 7.26-7.25 (m, 1H), 7.19-7.16 (m, 1H), 4.28-4.19 (m, 2H), 3.94 (d, J = 20.0 Hz, 1H), 3.67 (d, J = 20.0 Hz, 1H), 3.33 (d, J = 15.0 Hz, 1H), 2.92 (d, J = 15.0 Hz,

1H), 1.19 (t, J = 10.0 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 166.6, 157.0, 156.5, 135.9, 133.4, 131.0, 130.7, 130.6, 129.9, 129.2, 129.1, 129.0, 128.1, 127.1, 127.0, 126.9, 122.3, 99.8, 93.0, 62.3, 39.2, 38.3, 14.0. HRMS (ESI): exact mass calculated for M⁺ (C₂₇H₂₄BrN₂O₄) requires m/z 519.0919, found m/z 519.0923.

Ethyl 6-(3-methylbenzyl)-3,9-diphenyl-1,7-dioxa-2,8-diazaspiro[4.4]nona-2,8-

diene-6-carboxylate (3ag)

White solid, 63% yield. mp = 88-89°C. ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.73-7.72 (m, 2H), 7.49-7.40 (m, 6H), 7.37-7.34 (m, 2H), 7.18-7.08 (m, 2H), 4.28-4.17 (m, 2H), 3.99 (d, J = 20.0 Hz, 1H), 3.65 (d, J = 20.0 Hz, 1H), 3.33 (d, J = 15.0 Hz, 1H), 2.94 (d, J = 15.0 Hz, 1H), 2.33 (s, 3H), 1.18 (t, J = 10.0 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 166.8, 157.1, 156.6, 137.9, 133.4, 131.3, 130.9, 130.5, 129.1, 129.0, 128.3, 128.2, 128.2, 127.4, 127.1, 127.1, 126.9, 99.8, 93.4, 62.1, 39.6, 38.3, 21.4, 14.0. HRMS (ESI): exact mass calculated for M⁺ (C₂₈H₂₇N₂O₄) requires m/z 455.1971, found m/z 455.1976.

Ethyl 6-(2-fluorobenzyl)-3,9-diphenyl-1,7-dioxa-2,8-diazaspiro[4.4]nona-2,8-diene-6-carboxylate (3ah)

Ph N O CO₂Et F White solid, 76% yield. mp = 85-86°C. ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.73-7.71 (m, 2H), 7.49-7.39 (m, 7H), 7.35-7.32 (m, 2H), 7.26-7.24 (m, 1H), 7.14-7.11 (m, 1H), 7.04-7.00 (m, 1H), 4.32-4.20 (m, 2H), 4.02 (d, *J* = 20.0 Hz, 1H), 3.64 (d, *J* = 20.0 Hz, 1H), 3.41 (d, *J* = 15.0 Hz, 1H), 3.14 (d, *J* = 15.0 Hz, 1H), 1.20 (t, *J* = 10.0 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 166.7, 162.0 (*J* = 975.0 Hz), 157.2, 156.7, 132.6 (*J* = 15.0 Hz), 130.9, 130.6, 129.3 (*J* = 35.0 Hz), 129.1, 129.0, 128.2, 127.0, 127.0, 126.9, 124.2 (*J* = 15.0 Hz), 120.6 (*J* = 60.0 Hz), 115.4 (*J* = 90.0 Hz), 99.7, 92.8, 62.3, 38.1, 31.9, 13.9. HRMS (ESI): exact mass calculated for M⁺ (C₂₇H₂₄FN₂O₄) requires m/z 459.1720, found m/z 459.1724.

Ethyl 6-(naphthalen-2-ylmethyl)-3,9-diphenyl-1,7-dioxa-2,8-diazaspiro[4.4]nona -2,8-diene-6-carboxylate (3ai)

White solid, 60% yield. mp = 96-97°C. ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.80-7.74 (m, 6H), 7.50-7.46 (m, 8H), 7.42-7.39 (m, 1H), 7.35-7.32 (m, 2H), 4.23-4.18 (m, 2H), 4.05 (d, *J* = 20.0 Hz, 1H), 3.69 (d, *J* = 20.0 Hz, 1H), 3.54 (d, *J* = 15.0 Hz, 1H), 3.14 (d, *J* = 15.0 Hz, 1H), 1.14 (t, *J* = 10.0 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 166.9,

157.1, 156.6, 133.3, 132.7, 131.1, 131.0, 130.6, 129.5, 129.1, 129.0, 128.4, 128.2, 128.0, 127.8, 127.6, 127.1, 127.0, 126.0, 125.9, 99.9, 93.5, 62.2, 39.8, 38.3, 14.0. HRMS (ESI): exact mass calculated for M^+ ($C_{31}H_{27}N_2O_4$) requires m/z 491.1971, found m/z 491.1975.

Ethyl6-ethyl-3,9-diphenyl-1,7-dioxa-2,8-diazaspiro[4.4]nona-2,8-diene-6-carboxylate (3aj)

3.60 (d, J = 15.0 Hz, 1H), 2.15-2.08 (m, 1H), 1.78-1.72 (m, 1H), 1.25 (t, J = 10.0 Hz, 3H), 1.07 (t, J = 10.0 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 167.3, 156.6, 156.5, 130.9, 130.5, 129.1, 128.9, 128.2, 127.2, 127.0, 126.9, 99.4, 93.8, 62.1, 38.0, 27.6, 14.1, 8.4. HRMS (ESI): exact mass calculated for M⁺ (C₂₂H₂₃N₂O₄) requires m/z 379.1658, found m/z 379.1662.

Ethyl 6-(2-ethoxy-2-oxoethyl)-3,9-diphenyl-1,7-dioxa-2,8-diazaspiro[4.4]nona-2,8-diene-6-carboxylate (3ak)

Ph N Vellow oil, 69% yield. ¹H NMR (CDCl₃, 500 MHz): δ (ppm) Ph CO₂Et Yellow oil, 69% yield. ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.63-7.59 (m, 3H), 7.45-7.36 (m, 7H), 4.26 (q, J = 10.0 Hz, 2H), 4.09-4.05 (m, 2H), 3.91 (d, J = 20.0 Hz, 1H), 3.69 (d, J = 20.0 Hz, 1H), 3.36 (s, 2H), 1.25 (t, J = 10.0 Hz, 3H), 1.20 (t, J = 10.0 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 169.7, 168.1, 158.0, 157.6, 130.9, 130.6, 129.0, 128.9, 128.0, 127.3, 127.0, 126.9, 98.5, 90.7, 62.3, 61.1, 41.8,

35.7, 14.1, 14.0. HRMS (ESI): exact mass calculated for M^+ ($C_{24}H_{25}N_4O_6$) requires m/z 437.1713, found m/z 437.1717.

Methyl 6-benzyl-3,9-diphenyl-1,7-dioxa-2,8-diazaspiro[4.4]nona-2,8-diene-6-Carboxylate (3al)

Ph N Ph N Ph N Ph N Ph N Ph N CO22Me White solid, 80% yield. mp = $80-81^{\circ}$ C. ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.73-7.72 (m, 2H), 7.50-7.44 (m, 5H), 7.41-7.40 (m, 1H), 7.36-7.33 (m, 2H), 7.30-7.26 (m, 5H), 4.00 (d, J = 20.0 Hz, 1H), 3.74 (s, 3H), 3.65 (d, J = 20.0 Hz, 1H), 3.39 (d, J = 15.0 Hz, 1H), 2.99 (d, J = 15.0 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 167.6, 157.0, 156.7, 133.5, 131.0, 130.6, 130.5, 129.1, 129.0, 128.4, 128.1, 127.5, 127.1, 127.0, 127.0, 99.7, 93.7, 52.8, 39.6, 38.3. HRMS (ESI): exact mass calculated for M⁺ (C₂₆H₂₃N₂O₄) requires m/z 427.1658, found m/z 427.1662.

tert-Butyl 6-benzyl-3,9-diphenyl-1,7-dioxa-2,8-diazaspiro[4.4]nona-2,8-diene-6-carboxylate (3am)

Ph N O Ph White solid, 56% yield. mp = 90-91°C. ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.75-7.73 (m, 2H), 7.49-7.47 (m, 3H), 7.42-7.38 (m, 3H), 7.36-7.29 (m, 7H), 3.94 (d, J = 20.0 Hz, 1H), 3.63 (d, J = 20.0 Hz, 1H), 3.31 (d, J = 15.0 Hz, 1H), 1.39 (s, 9H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 162.6, 154.4, 153.9, 131.2, 128.3, 128.0, 127.8, 126.4, 125.8, 125.7, 124.8, 124.7, 124.5, 124.4, 124.3, 97.1, 90.5, 80.9, 37.1, 35.7, 25.2. HRMS (ESI): exact mass calculated for M⁺ (C₂₉H₂₉N₂O₄) requires m/z 469.2127, found m/z 469.2132.

To a solution of CHCl₃ (0.30 mL) were added nitrile oxide 4 (0.05 mmol) and allenoate 2a (0.20 mmol). The reaction mixture was stirred at room temperature for 36 h and then the solvent was removed under vacuum. The residue was purified by silica gel chromatography to afford the desired products 5 in 71% yield as a colourless oil.

To a solution of CHCl₃ (0.30 mL) were added nitrile oxides 4 (0.10 mmol) and 5 (0.05 mmol). The reaction mixture was stirred at 50°C for 24 h and then the solvent was removed under vacuum. The residue was purified by silica gel chromatography to afford the desired product **6** in 88% yield as a white solid.

С	4 0.25 mmol	+	2a 0.05 mmol	CHCl ₃ , 50 °C		5 X% yield	+ 6 Y% yield	
			Time (h)	Х	Y	Time (h)	Х	Y
			3	34	34	12	<5	63
			6	16	54	24	<5	78

To a solution of CHCl₃ (0.30 mL) were added nitrile oxide 4 (0.25 mmol) and allenoate 2a (0.05 mmol). The reaction mixture was stirred at 50 °C for the time indicated and then the solvent was removed under vacuum. The residue was purified by silica gel chromatography to afford the desired products 5 and 6.

Ethyl 5-benzyl-3-mesityl-4-methylene-4,5-dihydroisoxazole-5-carboxylate (5)

Colourless oil, 71% yield. ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.32-7.31 (m, 2H), 7.26-7.25 (m, 1H), 7.24-7.21 (m, 2H), 6.85 (s, 1H), 6.77 (s, 1H), 5.40 (s, 1H), 5.01 (s, 1H), 4.31-4.22 (m, 2H), 3.57 (d, J = 15.0 Hz, 1H), 3.33 (d, J = 15.0 Hz, 1H), 2.26 (s, 3H), 2.09 (s, 3H), 1.44 (s, 3H), 1.27 (t, J = 15.0 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 167.0, 157.7, 148.1, 139.0,

137.7, 137.6, 134.2, 131.2, 128.1, 127.1, 123.1, 111.6, 89.3, 62.2, 42.3, 21.1, 19.2, 18.6, 14.0. HRMS (ESI): exact mass calculated for M^+ ($C_{23}H_{26}NO_3$) requires m/z 364.1913, found m/z 364.1917.

В

Ethyl 6-benzyl-3,9-dimesityl-1,7-dioxa-2,8-diazaspiro[4.4]nona-2,8-diene-6-carboxylate (6)

(s, 6H), 1.19 (t, J = 10.0 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 157.5, 156.9, 139.7, 139.6, 139.2, 136.9, 136.8, 133.7, 130.6, 129.6, 128.4, 128.4, 127.5, 124.4, 122.7, 100.9, 71.7, 62.1, 40.9, 39.9, 21.0, 20.5, 20.2, 18.7, 14.1. HRMS (ESI): exact mass calculated for M⁺ (C₃₃H₃₇N₂O₄) requires m/z 525.2753, found m/z 525.2758.

Ethyl 5-benzyl-3-mesityl-4-methylene-4,5-dihydroisoxazole-5-carboxylate (5)

E: Synthetic Transformations.

To a solution of **3aa** (0.1 mmol) in anhydrous THF (2.0 mL) was added LiAlH₄ (0.8 mmol) at 0°C. The resulting solution was stirred at room temperature for 2 h, then sat. NH₄Cl (2.0 mL) was added to quench the reaction and the aqueous solution was extracted with DCM (3*5 mL). The combined organic layers was dried with anhydrous Na₂SO₄, filtered and concentrated to yield the crude product, which was purified by column chromatography to afford **7aa** in 73% yield as a white solid.

(6-Benzyl-3,9-diphenyl-1,7-dioxa-2,8-diazaspiro[4.4]nona-2,8-dien-6-yl)methanol

White solide, 73% yield. mp = $85-86^{\circ}$ C. ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 7.70-7.68 (m, 2H), 7.54-7.52 (m, 2H), 7.49-7.43 (m, 3H), 7.39-7.27 (m, 8H), 4.12 (d, *J* = 10.0 Hz, 1H), 3.93 (d, *J* = 20.0 Hz, 1H), 3.67 (d, *J* = 15.0 Hz, 1H), 3.57 (d, *J* = 20.0 Hz,

1H), 3.21 (d, J = 15.0 Hz, 1H), 2.93 (d, J = 10.0 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 157.7, 157.4, 134.8, 131.0, 131.0, 130.4, 129.0, 128.3, 128.2, 128.1, 127.6, 127.1, 127.0, 126.9, 99.9, 90.2, 60.2, 38.9, 37.4. HRMS (ESI): exact mass calculated for M⁺ (C₂₅H₂₃N₂O₃) requires m/z 399.1709, found m/z 399.1714.

(6-Benzyl-3,9-diphenyl-1,7-dioxa-2,8-diazaspiro[4.4]nona-2,8-dien-6-yl)methanol

 $\bigwedge_{0}^{+1} \sum_{1}^{+1} \sum_{1}^{+1$

F: Gram Scale Reaction

To a solution of CHCl₃ (15.0 mL) were added oxime halide **1a** (3.10g, 20.0 mmol), allenoate **2a** (0.81g, 4.0 mmol), Et₃N (2.02g, 20.0 mmol,) and DABCO (0.09g, 0.8 mmol). The reaction mixture was stirred at 50°C for 48 h. The solvent is evaporated to give the crude product, which is directly purified by silica gel chromatography to provide the desired product **3aa** as a white solid (1.02g, 58% yield).

Ethyl 6-benzyl-3,9-diphenyl-1,7-dioxa-2,8-diazaspiro[4.4]nona-2,8-diene-6-carboxylate (3aa)

Ethyl 6-benzyl-3,9-bis(4-fluorophenyl)-1,7-dioxa-2,8-diazaspiro[4.4]nona-2,8-diene-6-carboxylate (3ba)

Ethyl 6-benzyl-3,9-bis(4-bromophenyl)-1,7-dioxa-2,8-diazaspiro[4.4]nona-2,8-diene-6-carboxylate (3ca)

Ethyl 6-benzyl-3,9-bis(4-methoxyphenyl)-1,7-dioxa-2,8-diazaspiro[4.4]nona-2,8-diene-6-carboxylate (3da)

Ethyl 6-benzyl-3,9-bis(3-fluorophenyl)-1,7-dioxa-2,8-diazaspiro[4.4]nona-2,8-diene-6-carboxylate (3ea)

Ethyl 6-benzyl-3,9-di-*m*-tolyl-1,7-dioxa-2,8-diazaspiro[4.4]nona-2,8-diene-6-carboxylate (3fa)

Ethyl 6-benzyl-3,9-bis(2-bromophenyl)-1,7-dioxa-2,8-diazaspiro[4.4]nona-2,8-diene-6-carboxylate (3ga)

 $\underbrace{ \left\{ \begin{array}{c}
1.21 \\
1.20 \\
1.18
\end{array} \right.
}$ X 3 10 X 3 07 ³,46
 ³,48
 ³ Ò_Ph `N⁻Ō CO₂Et 2.05 10 -04-I 02H -05-5.00-5.01-5 4.0 f1 (ppm) 3.5 7.0 5.5 5.0 4.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 8.0 7.5 6.5 6.0 134, 37 135, 67 135, 67 135, 67 135, 67 135, 67 135, 67 135, 67 135, 67 135, 64 135, 6 <157.35 <156.84 ₹77.25 77.00 76.75 ---39.74 99, 91 -62.17 -N ò ,Pht -0 CO₂Et Ň 180 170 130 100 90 fl (ppm) 80 70 60 40 10 0 160 150 140 120 110 50 30 20

Ethyl 6-benzyl-3,9-di(naphthalen-2-yl)-1,7-dioxa-2,8-diazaspiro[4.4]nona-2,8-diene-6-carboxylate (3ha)

Ethyl 6-(4-chlorobenzyl)-3,9-diphenyl-1,7-dioxa-2,8-diazaspiro[4.4]nona-2,8-diene-6-carboxylate (3ab)

Ethyl 6-(4-bromobenzyl)-3,9-diphenyl-1,7-dioxa-2,8-diazaspiro[4.4]nona-2,8-diene-6-carboxylate (3ac)

Ethyl 6-(4-methylbenzyl)-3,9-diphenyl-1,7-dioxa-2,8-diazaspiro[4.4]nona-2,8-diene-6-carboxylate (3ad)

Ethyl 6-(3-chlorobenzyl)-3,9-diphenyl-1,7-dioxa-2,8-diazaspiro[4.4]nona-2,8-diene-6-carboxylate (3ae)

Ethyl 6-(3-bromobenzyl)-3,9-diphenyl-1,7-dioxa-2,8-diazaspiro[4.4]nona-2,8-diene-6-carboxylate (3af)

Ethyl 6-(3-methylbenzyl)-3,9-diphenyl-1,7-dioxa-2,8-diazaspiro[4.4]nona-2,8-diene-6-carboxylate (3ag)

Ethyl 6-(2-fluorobenzyl)-3,9-diphenyl-1,7-dioxa-2,8-diazaspiro[4.4]nona-2,8-diene-6-carboxylate (3ah)

Ethyl 6-(naphthalen-2-ylmethyl)-3,9-diphenyl-1,7-dioxa-2,8-diazaspiro[4.4]nona -2,8-diene-6-carboxylate (3ai)

Ethyl 6-ethyl-3,9-diphenyl-1,7-dioxa-2,8-diazaspiro[4.4]nona-2,8-diene-6-carboxylate (3aj)

Ethyl 6-(2-ethoxy-2-oxoethyl)-3,9-diphenyl-1,7-dioxa-2,8-diazaspiro[4.4]nona-2,8-diene-6-carboxylate(3ak)

Methyl 6-benzyl-3,9-diphenyl-1,7-dioxa-2,8-diazaspiro[4.4]nona-2,8-diene-6-carboxylate (3al)

tert-Butyl 6-benzyl-3,9-diphenyl-1,7-dioxa-2,8-diazaspiro[4.4]nona-2,8-diene-6-carboxylate (3am)

H: Absolute Configuration and X-Ray Analysis Data

Datablock mo_cxy0033_0m - ellipsoid plot

Crystal data and structure refinement for 3ad.

Identification code	3ad			
Empirical formula	$C_{28}H_{26}N_2O_4$			
Formula weight	454.51			
Temperature/K	150			
Crystal system	monoclinic			
Space group	P2 ₁ /n			
a/Å	11.2591(7)			
b/Å	10.2596(5)			
c/Å	19.9617(11)			
α/°	90			
β/°	91.988(2)			
$\gamma^{/\circ}$	90			
Volume/Å ³	2304.5(2)			
Ζ	4			
$\rho_{calc}g/cm^3$	1.310			
μ/mm^{-1}	0.088			
F(000)	960.0			
Crystal size/mm ³	$0.35 \times 0.35 \times 0.23$			
Radiation	MoKa ($\lambda = 0.71073$)			
2Θ range for data collection/° 5.374 to 55.008				
Index ranges	$\text{-}14 \leq h \leq 14, \text{-}12 \leq k \leq 13, \text{-}25 \leq l \leq 23$			
Reflections collected	28362			
Independent reflections	5292 [$R_{int} = 0.0594, R_{sigma} = 0.0514$]			
Data/restraints/parameters	5292/0/309			
Goodness-of-fit on F ²	1.031			
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0488, wR_2 = 0.0981$			
Final R indexes [all data]	$R_1 = 0.0860, wR_2 = 0.1116$			
Largest diff. peak/hole / e Å ⁻³ 0.29/-0.27				

I: References

- 1. M. P. Bourbeau, J. T. Rider, Org. Lett. 2006, 8, 3679-3680.
- 2. R. Na, C. Jing, Q. Xu, H. Jiang, X. Wu, J. Shi, J. Zhong, M. Wang, D. Benitez, E. Tkatchouk, W.
- A. Goddard, III, H. Guo, O. Kwon, J. Am. Chem. Soc. 2011, 133, 13337-13348.