Organocatalytic [3+2] cycloaddition of oxindole-based azomethine ylides with 3-nitrochromenes: a facile approach to enantioenriched polycyclic spirooxindole-chromane adducts

Shiqi Wu[†], Guodong Zhu[‡], Shiqiang Wei[‡], Hongbo Chen[†], Jingping Qu[‡] and Baomin Wang^{‡,*}

 School of Petroleum and Chemical Engineering, Dalian University of Technology, Panjin Campus, Panjin 124221, P. R. China.
State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China bmwang@dlut.edu.cn

Contents:

1.	General information	S1
2.	Experimental sections	S1
3.	Copies of ¹ H NMR and ¹³ C NMR spectra	S6
4.	Copies of HPLC chromatographs	S29
5.	X-ray crystal structure of 5k	S48

1. General information

All reactions were carried out in Schlenk tube under an argon atmosphere. All solvents were purified and dried according to standard methods prior to use. Reactions were monitored by thin layer chromatography (TLC) using silica gel plates. Flash chromatography was carried out utilizing silica gel 200-300 mesh. ¹H NMR, ¹⁹F NMR spectra were recorded on a Bruker Avance II 400 MHz and Bruker Avance III 377 MHz respectively, ¹³C NMR spectra were recorded on a Bruker Avance II 101 MHz. The solvent used for NMR spectroscopy was CDCl₃, using tetramethylsilane as the internal reference. Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, br = broad singlet, dd = double doublet, dt = double triplet, td = triple doublet, coupling constants in Hz, integration). Data for ¹³C NMR and ¹⁹F NMR are reported in terms of chemical shift (δ , ppm). HRMS (ESI) was determined by an HRMS/MS instrument (LTQ Orbitrap XL TM). Enantiomeric excess values were determined by HPLC employing a chiral column on Agilent 1100 series. The absolute configuration of **5k** was assigned by the X-ray analysis.

Starting materials: All the aldehydes were commercially obtained and recrystallized or distilled prior to use. (1) 3-Amino oxindoles were prepared following the reported procedures: W. Chen, Z. Wu, J. Hu, L. Cun, X. Zhang and W. Yuan, *Org. Lett.*, 2011, **13**, 2472. (2) 3-nitro-2*H*-chromenes, 3-nitro-1,2-dihydronaphthalene and 3-Nitro-2*H*-thiochromene were synthesized according to following literature procedures: (a) A. H. Clark, J. D. McCorvy, V. J. Watts and D. E. Nichols, *Bioorg. Med. Chem.*, 2011, **19**, 5420; (b) A. Zhao, Q. Jiang, J. Jia, B. Xu, Y. Liu, M. Zhang, Q. Liu, W. Luo and C. Guo, *Tetrahedron Lett.*, 2016, **57**, 80; (c) A. H. Clark, J. D. McCorvy, V. J. Watts and D. E. Nichols, *Bioorg. Med. Chem.*, 2011, **19**, 5420.

2. Experimental sections

General procedure for the synthesis of spiro [indoline-3,2'-pyrrolidin]-2-one

In a Schlenk tube, 3-amino oxindole **2** (0.1 mmol), 3-nitro-2*H*-chromene **4a** (0.11 mmol), NaHCO₃ (0.15 mmol), catalyst (0.02 mmol) and 3Å MS (100 mg) were added into Toluene (0.5 mL) under argon atmosphere. Then aldehyde **3a** (0.12 mmol) was added and the reaction solution was stirred at 25°C. After the reaction was complete (monitored by TLC), the crude product was purified by column chromatography (ethyl acetate/petroleum ether = 1/20 to 1/4) on silica gel to give the product **5**.

Screening of catalysts and optimization of conditions

Table 1: Optimization of reaction conditions.^{*a*} CPA=chiral phosphoric acid.

14	Me	1c	THF	25	18	88	>20:1	1
15	Me	1c	Et_2O	25	36	99	>20:1	12
16	Me	1c	toluene	25	120	99	>20:1	81
17	Me	1c	Xylenes	25	120	92	>20:1	76
18	Me	1c	Mesitylene	25	120	90	>20:1	78
19	Н	1c	toluene	25	140	43	>20:1	88
20	Bn	1c	toluene	25	38	99	>20:1	84
21^{e}	Bn	1c	toluene	25	38	99	>20:1	85
$22^{e,f}$	Bn	1c	toluene	25	45	90	>20:1	86
23 ^{<i>e</i>,g}	Bn	1c	toluene	25	48	99	>20:1	88
$24^{e,g,h}$	Bn	1c	toluene	25	140	99	>20:1	90
$25^{e,g,h,i}$	Bn	1c	toluene	15	160	97	>20:1	90

^{*a*} The reaction was carried out on a 0.1 mmol scale with **cat.** (10 mol%), NaHCO₃ (1.5 eq), 4Å MS (100 mg) in 1.0 ml solvent under argon, the molar ratio of **2/3a/4a** was 1/1.2/1.1. ^{*b*} Isolated yield. ^{*c*} The dr was determined by ¹H NMR. ^{*d*} The *ee* was determined by HPLC. ^{*e*} By using 3Å MS (100 mg). ^{*f*} In the presence of 15 mol% **1c**. ^{*g*} In the presence of 20 mol% **1c**. ^{*h*} The reaction was performed in 0.5 ml solvent. ^{*i*} At 15 °C.

Table 2: Optimization of base in the reaction ^{*a*}

	CI + PhCHO + 3a		Base (1.5 eq) 2 <u>1c (10 mol%)</u> 3Å MS, Toluene, 2	HI 25 °C	NO2 NO2 Bn
Entry	Base	t [h]	Yield [%]	d.r.	ee [%]
1	NaHCO ₃	38	99	>20:1	85
2	Na ₂ CO ₃	140	97	>20:1	82
3	KHCO ₃	65	99	>20:1	84
4	K ₂ CO ₃	75	95	>20:1	82
5	Li ₂ CO ₃	140	86	>20:1	78
6	NaH ₂ PO ₄	38	99	>20:1	84
7	Na ₂ HPO ₄	38	99	>20:1	78
8	NaHSO ₃	38	99	>20:1	84
9	Na ₂ SO ₃	135	89	>20:1	80

^{*a*} The reaction was carried out on a 0.1 mmol scale with **1c** (10 mol%), base (1.5 eq), 3Å MS (100 mg) in 1.0 ml solvent at 25 °C under argon, the molar ratio of **2c/3a/4a** was 1/1.2/1.1.

Procedure for asymmetric catalytic [3+2] cycloaddition of isatin with benzylamine and nitroolefin in the presence CPA-1f

In a Schlenk tube, isatin **6** (0.1 mmol), nitroalkene **4a** (0.11 mmol), **1c** (0.02 mmol) and 3\AA MS (100 mg) were added in toluene (0.5 mL) under argon atmosphere. After the solution was stirred for 20 minutes at 25°C, benzylamine **7** (0.1 mmol) was added to this flask at the same temperature. The reaction mixture was stirred for 115 h, the crude product was purified by column chromatography (ethyl acetate/petroleum ether = 1/20 to 1/4) on silica gel to give the product **5a** with 98% yield, 7:1 dr and 65% *ee*.

Gram-scale reaction

In a Schlenk tube, 3-amino oxindole 2c (2 mmol), 3-nitro-2*H*-chromene 4a (2.2 mmol), NaHCO₃ (3 mmol), catalyst 1c (0.4 mmol) and 3Å MS (2 g) were added into Toluene (10 mL) under argon atmosphere. Then aldehyde 3a (2.4 mmol) was added and the reaction solution was stirred at 25°C. After the reaction was complete (monitored by TLC), the crude product was purified by column chromatography (ethyl acetate/petroleum ether = 1/20 to 1/4) on silica gel to give the product 5a with 78% yield, >20:1 dr and 76% ee.

Procedure for the Synthesis of Compound 8 and 9

A reaction tube was charged with **5a** (0.1 mmol) and dioxane (2 ml), then DDQ (0.2 mmol) was added. The reaction was stirred at 80 °C until it was complete (monitored by TLC), then the crude product was purified by column chromatography (ethyl acetate/petroleum ether = 1/10) on silica gel to give the product **8** as a white solid.

To compound **5a** (0.1 mmol) in 2 ml EtOH was added TMSCl (0.4 ml) and Zn power (5 mmol) carefully, the resulting mixture was stirred at room temperature for 0.5 h. Then the reaction mixture was filitered and washed with MeOH and CH_2Cl_2 , subsequently NaHCO₃ solution was added to the resulting solution and the aqueous layer was extracted with CH_2Cl_2 three times, and the combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the solution was concentrated under reduced pressure and the resulting crude mixture was purified by silica gel column chromatography (Hexane/AcOEt = 1/1) to afford compound **9** as a light yellow solid.

3. Copies of ¹H NMR and ¹³C NMR spectra

5a

5b

5c

S12

S17

5m

S19

S21

5q

4. Copies of HPLC chromatographs

Peak	RT	Area	Height	Area
	(min)	(mAU*s)	(mAU)	%
1	16.024	7241.05420	143.36806	49.8999
2	19.721	7270.11914	112.30684	50.1001

Peak	RT	Area	Height	Area
	(min)	(mAU*s)	(mAU)	%
1	16.563	1389.17456	30.43403	4.7214
2	19.693	2.80335e4	438.25244	95.2786

HPLC Chromatographs of 5b

D1-	RT	Area	Height	Area
Реак	(min)	(mAU*s)	(mAU)	%
1	26.551	2866.83032	60.35281	50.0950
2	45.167	2855.95166	34.57727	49.9050

D 1-	RT	Area	Height	Area
Реак	(min)	(mAU*s)	(mAU)	%
1	26.689	9827.43652	195.47295	93.7825
2	45.519	651.53467	8.54964	6.2175

HPLC Chromatographs of 5c

Deele	RT	Area	Height	Area
Реак	(min)	(mAU*s)	(mAU)	%
1	36.864	5923.37354	108.17676	49.8566
2	40.243	5957.44580	71.16122	50.1434

Peak	RT	Area	Height	Area
	(min)	(mAU*s)	(mAU)	%
1	36.956	1189.03113	22.03078	12.7857
2	40.675	8110.67529	84.81844	87.2143

HPLC Chromatographs of 5d

Daalr	RT	Area	Height	Area
Реак	(min)	(mAU*s)	(mAU)	%
1	26.614	4787.28906	104.88519	50.0965
2	50.316	4768.83838	53.86290	49.9035

Deale	RT	Area	Height	Area
Реак	(min)	(mAU*s)	(mAU)	%
1	27.209	1.61136e4	336.75748	94.9156
2	50.655	863.17065	10.10619	5.0844

HPLC Chromatographs of 5e

Peak	RT	Area	Height	Area
	(min)	(mAU*s)	(mAU)	%
1	31.671	4325.46973	76.94801	50.1173
2	66.086	4305.22070	35.10695	49.8827

Deals	RT	Area	Height	Area
Реак	(min)	(mAU*s)	(mAU)	%
1	31.431	9769.87598	177.79742	97.1466
2	65.074	286.95941	2.45218	2.8534

HPLC Chromatographs of $\mathbf{5f}$

Doole	RT	Area	Height	Area
Реак	(min)	(mAU*s)	(mAU)	%
1	33.373	2535.31812	41.60107	49.7384
2	67.714	2561.98682	20.39388	50.2616

Daalr	RT	Area	Height	Area
Реак	(min)	(mAU*s)	(mAU)	%
1	33.107	2.99675e4	513.13391	97.5021
2	66.993	767.72095	6.71642	2.4979

HPLC Chromatographs of 5g

Deals	RT	Area	Height	Area
Реак	(min)	(mAU*s)	(mAU)	%
1	36.113	6807.80371	49.63602	50.2496
2	45.812	6740.16455	39.11159	49.7504

Deals	RT	Area	Height	Area
Реак	(min)	(mAU*s)	(mAU)	%
1	35.684	2.22005e4	163.12964	98.0694
2	46.149	437.03647	2.59082	1.9306

HPLC Chromatographs of 5h

Deals	RT	Area	Height	Area
Реак	(min)	(mAU*s)	(mAU)	%
1	34.293	1.43477e4	239.90440	49.8364
2	41.045	1.44419e4	194.06680	50.1636

Dool	RT	Area	Height	Area
Реак	(min)	(mAU*s)	(mAU)	%
1	35.223	3.79030e4	536.99591	94.1093
2	40.793	2372.52539	34.13328	5.8907

HPLC Chromatographs of 5i

Dool	RT	Area	Height	Area
геак	(min)	(mAU*s)	(mAU)	%
1	47.258	7119.64600	80.87196	50.2267
2	102.883	7055.38623	36.71408	49.7733

Deals	RT	Area	Height	Area
Реак	(min)	(mAU*s)	(mAU)	%
1	46.339	7845.48633	88.35828	97.1172
2	101.133	232.88689	1.16167	2.8828

HPLC Chromatographs of 5j

Dool	RT	Area	Height	Area
Реак	(min)	(mAU*s)	(mAU)	%
1	16.097	1.20023e4	206.32765	49.9269
2	21.082	1.20375e4	163.76784	50.0731

D1-	RT	Area	Height	Area
Реак	(min)	(mAU*s)	(mAU)	%
1	16.184	2.28144e4	386.95139	96.8347
2	21.804	745.73688	10.27418	3.1653

HPLC Chromatographs of 5k

Doole	RT	Area	Height	Area
Реак	(min)	(mAU*s)	(mAU)	%
1	10.652	6682.74268	176.12497	50.3871
2	14.276	6580.05420	148.69611	49.6129

Deele	RT	Area	Height	Area
Реак	(min)	(mAU*s)	(mAU)	%
1	10.595	1.52019e4	411.49155	96.9764
2	14.315	473.98114	9.82106	3.0236

HPLC Chromatographs of **5**l

D 1	RT	Area	Height	Area
Реак	(min)	(mAU*s)	(mAU)	%
1	33.994	6088.16113	102.19135	49.8927
2	44.031	6114.34473	78.02500	50.1073

Dealr	RT	Area	Height	Area
Реак	(min)	(mAU*s)	(mAU)	%
1	34.205	1.09745e4	184.19830	93.8470
2	44.392	719.52826	9.25934	6.1530

HPLC Chromatographs of 5m

Deals	RT	Area	Height	Area
Реак	(min)	(mAU*s)	(mAU)	%
1	29.829	4846.44629	81.67672	50.2755
2	47.739	4793.33984	60.56644	49.7245

Deals	RT	Area	Height	Area
Реак	(min)	(mAU*s)	(mAU)	%
1	31.283	9123.68945	119.20626	93.7514
2	48.467	608.09772	8.00540	6.2486

HPLC Chromatographs of **5n**

Deak	RT	Area	Height	Area
I Cak	(min)	(mAU*s)	(mAU)	%
1	9.199	9473.85352	624.51385	50.0338
2	13.367	9461.03711	398.77005	49.9662

Deale	RT	Area	Height	Area
Реак	(min)	(mAU*s)	(mAU)	%
1	9.173	6556.93262	439.93381	52.8373
2	13.302	5852.72852	251.39461	47.1627

HPLC Chromatographs of 50

Deale	RT	Area	Height	Area
Реак	(min)	(mAU*s)	(mAU)	%
1	20.698	4340.35742	116.72485	50.0750
2	34.901	4327.35205	67.84043	49.9250

D1-	RT	Area	Height	Area
Реак	(min)	(mAU*s)	(mAU)	%
1	20.941	1.10567e4	297.01855	87.0504
2	35.340	1644.80225	24.91486	12.9496

HPLC Chromatographs of **5p**

Dool	RT	Area	Height	Area
Реак	(min)	(mAU*s)	(mAU)	%
1	17.858	4509.09668	136.84662	49.9130
2	29.173	4524.80859	86.82851	50.0870

Deals	RT	Area	Height	Area
Реак	(min)	(mAU*s)	(mAU)	%
1	17.778	1.51651e4	464.53305	87.4328
2	29.262	2179.76050	41.45616	12.5672

HPLC Chromatographs of **5q**

D 1	RT	Area	Height	Area
Реак	(min)	(mAU*s)	(mAU)	%
1	25.864	4696.64844	105.90557	49.9656
2	29.218	4703.11475	96.05776	50.0344

Deale	RT	Area	Height	Area
Реак	(min)	(mAU*s)	(mAU)	%
1	25.736	1568.91895	35.88278	5.1780
2	29.379	2.87308e4	546.03253	94.8220

HPLC Chromatographs of 5r

D 1.	RT	Area	Height	Area
Реак	(min)	(mAU*s)	(mAU)	%
1	23.013	5231.34961	135.34503	49.9837
2	25.656	5234.76465	120.98967	50.0163

Daalr	RT	Area	Height	Area
Реак	(min)	(mAU*s)	(mAU)	%
1	23.044	8311.97949	215.95285	83.0094
2	25.761	1701.32361	39.93383	16.9906

Deals	RT	Area	Height	Area
Реак	(min)	(mAU*s)	(mAU)	%
1	36.416	4529.82861	65.06881	50.3815
2	41.020	4461.23145	43.24934	49.6185

D 1.	RT	Area	Height	Area
Реак	(min)	(mAU*s)	(mAU)	%
1	36.746	2467.13770	36.57509	24.8664
2	41.116	7454.41797	72.62057	75.1336

HPLC Chromatographs of 5t

Deale	RT	Area	Height	Area
Реак	(min)	(mAU*s)	(mAU)	%
1	14.182	1.45244e4	361.83063	50.3047
2	17.140	1.43484e4	261.85654	49.6953

Deale	RT	Area	Height	Area
Реак	(min)	(mAU*s)	(mAU)	%
1	14.242	931.71954	23.25604	5.1631
2	17.049	1.71139e4	312.98340	94.8369

HPLC Chromatographs of **5u**

D 1	RT	Area	Height	Area
Реак	(min)	(mAU*s)	(mAU)	%
1	11.114	3436.66724	113.17353	49.9627
2	13.927	3441.80469	77.44581	50.0373

Deale	RT	Area	Height	Area
Реак	(min)	(mAU*s)	(mAU)	%
1	11.062	474.81885	15.65175	3.0048
2	13.649	1.53274e4	369.97885	96.9952

HPLC Chromatographs of 8

Daalr	RT	Area	Height	Area
Реак	(min)	(mAU*s)	(mAU)	%
1	8.443	7127.71484	386.33185	49.9998
2	11.140	7127.77979	248.54724	50.0002

Deale	RT	Area	Height	Area
Реак	(min)	(mAU*s)	(mAU)	%
1	8.491	1150.59546	67.11510	5.2396
2	11.074	2.08092e4	730.66321	94.7604

HPLC Chromatographs of 9

Deale	RT	Area	Height	Area
Реак	(min)	(mAU*s)	(mAU)	%
1	21.520	6787.01416	130.24065	50.1002
2	32.122	6759.85693	89.05852	49.8998

Peak	RT	Area	Height	Area
	(min)	(mAU*s)	(mAU)	%
1	21.581	1.15127e4	238.82961	94.8324
2	31.730	627.35266	12.59681	5.1676

5. X-ray crystal structure of 5k.

X-ray crystal structure of $\mathbf{5k}$.