Supplementary Materials

t-BuONa-mediated direct C-H halogenation of electron-deficient (hetero)arenes

Xia Liu, Xin Zhao, Fushun Liang* and Baoyi Ren*

Table of Contents

 General Information General Procedure for the Preparation of Halogenated (Hetero)Arenes General Procedure for the Preparation of Cross-coupling reaction products 	S2	
	S2	
	S4	
4. Analytical Data for Compounds 3-8	S6	
5. Copies of ¹ H and ¹³ C Spectra for Compounds 3-8	S12	

1. General Information

All reagents were purchased from commercial sources and used without treatment, unless otherwise indicated. The products were purified by column chromatography over silica gel. ¹H and ¹³C NMR spectra were recorded at 25 °C on a Varian 600 MHz or 500 MHz or 300 MHz for ¹H, at 150 MHz or 125 MHz or 75 MHz for ¹³C respectively in CDCl₃ or DMSO-*d*₆. Chemical shifts are reported in ppm relative to the residual signals of the deuterated solvents as the internal standard (CDCl₃: δ H = 7.26, δ C = 77.16 ppm) and (DMSO-*d*₆: δ H = 2.50, δ C = 40.45 ppm). ¹H NMR spectra were recorded using TMS as internal standard, ¹³C NMR spectra were recorded using an internal reference. Multiplicities are indicated by s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), and br (broad). Coupling constants, *J*, are reported in Hertz. High-resolution mass-spectra were obtained on an Agilient 1100 LCMsD mass spectrometer. Melting points (mp) are uncorrected.

2. Preparation of Halogenated (Hetero)Arenes

2.1 Iodination of (Hetero)Arenes

General procedure for iodination

Representative procedure for the preparation of **3a**: To a solution of benzothiazole (138 mg, 1 mmol) in DMF (5 mL) were added perfluorobutyl iodide (381 mg, 1.1 mmol) and sodium *t*-butoxide (48 mg, 0.5 mmol). The mixture was stirred at room temperature for 20 min. After the starting material benzothiazole **1a** was consumed as indicated by TLC, the solution was poured into water and then extracted with CH₂Cl₂ (3 x 10 mL). The combined organic phase was washed with water (3 x 10 mL), dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography (silica gel: 200-300 mesh, petroleum ether : ethyl acetate = 60:1-30:1) to give 2-iodobenzothiazole **3a** (258 mg, 99%) as a white solid ($R_f = 0.49$, petroleum ether : ethyl acetate = 30:1).

2.2 Bromination of (Hetero)Arenes

General procedure for brominaton

Representative procedure for the preparation of 4a: To a solution of benzothiazole (138 mg, 1 mmol) in DMF (0.5 mL) were added carbon tetrabromide (365 mg, 1.1 mmol) and sodium *t*-butoxide (384 mg, 4 mmol). The mixture was stirred at room temperature for 25 min. After the starting material benzothiazole **1a** was consumed as indicated by TLC, the solution was poured into water and then extracted with CH₂Cl₂ (3 x 10 mL). The combined organic phase was washed with water (3 x 10 mL), dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography (silica gel: 200-300 mesh, petroleum ether : ethyl acetate = 60:1-30:1) to give 2-bromobenzothiazole **4a** (198 mg, 93%) as a pale yellow solid ($R_f = 0.46$, petroleum ether : ethyl acetate = 30:1).

2.3 Chlorination of (Hetero)Arenes

General procedure for chlorination

Representative procedure for the preparation of **5a** : To a solution of benzothiazole (138 mg, 1 mmol) in DMF (0.5 mL) were added carbon tetrachloride (169 mg, 1.1 mmol) and sodium *t*-butoxide (384 mg, 4 mmol). The mixture was stirred at room temperature for 25 min. After the starting material benzothiazole **1a** was consumed as indicated by TLC, the solution was poured into water and then extracted with CH_2Cl_2 (3 x 10 mL). The combined organic phase was washed with water (3 x 10 mL), dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography (silica gel: 200-300 mesh, petroleum ether : ethyl acetate = 60:1-30:1) to give 2-chlorobenzothiazole **5a** (148 mg, 88%) as a light tan oil ($R_f = 0.47$, petroleum ether : ethyl acetate = 30:1).

$$t\text{-BuONa} + CX_4 \xrightarrow{\text{SET}} [CX_4] \xrightarrow{\text{CX}_4} CX_3 \xrightarrow{\text{F}} F \xrightarrow{\text{F}} F \xrightarrow{\text{F}} F \xrightarrow{\text{F}} CX_3 \xrightarrow{\text{T-BuO}} F \xrightarrow{\text{F}} F \xrightarrow{\text{F}} CX_3 \xrightarrow{\text{T-BuO}} F \xrightarrow{\text{F}} F \xrightarrow{\text{F}} CX_3 \xrightarrow{\text{T-BuO}} F \xrightarrow{\text{F}} F \xrightarrow{$$

Scheme S1. Proposed Mechanism for the Tribromomethylation and Trichloromethylation of Pentafluorobenzene.

3. Light-mediated Cross-coupling of Halogenated Heteroarenes

General procedure for the Light-mediated Cross-coupling of 2-iodobenzothiazole with (Hetero)Arenes

An over-dried vial, equipped with a magnetic stirring bar, is charged with 2-iodobenzothiazole (261 mg, 1 mmol), 1,10-phenanthroline (18) mg), 1,3,5-trimethoxybenzene (841 mg, 5 mmol), potassium tert-butoxide (449 mg, 4 mmol) in DMF (2 mL). The reaction mixture was then degassed via three cycles of freeze-pump-thaw, backfilling with nitrogen after each cycle. After the reaction mixture was degassed, the vial was placed approximately 2 cm away from a 36 W fluorescent lamp. The mixture was stirred at room temperature. After the starting material 2-iodobenzothiazole was consumed as indicated by TLC, the reaction mixture was poured into water and then extracted with CH₂Cl₂ (3 x 10 mL). The combined organic phase was washed with water (3 x 10 mL), dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography (silica gel: 200-300 mesh, petroleum ether : ethyl acetate = 50:1-25:1) to give 2-(2,4,6-trimethoxyphenyl)benzothiazole **8a** (235 mg, 78%) as a white solid ($R_f = 0.35$, petroleum ether : ethyl acetate = 5:1).

4. Analytical Data for Compounds 3-8

2-iodobenzothiazole (3a)

258 mg, 99% yield; White solid; m. p. 78-80 °C. ¹H NMR (600 MHz, CDCl₃): δ = 7.35-7.43 (m, 2H), 7.80-7.81 (m, 1H), 8.01-8.02 (m, 1H);

¹³C NMR (125 MHz, CDCl₃): δ = 105.9, 120.5, 122.6, 125.7, 126.4, 139.2, 154.2;

HRMS (ESI) (m/z): Calcd for $C_7H_4INS (M+H)^+$: 261.9187, found: 261.9192.

2-iodobenzoxazole (3b)

240 mg, 98% yield; White solid; m. p. 86-90 °C (dec.). ¹H NMR (300 MHz, CDCl₃): δ = 7.23-7.31 (m, 2H), 7.46-7.51 (m, 1H), 7.64-7.71 (m, 1H);

¹³C NMR (125 MHz, CDCl₃): δ = 108.2, 110.1, 119.2, 124.6, 125.3, 142.6, 153.9;

HRMS (ESI) (m/z): Calcd for C₇H₄INO (M+H)⁺ : 245.9416, found: 245.9422.

2-iodo-N-methylbenzimidazole (3c)

208 mg, 81% yield; White solid; m. p. 118-119 °C. ¹H NMR (600 MHz, CDCl₃): δ = 3.66 (s, 3H),

7.18-7.19 (m, 2H), 7.23 (d, *J* = 4.2 Hz, 1H), 7.69 (d, *J* = 4.8 Hz, 1H);

¹³C NMR (150 MHz, CDCl₃): δ = 33.6, 104.5, 109.3, 119.0, 122.1, 122.9, 136.1, 145.3;

HRMS (ESI) (m/z): Calcd for $C_8H_7IN_2$ (M+H)⁺ : 258.9732, found: 258.9741.

1,4-dibromo-2-iodo-3-nitrobenzene (3d)

387 mg, 95% yield; White solid; m. p. 111-112 °C. ¹H NMR (600 MHz, CDCl₃): δ = 7.50-7.53 (m, 1H), 7.60-7.63 (m, 1H);

¹³C NMR (150 MHz, CDCl₃): δ = 95.1, 111.0, 131.2, 134.0, 134.2, 156.8;

HRMS (ESI) (m/z): Calcd for $C_6H_2Br_2INO_2 (M+H)^+$: 407.7555, found: 407.7559.

Pentafluorobenzene (3e)

291 mg, 99% yield; colorless oil;

¹³C NMR (150 MHz, CDCl₃): $\delta = 65.9$ (td, $J_1 = 28.5$ Hz, $J_2 = 4.5$ Hz), 136.0-136.3 (m), 137.7-138.0 (m), 140.5-140.7 (m), 142.2-142.4 (m), 146.2-146.4 (m), 147.8-148.0 (m) ;

HRMS (ESI) (m/z): Calcd for C_6F_5I (M+H)⁺ : 294.9043, found: 294.9052.

2,5 -diiodothiazole (3f)

330 mg, 98% yield; White solid; m. p. 107-109 °C. ¹H NMR (500 MHz, CDCl₃): δ = 7.63 (s, 1H);

¹³C NMR (125 MHz, CDCl₃): δ = 74.7, 104.0, 152.6;

HRMS (ESI) (m/z): Calcd for $C_3HI_2NS (M+H)^+$: 337.7997, found: 337.7993.

2,4-diiodo-5-phenyloxazole (3g)

3g

373 mg, 94% yield; White solid; m. p. 81-82 °C. ¹H NMR (600 MHz, CDCl₃): δ = 7.32 (t, *J* = 7.2

Hz, 1H), 7.40 (t, *J* = 7.2 Hz, 2H), 7.57 (d, *J* = 7.8 Hz, 2H);

¹³C NMR (150 MHz, CDCl₃): δ = 100.2, 124.1, 124.9, 126.8, 128.9, 129.0, 157.4;

HRMS (ESI) (m/z): Calcd for $C_9H_5I_2NO(M+H)^+$: 397.8539, found: 397.8532.

2,6-diiodopyridine 1-oxide(3h)

321 mg, 93% yield; White solid; m. p. 175-176 °C. ¹H NMR (600 MHz, CDCl₃): $\delta = 6.56$ (t, J =

6.0 Hz, 1H), 7.89 (d, *J* = 3.0 Hz, 2H);

¹³C NMR (150 MHz, CDCl₃): δ = 108.2, 125.4, 137.3;

HRMS (ESI) (m/z): Calcd for $C_5H_3I_2NO(M+H)^+$: 347.8382, found: 347.8387.

2-iodo-1-methylimidazole (3i)

72 mg, 35% yield; White solid; m. p. 88-89 °C. ¹H NMR (600 MHz, CDCl₃): δ = 3.53 (s, 3H), 6.95 (d, *J* = 1.2 Hz, 1H), 6.97 (d, *J* = 1.2 Hz, 1H);

¹³C NMR (150 MHz, CDCl₃): δ = 36.6, 90.8, 124.1, 132.2;

HRMS (ESI) (m/z): Calcd for $C_4H_5IN_2$ (M+H)⁺ : 208.9576, found: 208.9571.

2,5-diiodo-1-methyl-1H-imidazole (3j)

210 mg, 63% yield; White solid; m. p. 150-152 °C. ¹H NMR (600 MHz, DMSO- d_6): $\delta = 3.59$ (s, 3H), 7.11 (s, 1H);

¹³C NMR (150 MHz, DMSO- d_6): δ = 37.7, 75.8, 93.9, 139.1;

HRMS (ESI) (m/z): Calcd for $C_4H_5I_2N_2$ (M+H)⁺ : 334.8542, found: 334.8545.

2-bromobenzothiazole (4a)

199 mg, 93 % yield; pale yellow solid; m. p. 38-39 °C. ¹H NMR (500 MHz, CDCl₃): $\delta = 7.37-7.48(m, 2H), 7.77-7.80(m, 1H), 7.96-7.99 (m, 1H);$

¹³C NMR (125 MHz, CDCl₃): δ = 120.9, 122.8, 125.7, 126.6, 137.3, 138.9, 152.3;

HRMS (ESI) (m/z): Calcd for C_7H_4BrNS (M+H)⁺ : 213.9326, found: 213.9331.

2-bromobenzoxazole (4b)

175 mg, 89% yield; yellow oil; ¹H NMR (300 MHz, CDCl₃): δ = 7.28-7.35 (m, 2H), 7.47-7.52 (m, 1H), 7.64-7.70 (m, 1H); The ¹³C NMR spectrum and HRMS were not provided in view that compound **4b** is very sensitive to light and heat. It can be easily decomposed at room temperature.

2-bromo-1-methylbenzimidazole (4c)

179 mg, 85 % yield; white solid; m. p. 103-104 °C. ¹H NMR (300 MHz, CDCl₃): δ = 3.78 (s, 3H), 7.22-7.26 (m, 1H), 7.28-7.33 (m, 2H), 7.67-7.72 (m, 1H);

¹³C NMR (75 MHz, CDCl₃): δ = 31.6, 109.2, 119.2, 122.4, 123.0, 130.3, 135.9, 142.9;

HRMS (ESI) (m/z): Calcd for $C_8H_7BrN_2 (M+H)^+$: 210.9871, found: 210.9869.

2-bromo-1-methylimidazole (4d)

101 mg, 63% yield; red brown oil. ¹H NMR (300 MHz, CDCl₃): δ = 3.61 (s, 3H), 6.96 (d, *J* = 1.2 Hz, 1H), 6.98 (d, *J* = 1.2 Hz, 1H);

¹³C NMR (125 MHz, CDCl₃): δ = 34.4, 119.7, 123.1, 129.3;

HRMS (ESI+) (m/z): Calcd for $C_4H_5BrN (M+H)^+$: 160.9714, found: 160.9722.

2,5-dibromothiazole (4e)

187 mg, 77 % yield; white solid; m. p. 45-47 °C. ¹H NMR (300 MHz, CDCl₃): δ = 7.52 (s, 1H);

¹³C NMR (125 MHz, CDCl₃): δ = 110.6, 135.8, 144.0;

HRMS (ESI) (m/z): Calcd for C₃HBr₂NS (M+H)⁺ : 243.8254, found: 243.8251.

2,4-dibromo-5-phenyloxazole (4f)

245 mg, 81 % yield; yellow oil; ¹H NMR (300 MHz, CDCl₃): $\delta = 7.29-7.33$ (m, 1H), 7.33-7.43 (m,

2H), 7.55 (d, *J* = 9.0 Hz, 2H);

¹³C NMR (75 MHz, CDCl₃): δ = 123.5, 123.6, 126.3, 128.4, 128.5, 132.0, 154.8;

HRMS (ESI) (m/z): Calcd for C₉H₅Br₂NO (M+H)⁺ : 303.8796, found: 303.8792.

2-chlorobenzothiazole (5a)

149 mg, 88 % yield; light brownish oil; ¹H NMR (600 MHz, CDCl₃): δ = 7.33-7.44 (m, 2H), 7.69-7.70 (m, 1H), 7.90-7.91 (m, 1H);

¹³C NMR (150 MHz, CDCl₃): δ = 121.0, 122.8, 125.7, 126.6, 136.0, 150.9, 153.1;

HRMS (ESI) (m/z): Calcd for $C_7H_4CINS (M+H)^+$: 169.9831, found: 169.9835.

2-chloro-1-methylbenzoimidazole (5b)

85.1 mg, 51% yield; White solid; m. p. 117-118 °C. ¹H NMR (300 MHz, CDCl₃): δ = 3.77 (s,1H), 7.24-7.27 (m, 1H), 7.29-7.33 (m, 2H), 7.67-7.70 (m, 1H);

¹³C NMR (75 MHz, CDCl₃): δ = 30.4, 109.2, 119.3, 122.6, 123.1, 135.6, 140.9, 141.6;

HRMS (ESI) (m/z): Calcd for $C_7H_4CINO (M+H)^+$: 167.0376, found: 167.0371.

2,4-dichloro-5-phenyloxazole (5c)

135 mg, 63 % yield; yellow oil; ¹H NMR (300 MHz, CDCl₃): δ = 7.32-7.36 (m, 1H), 7.39-7.44 (m, 2 H), 7.58 (d, *J* = 9.0 Hz, 2H);

¹³C NMR (75 MHz, CDCl₃): δ = 122..8, 123.5, 124.3, 126.4, 128.5, 128.6, 128.7, 153.2;

HRMS (ESI) (m/z): Calcd for $C_9H_5Cl_2NO(M+H)^+$: 213.9826, found: 213.9833.

1,2,3,4,5-pentafluoro-6-(tribromomethyl)benzene (6)

383 mg, 92 % yield; colorless oil;

¹³C NMR (150 MHz, CDCl₃): δ = 20.3-20.4 (m), 102.3 (t, J = 22.5 Hz), 119.8 (t, J = 12.8 Hz),

142.4-142.6 (m), 144.0-144.3 (m), 145.6-145.9 (m);

HRMS (ESI) (m/z): Calcd for $C_7Br_3F_5$ (M+H)⁺ : 418.7528, found: 418.7536.

1,2,3,4,5-pentafluoro-6-(trichloromethyl)benzene (7)

CCI

218 mg, 77 % yield; colorless oil;

¹³C NMR (150 MHz, CDCl₃): δ = 58.4 (t, *J* = 2.25 Hz), 117.7 (t, *J* = 13.5 Hz), 142.6-143.0 (m), 143.2-143.6 (m), 144.3-144.6 (m), 144.9-145.3 (m);

HRMS (ESI) (m/z): Calcd for $C_7Cl_3F_5$ (M+H)⁺ : 284.9064, found: 284.9058.

2-(2, 4, 6-trimethoxyphenyl)benzothiazole (8a)

223 mg, 74% yield; White solid; m. p. 118-119 °C; ¹H NMR (300 MHz, CDCl₃): δ = 3.77 (s, 6H),3.86 (s, 3H), 6.20 (s, 2H), 7.35 (t, *J* = 7.5 Hz, 1H), 7.45 (t, *J* = 7.5 Hz, 1H), 7.89 (d, *J* = 9.0 Hz, 1H), 8.12 (d, *J* = 9.0 Hz, 1H);

¹³C NMR (75 MHz, CDCl₃): δ = 55.4, 55.9, 90.6, 104.9, 121.1, 123.2, 124.5, 125.3, 136.4, 153.1, 159.6, 161.9, 162.7;

HRMS (ESI) (m/z): Calcd for $C_{16}H_{15}NO_3S [M+H]^+$: 302.0851 found: 302.0855.

2-(1-methyl-1H-indol-2-yl)benzothiazole (8b)

206 mg, 78% yield; White solid; m. p. 140-142 °C NMR (300 MHz, CDCl₃): δ = 4.28 (s, 3H), 7.13-7.22 (m, 2H), 7.32-7.50 (m, 4H), 7.66 (d, *J* = 9.0 Hz, 1H), 7.86 (d, *J* = 6.0 Hz, 1H), 8.04 (d, *J* = 9.0 Hz, 1H);

¹³C NMR (100 MHz, CDCl₃): δ = 32.2, 107.2, 110.0, 120.5, 121.2, 121.5, 123.1, 126.2, 132.1, 134.4, 139.7, 154.2, 160.5;

HRMS (ESI) (m/z): Calcd for $C_{16}H_{12}N_2S$ (M+H)⁺ : 256.0799, found: 256.0794.

5. Copies of ¹H and ¹³C NMR Spectra for Compounds 3-8

S13

S17

S19

90 80 f1 (ppm) ,

S26

S29

S33