Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting Information

O-Difluorodeuteromethylation of phenols using difluorocarbene precursors and deuterium oxide

Yang Geng^a, Mingxiang Zhu^a, Apeng Liang^a, Chengshan Niu^b, Jingya Li^b, Dapeng Zou^{a*}, Yusheng Wu^{a,b,c*}, Yangjie Wu^{a*}

^a The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450052, P. R. China.

E-mail: zdp@zzu.edu.cn, wyj@zzu.edu.cn;

Tel: +86 371 6776 6865, +86 371 6776 7993

^b Tetranov Biopharm, LLC. And Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, 450052, P. R. China.

^c Tetranov International, Inc., 100 Jersey Avenue, Suite A340, New Brunswick, NJ 08901, USA. E-mail: yusheng.wu@tetranovglobal.com; Fax: +1 732 253 7327; Tel: +1 732 253 7326

Table of Contents

1. Optimization of the reaction conditions	SI-2
2. General information	SI-2
3. Experimental section and analytical date	SI-3
4. NMR spectra of difluorodeuteromethyl aryl ethers	SI-13
5. References	SI-51

1. Optimization of the reaction conditions

$(x) \text{ base, } D_2O, (y) \text{ BrCF}_2PO(OEt)_2$ $THF, 0 ^{\circ}C- \text{ rt.}$					
	1a			2a	
entry	x eq.	D ₂ O (eq.)	y eq.	yield (%) ^{<i>d</i>, <i>e</i>}	d. p. (%)f
1 ^b	KOH (20)	5 mL	2.0	82/79 ^e	91.6
2^c	KOH (20)	5 mL	2.0	81/78 ^e	92.8
3	NaH (1)	1	2.0	trace	-
4	NaH (1)	50	2.0	15	-
5	NaH (3)	50	2.0	45	-
6	NaH (5)	50	2.0	65	-
7	NaH (8)	50	2.0	70	-
8	NaH (10)	50	2.0	83/80 ^e	99.3
9	NaH (12)	50	2.0	78/75 ^e	99.3
10	NaH (20)	50	2.0	40	-
11	NaH (10)	12	2.0	5	-
12	NaH (10)	30	2.0	20	-
13	NaH (10)	100	2.0	84/81 ^e	99.5
14	NaH (10)	200	2.0	83/79 ^e	99.5
15	NaH (10)	50	1.5	75/72 ^e	98.3
16	NaH (10)	50	2.5	78/74 ^e	99.3
17	K_2CO_3 (10)	50	2.0	20	-

Table S1 Optimization of the reaction conditions.^a

"Reaction conditions: 2-Naphthol **1a** (1 mmol), base, THF (4 mL), 0 °C, Ar₂, 0.5 h; D₂O, 10 minutes; BrCF₂PO(OEt)₂, 0 °C-rt, 0.5 h.

^{*b*}Reaction conditions: 2-Naphthol **1a** (1 mmol), CH₃CN (5 mL), KOH (20 mmol), -78 °C, Ar₂, 0.5 h; D₂O (5 mL), 10 minutes; BrCF₂PO(OEt)₂ (2 mmol), -78 °C-rt, 0.5 h. ^{*c*}THF (5 mL) as solvent.

^{*d*}Yield was determined by GC method using benzophenone as the internal standard substance.

^{*e*}Isolated yield, the product **2a** was purified via silica gel column with petroleum ether as eluent.

fd.p. = deuterated purity, was determined by ¹H NMR method.

2. General information

All manipulations were carried out in glass reaction tube equipped with a magnetic stir bar under argon atmosphere. Unless otherwise mentioned, solvents and reagents were purchased from commercial sources and used as received. Analytical thin-layer chromatography was performed using glass plates pre-coated with 0.25 mm 230-400 mesh silica gel impregnated with a fluorescent indicator (254 nm). Thin layer chromatography plates were visualized by exposure to ultraviolet light. Melting points were recorded by XT4A micro Melting point Measurement Instruments, thermometer was unrevised. The transformation progress and Mass spectra were indicated by LC-MSD-Trap-XCT instrument or GC-MS (Thermo Fisher Scientific DSQ II). The high

resolution mass spectra were received via Agilent Technologies 6540 UHD Accuratemass Q-TOF LC/MS, with ESI as ion source and Thermo Scientific Q Exactive GC Orbitrap GC-MS. Moreover, NMR spectra were obtained on Bruker AVANCE III 400 systems using CDCl₃ or DMSO-d₆ as solvent, TMS as internal standard substance, with proton, fluorine and carbon resonances at 400, 376 and 100 MHz, respectively. The bioactivity date were supported by Tetranov International, Inc.

3. Experimental section and analytical date.

3.1 General procedure for preparing difluorodeuteromethyl aryl ethers.

Sodium hydride (400 mg, 10 mmol, 60% in mineral oil) was added to a solution of phenol (1 mmol) in dry THF (4 mL) at 0 °C under argon atmosphere. After 30 min, D₂O (1.0 g, 50 mmol) was slowly added and stirred at 0 °C for 10 minutes. BrCF₂PO(OEt)₂ (534 mg, 2 mmol) was added below 0 °C. The reaction mixture was warmed to room temperature (as substrates **11** and **1t**, the temperature was warmed to 5 °C) and stirred for another 0.5 h. The mixture was added with petroleum ether (or petroleum ether and ethyl acetate mixture) and separated. The organic layer was washed with brine, dried over anhydrous Na₂SO₄, concentrated in vacuo, and the resulting residue was purified by flash column chromatograph to give the pure products. The products were characterized by ¹H NMR, ¹³C NMR, ¹⁹F NMR, GC-MS and HRMS.

3.2 Procedure for 30 grams scale.

Method B: 5-Fluoro-2-nitrophenol (31.4 g, 200 mmol) and dry THF (800 mL) were added in a 2 L three neck flask equipped with a mechanical agitation and a low-temperature thermometer under argon atmosphere. Sodium hydride (80 g, 2.0 mol, 60% dispersion in mineral oil) was added with multiple batches to the solution under 0 °C. Then, the reaction mixture was stirred for 0.5 h. The D₂O (200 g, 10 mol) was cautiously added drop by drop below 0 °C, and the gas was removed at irregular intervals. The reaction mixture was stirred for 0.5 h, and BrCF₂PO(OEt)₂ (106.8 g, 400 mmol) was added below 0 °C. Then, the reaction mixture was warmed to 5 °C and stirred for another 0.5 h. The mixture was added with petroleum ether:ethyl acetate = 10:1. Separation of organic phase and aqueous phase, the organic layer was washed with brine, dried over anhydrous Na₂SO₄, concentrated in vacuo, and the resulting residue was purified by silica gel column with PE:DCM = 4:1 as eluent to afford the pure product **2l** (37.5 g, 90% yield and 99.1 atom % D).

Scheme S1. Scalability of the difluorodeuteromethylation of 11

3.3 Procedure of preparation of compound DFA.

Scheme S2. Introduction of the OCF₂D Group into the Drug Molecule 2-(Difluoromethoxy-d₁)-4-fluoro-5-nitrobenzenamine (3l).

Step a¹: compound **2l** (2-(difluoromethoxy-d₁)-4-fluoro-1-nitrobenzene) (5.0 g, 24 mmol), 10% Pd/C (0.5 g) were dissolved in ethyl acetate (250 mL). Then, the reaction system was stirred under a hydrogen balloon at room temperature for 16 h. The reaction mixture was filtered through a suction funnel filled with diatomite. The solution was concentrated and the crude product 2-(difluoromethoxy-d¹)-4-fluorobenzenamine (3.8 g) was directly used for the next step.

Step b²: 2-(difluoromethoxy-d₁)-4-fluorobenzenamine (3.8 g) was added in batches into conc.H₂SO₄ below 10 °C. Then Potassium nitrate (2.2 g, 21.8 mmol) was added. The reaction mixture was warmed to room temperature and stirred overnight. The mixture was poured into ice water and excessive ammonia was added. The mixture was stirred for 30 min and then diluted with EA (100 mL). The organic phase was separated and washed with brine, dried with anhydrous Na₂SO₄ and concentrated. The residue was purified via silica gel column to afford the product **31** a yellow solid (3.9g, 17.5 mmol, 73% yield, for two steps).

N-(2-(difluoromethoxy-d₁)-4-fluoro-5-nitrophenyl)-4-(1-methyl-1H-indol-3-yl)pyrimidin-2-amine (DFA-1).

Step c³. 4-Methylbenzenesulfonic acid hydrate (4.0 g, 21 mmol) was added in one portion to 3-(2-chloropyrimidin-4-yl)-1-methylindole (4.3 g, 17.5 mmol) and 2-(difluoromethoxy-d₁)-4-fluoro-5-nitrobenzenamine (3.9 g, 17.5 mmol) in 2-pentanol (80 mL). The resulting mixture was stirred at 110 °C for 12 h. The mixture was concentrated and added with 2M Na₂CO₃ solution, then extracted by CH₂Cl₂. The organic phase was dried by anhydrous Na₂SO₄, concentrated and purified via silica gel column to afford the product **DFA-1** a yellow solid (7.1 g, 16.5 mmol, 94% yield). **2-(Difluoromethoxy-d₁)-N⁴-(2-(dimethylamino)ethyl)-N⁴-methyl-N¹-(4-(1-methyl-1H-indol-3-yl)pyrimidin-2-yl)-5-nitrobenzene-1,4-diamine (DFA-2)³. Compound DFA-1** (3.2 g, 7.4 mmol), N¹, N¹, N²-trimethylethane-1, 2-diamine (1.52 g, 14.9 mmol), DIEA (2.88 g, 22.3 mmol) were dissolved in DMA (50 mL). The mixture was warmed to 60 °C and stirred overnight. The reaction mixture was cooled to rt, and poured into ice-water, stirred for 0.5 h, filtered and washed with ethyl ether. The solid was collected and dried to afford the product **DFA-2** an orange solid (3.5 g, 6.8 mmol, 92% yield).

5-(Difluoromethoxy-d₁)-N¹-(2-(dimethylamino)ethyl)-N¹-methyl-N⁴-(4-(1methyl-1H-indol-3-yl)pyrimidin-2-yl)benzene-1,2,4-triamine (DFA-3).³ Compound DFA-2 (3.5 g, 6.8 mmol) was dissolved in EA (300 mL) and DCM (30 mL) added with 0.35 g 10% Pd/C. The reaction mixture was pressurized with a hydrogen balloon and stirred at room temperature for 20 h. The solution was filtered through a suction funnel filled with diatomite and concentrated to afford the reduction

product (3.0 g, 6.2 mmol, 91%). N-(5-(4-(1-methyl-1H-indol-3-yl)pyrimidin-2-ylamino)-2-(N-(2-

(dimethylamino)ethyl)-N-methylamino)-4-(difluoromethoxy-

d₁)phenyl)acrylamide (DFA).³ The reduction product (0.42 g, 0.87 mmol) and DIEA (0.23 g, 1.74 mmol) were dissolved in DCM (40 mL). The mixture was cooled to 0 °C, slowly added with acryloyl chloride (90 mg) in DCM (10 mL), stirred for 2 h below 10 °C. The mixture was diluted with DCM (20 mL) and washed with saturated aqueous NaHCO₃ solution (50 mL). The organics were removed, and the aqueous portion was further extracted with DCM (2×30 mL). The combined organics were dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified via a silica gel column with elution gradient 1-10% MeOH in DCM. The pure fractions were concentrated to afford the product DFA an offwhite solid (0.32 g, 0.61 mmol, 69%).

3.4 Analytical date of difluorodeuteromethyl aryl ethers.

2-(Difluoromethoxy-d₁)naphthalene. (**2a**, 156.1 mg, yield 80%, 99.3 atom % D): Using petroleum (PE) as eluent (Rf = 0.3, PE). Colorless oil; ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.87–7.81 (m, 3H), 7.54–7.48 (m, 3H), 7.31 (dd, *J* = 2.4 Hz, 8.9 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ = -81.3 (t, *J* = 11.6 Hz). ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 149.0 (t, *J*_{C-F} = 2.6 Hz), 133.8, 131.1, 130.1 (CH), 127.8 (CH), 127.5 (CH), 127.0 (CH), 125.7 (CH), 119.7 (CH), 115.9 (tt, *J*_{C-D} = 33.7 Hz, *J*_{C-F} = 256.6 Hz), 115.4 (CH). HRMS (EI-Orbitrap) *m/z*: Calcd for C₁₁H₇DF₂O [M]⁺: 195.06060; Found: 195.06003. GC–MS (EI, *m/z*): [M]⁺ 195.1.

2b

2-Bromo-6-(difluoromethoxy-d₁)naphthalene. (**2b**, 233.8 mg, yield 85%, 98.5 atom % D): Using PE as eluent (Rf = 0.3, PE). White foam; ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.89 (d, *J* = 1.4 Hz, 1H), 7.63 (d, *J* = 8.9 Hz, 1H), 7.56 (d, *J* = 8.7 Hz, 1H), 7.50 (dd, *J* = 1.9 Hz, 8.8 Hz, 1H), 7.40 (d, *J* = 2.0 Hz, 1H), 7.23 (dd, *J* = 2.4 Hz, 8.9 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ = -81.6 (t, *J* = 11.8 Hz). ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 149.0 (t, *J*_{C-F} = 2.8 Hz), 132.2, 132.0, 130.3 (CH), 129.8 (CH), 129.2 (CH), 129.1 (CH), 120.4 (CH), 119.7, 115.6 (tt, *J*_{C-D} =

33.8 Hz, $J_{C-F} = 257.3$ Hz), 115.3 (CH). HRMS (EI-Orbitrap) m/z: Calcd for $C_{11}H_6DBrF_2O$ [M]⁺: 272.97111; Found: 272.97089. GC–MS (EI, m/z): [M]⁺ 273.0.

2-Bromo-7-(difluoromethoxy-d₁))naphthalene. (**2c**, 225.5 mg, yield 82%, 98.3 atom % D): Using PE as eluent (Rf = 0.3, PE). White foam; ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.89 (d, *J* = 1.6 Hz, 1H), 7.75 (d, *J* = 8.9 Hz, 1H), 7.63 (d, *J* = 8.7 Hz, 1H), 7.48 (dd, *J* = 1.9 Hz, 8.8 Hz, 1H), 7.35 (d, *J* = 1.9 Hz, 1H), 7.24 (dd, *J* = 2.4 Hz, 8.9 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ = -81.7 (t, *J* = 11.9 Hz). ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 149.6 (t, *J*_{C-F} = 2.8 Hz), 134.9, 130.1 (CH), 129.5 (CH), 129.4 (CH), 129.1 (CH), 121.2, 120.1 (CH), 115.6 (tt, *J*_{C-D} = 33.7 Hz, *J*_{C-F} = 257.4 Hz), 114.3 (CH). HRMS (EI-Orbitrap) *m/z*: Calcd for C₁₁H₆DBrF₂O [M]⁺: 272.97111; Found: 272.97074. GC–MS (EI, *m/z*): [M]⁺ 273.0.

2d

6-(Difluoromethoxy-d₁)naphthalene-2-carbonitrile. (**2d**, 132.1 mg, yield 60 %, 98.6 atom % D): Using PE:DCM = 4:1 as eluent (Rf = 0.4, PE:DCM = 1:1). White foam; ¹H NMR (400 MHz, CDCl₃, ppm): δ = 8.16 (s, 1H), 7.88 (d, *J* = 9.0 Hz, 1H), 7.84 (d, *J* = 8.6 Hz, 1H), 7.60 (dd, *J* = 1.6 Hz, 8.5 Hz, 1H), 7.52 (d, *J* = 1.8 Hz, 1H), 7.38 (dd, *J* = 2.4 Hz, 9.0 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ = -82.4 (t, *J* = 11.3 Hz). ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 151.1 (t, *J*_{C-F} = 2.8 Hz), 135.3, 133.8 (CH), 130.7 (CH), 129.6, 128.8 (CH), 127.5 (CH), 121.4 (CH), 119.0, 115.3 (tt, *J*_{C-D} = 34.0 Hz, *J*_{C-F} = 258.4 Hz), 115.0 (CH), 109.1. HRMS (EI-Orbitrap) *m/z*: Calcd for C₁₂H₆DF₂NO [M]⁺: 220.05585; Found: 220.05533. GC–MS (EI, *m/z*): [M]⁺ 220.1

2-(**Difluoromethoxy-d**₁)-6-phenylnaphthalene. (**2e**, 230.5 mg, yield 85 %, 98.8 atom % D): Using PE:DCM = 10:1 as eluent (Rf = 0.35, PE:DCM = 10:1). White foam; ¹H NMR (400 MHz, CDCl₃, ppm): δ = 8.01 (d, *J* = 0.6 Hz, 1H), 7.88 (d, *J* = 9.0 Hz, 1H), 7.85 (d, *J* = 8.7 Hz, 1H), 7.77 (dd, *J* = 1.8 Hz, 8.5 Hz, 1H), 7.71–7.68 (m, *J* = 2.0 Hz, 2H), 7.52–7.46 (m, 2H), 7.40–7.36 (m, 1H), 7.29 (dd, *J* = 2.4 Hz, 8.8 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ = -81.4 (t, *J* = 11.2 Hz). ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 149.0 (t, *J*_{C-F} = 2.7 Hz), 140.7, 138.5, 132.9, 131.3, 130.3 (CH), 128.9 (CH), 128.0 (CH), 127.5 (CH), 127.4 (CH), 126.7 (CH), 125.6 (CH), 120.1 (CH), 115.8 (tt, *J*_{C-D} = 33.6 Hz, *J*_{C-F} = 256.3 Hz), 115.2 (CH). HRMS (EI-Orbitrap) *m/z*: Calcd for C₁₇H₁₁DF₂O [M]⁺: 271.09190; Found: 271.09149. GC–MS (EI, *m/z*): [M]⁺ 271.2

2-(**Difluoromethoxy-d**₁)-7-methoxynaphthalene. (**2f**, 157.5 mg, yield 70 %, 99.0 atom % D): Using PE:DCM = 10:1 as eluent (Rf = 0.17, PE:DCM = 10:1). Colorless oil; ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.61 (d, *J* = 8.8 Hz, 1H), 7.58 (d, *J* = 9.0 Hz, 1H), 7.28 (d, *J* = 2.1 Hz, 1H), 7.02–6.98 (m, 2H), 6.95 (d, *J* = 2.4 Hz, 1H), 3.78 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ = -81.2 (t, *J* = 11.9 Hz). ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 158.5, 149.7 (t, *J*_{C-F} = 2.5 Hz), 135.3, 129.8 (CH), 129.3 (CH), 126.5, 118.8 (CH), 117.0 (CH), 115.9 (tt, *J*_{C-D} = 33.6 Hz, *J*_{C-F} = 256.2 Hz), 114.4 (CH), 105.5 (CH), 55.3 (CH₃). HRMS (EI-Orbitrap) *m/z*: Calcd for C₁₂H₉DF₂O₂ [M]⁺: 225.07116; Found: 225.07062. GC–MS (EI, *m/z*): [M]⁺ 225.0

OCF₂D

2g

1-(Difluoromethoxy-d₁)naphthalene. (**2g**, 152.2 mg, yield 78%, 98.2 atom % D): Using PE as eluent (Rf = 0.3, PE). Colorless oil; ¹H NMR (400 MHz, CDCl₃, ppm): δ = 8.19–8.16 (m, 1H), 7.85–7.81 (m, 1H), 7.68 (d, *J* = 8.3 Hz, 1H), 7.56–7.50 (m, 2H), 7.39 (t, *J* = 7.8 Hz, 1H), 7.17 (dd, *J* = 0.2 Hz, 1.9 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ = -80.6 (t, *J* = 11.7 Hz). ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 147.5 (t, *J*_{C-F} = 2.6 Hz), 134.7, 127.8 (CH), 127.0 (CH), 126.6 (CH), 126.4, 125.4 (CH), 125.3 (CH), 121.6 (CH), 116.3 (tt, *J*_{C-D} = 33.6 Hz, *J*_{C-F} = 256.1 Hz), 113.8 (CH). HRMS (EI-Orbitrap) *m/z*: Calcd for C₁₁H₇DF₂O [M]⁺: 195.06060; Found: 195.06006. GC–MS (EI, *m/z*): [M]⁺ 195.1.

CI-OCF2D 2h

1-Chloro-4-(difluoromethoxy-d₁)benzene. (**2h**, 134.2 mg, yield 75 %, 98.3 atom % D): Using PE as eluent (Rf = 0.54, PE). Colorless oil; ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.35–7.31 (m, 2H), 7.09–7.05 (m, 2H).¹⁹F NMR (376 MHz, CDCl₃, ppm): δ = -81.96 (t, *J* = 10.9 Hz). ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 149.4 (t, *J*_{C-F} = 2.8 Hz), 130.9, 129.8 (CH), 121.2 (CH), 115.4 (tt, *J*_{C-D} = 34.0 Hz, *J*_{C-F} = 258.0 Hz). HRMS (EI-Orbitrap) *m/z*: Calcd for C₇H₄DClF₂O [M]⁺: 179.00598; Found: 179.00838. GC–MS (EI, *m/z*): [M]⁺ 179.0.

Br-OCF₂D 2i

1-Bromo-4-(difluoromethoxy-d₁)benzene. (**2i**, 185.1 mg, yield 83 %, 99.1 atom % D): Using PE as eluent (Rf = 0.54, PE). Colorless oil; ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.49–7.45 (m, 2H), 7.02–6.99 (m, 2H).¹⁹F NMR (376 MHz, CDCl₃, ppm): δ = -82.0 (t, *J* = 11.6 Hz). ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 150.0 (t, *J*_{C-F} = 2.8 Hz), 132.8 (CH), 121.5 (CH), 118.5, 115.3 (tt, *J*_{C-D} = 33.9 Hz, *J*_{C-F} = 258.3 Hz). HRMS (EI-Orbitrap) *m/z*: Calcd for C₇H₄DBrF₂O [M]⁺: 222.95546; Found: 222.95503. GC–MS (EI, *m/z*): [M]⁺ 223.0

4-Bromo-1-chloro-2-(difluoromethoxy-d₁)benzene. (**2j**, 168.3 mg, yield 65 %, 99.0 atom % D): Using PE as eluent (Rf = 0.54, PE). Colorless oil; ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.41 (t, *J* = 0.9 Hz 1H), 7.32 (d, *J* = 1.2 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ = -82.5 (t, *J* = 10.9 Hz). ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 147.1, 131.7 (CH), 129.8 (CH), 125.7 (CH), 125.2, 120.4, 115.2 (tt, *J*_{C-D} = 33.5 Hz, *J*_{C-F} = 255.2 Hz), HRMS (EI-Orbitrap) *m/z*: Calcd for C₇H₃DBrClF₂O [M]⁺: 256.91649; Found: 256.91589. GC-MS (EI, *m/z*): [M]⁺ 257.0.

1-(Difluoromethoxy-d₁)-4-nitrobenzene. (**2k,** 171.0 mg, yield 90 %, 99.2 atom % D): Using PE:DCM = 4:1 as eluent (Rf = 0.6, PE:DCM = 1:1). White foam; ¹H NMR (400 MHz, CDCl₃, ppm): δ = 8.29–8.25 (m, 2H), 7.28–7.24 (m, 2H).¹⁹F NMR (376 MHz, CDCl₃, ppm): δ = -83.33 (t, *J* = 10.9 Hz). ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 155.5 (t, *J*_{C-F} = 2.5 Hz), 144.8, 125.8 (CH), 119.3 (CH), 114.7 (tt, *J*_{C-D} = 34.1 Hz, *J*_{C-F} = 260.8 Hz). HRMS (EI-Orbitrap) *m/z*: Calcd for C₇H₄DF₂NO₃ [M]⁺: 190.03003; Found: 190.02929. GC–MS (EI, *m/z*): [M]⁺ 190.1

2-(Difluoromethoxy-d₁)-4-fluoro-1-nitrobenzene. (**2l**, 191.4 mg, yield 92 %, 98.2 atom % D): Using PE:DCM = 4:1 as eluent (Rf = 0.6, PE:DCM = 1:1). Yellow oil; ¹H NMR (400 MHz, CDCl₃, ppm): δ = 8.03 (dd, *J* = 5.6 Hz, 9.1 Hz, 2H), 7.15–7.08 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ = -83.4 (t, *J* = 10.9 Hz), -99.8 (s). ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 164.7 (d, *J* = 257.5 Hz), 144.9–144.8 (m), 139.0, 127.9 (CH) (d, *J* = 10.6 Hz), 115.1 (CH) (tt, *J*_{C-D} = 35.2 Hz, *J*_{C-F} = 264.0 Hz). 112.4 (CH) (dd, *J* = 23.0 Hz, 219.2 Hz). HRMS (EI-Orbitrap) *m/z*: Calcd for C₇H₃DF₃NO₃ [M]⁺: 208.02060; Found: 208.02002. GC–MS (EI, *m/z*): [M]⁺ 208.1. Ph— $\sqrt{-}$ OCF₂D

4-(Difluoromethoxy-d₁)-4-phenyl-benzene. (**2m**, 205.5 mg, yield 93%, 98.0 atom % D): Using PE as eluent (Rf = 0.25, PE). Colorless oil; ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.56–7.52 (m, 4H), 7.44–7.40 (m, 2H), 7.36–7.32 (m, 1H), 7.19–7.16 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ = -81.4 (t, *J* = 11.8 Hz). ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 150.6 (t, *J* = 10.1 Hz), 140.1, 138.6, 128.9 (CH), 128.5 (CH), 127.5 (CH), 127.1 (CH), 119.9 (CH), 115.7 (tt, *J_{C-D}* = 33.9 Hz, *J_{C-F}* = 256.7Hz). HRMS (EI-Orbitrap) *m/z*: Calcd for C₁₃H₉DF₂O [M]⁺: 221.07625; Found: 221.07939. GC–MS (EI, *m/z*): [M]⁺221.1

Ph OCF₂D 2n

1-(Difluoromethoxy-d₁)-2-phenylbenzene. (**2n**, 188 mg, yield 85 %, 98.2 atom % D): Using PE as eluent (Rf = 0.25, PE). Colorless oil; ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.50–7.47 (m, 2H), 7.44–7.40 (m, 3H), 7.38–7.32 (m, 2H), 7.30–7.26 (m, 1H), 7.24–7.22 (m, 1H). ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ = -81.4 (t, *J* = 11.9

Hz). ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 148.2 (t, J_{C-F} = 2.7 Hz), 137.0, 134.1, 131.5 (CH), 129.4 (CH), 128.8 (CH), 128.3 (CH), 127.6 (CH), 125.9 (CH), 120.3 (CH), 115.9 (tt, J_{C-D} = 33.8 Hz, J_{C-F} = 256.9 Hz). HRMS (EI-Orbitrap) *m/z*: Calcd for C₁₃H₉DF₂O [M]⁺: 221.07625; Found: 221.07570. GC–MS (EI, *m/z*): [M]⁺ 221.1.

1-(Difluoromethoxy-d₁)-4-isopropylbenzene. (**2o**, 103.3 mg, yield 60 %, 98.4 atom % D): Using PE as eluent (Rf = 0.56, PE). Colorless oil; ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.24–7.19 (m, 2H), 7.05–7.03 (m, 2H), 2.93–2.87 (m, 1H), 1.24 (d, *J* = 6.9 Hz, 6H). ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ = -81.2 (t, *J* = 12.0 Hz). ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 149.2 (t, *J*_{C-F} = 2.7 Hz), 146.1, 127.7 (CH), 119.5 (CH), 115.9 (tt, *J*_{C-D} = 33.6 Hz, *J*_{C-F} = 256.2 Hz), 33.5 (CH), 24.0 (CH₃). HRMS (EI-Orbitrap) *m/z*: Calcd for C₁₀H₁₁DF₂O [M]⁺: 187.09190; Found: 187.09141. GC–MS (EI, *m/z*): [M]⁺ 187.1.

1-Cyclohexyl-4-(difluoromethoxy-d₁)benzene. (**2p**, 170.3 mg, yield 75 %, 98.8 atom % D): Using PE as eluent (Rf = 0.56, PE). Colorless oil; ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.20–7.16 (m, 2H), 7.04–7.02 (m, 2H), 2.52–2.46 (m, 1H), 1.85–1.73 (m, 5H), 1.43–1.21 (m, 5H). ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ = -81.1 (t, *J* = 11.0 Hz). ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 149.2 (t, *J_{C-F}* = 2.6 Hz), 145.4, 128.0 (CH), 119.4 (CH), 115.9 (tt, *J_{C-D}* = 33.7 Hz, *J_{C-F}* = 256.1 Hz), 43.9 (CH), 34.5 (CH₂), 26.8 (CH₂), 26.1 (CH₂). HRMS (EI-Orbitrap) *m/z*: Calcd for C₁₃H₁₅DF₂O [M]⁺: 227.12320; Found: 227.12289.GC–MS (EI, *m/z*): [M]⁺ 227.2.

2q

3-(Difluoromethoxy-d₁)-N,N-dimethylbenzenamine. (**2q**, 102.9 mg, yield 55 %, 98.8 atom % D): Using PE:DCM = 20:1 as eluent (Rf = 0.18, PE:DCM = 10:1). Colorless oil; ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.20–7.16 (m, 1H), 6.55–6.52 (m, 1H), 6.44–6.42 (m, 2H), ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ = -80.6 (t, *J* = 11.7 Hz). ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 152.7 (t, *J*_{C-F} = 2.4Hz) , 151.9, 130.0 (CH), 116.1 (tt, *J*_{C-D} = 33.4 Hz, *J*_{C-F} = 254.9 Hz), 109.4 (CH), 106.2 (CH), 103.3 (CH), 40.3 (CH₃). HRMS (EI-Orbitrap) m/z: Calcd for C₉H₁₀DF₂NO. [M]⁺: 188.08715; Found: 188.08652. GC–MS (EI, *m/z*): [M]⁺ 188.1.

S 2r

5-(Difluoromethoxy-d₁)benzo[b]thiophene. (**2r,** 160.8 mg, yield 80 %, 99.0 atom % D): Using PE as eluent (Rf = 0.38, PE). Colorless oil; ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.81 (d, *J* = 8.7 Hz, 1H), 7.55 (d, *J* = 2.2 Hz, 1H), 7.50 (d, *J* = 5.4 Hz, 1H), 7.28 (dd, *J* = 0.4 Hz, 5.5 Hz, 1H), 7.14 (dd, *J* = 2.1 Hz, 6.4 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ = -81.1 (t, *J* = 11.7 Hz). ¹³C NMR (100 MHz, CDCl₃,

ppm): $\delta = 148.6$ (t, $J_{C-F} = 2.6$ Hz), 140.5, 136.8, 128.7 (CH), 123.7 (CH), 123.6 (CH), 117.4 (CH), 116.0 (tt, $J_{C-D} = 33.9$ Hz, $J_{C-F} = 256.7$ Hz), 114.0 (CH). HRMS (EI-Orbitrap) m/z: Calcd for C₉H₅DF₂OS [M]⁺: 201.01702; Found: 201.01646. GC-MS (EI, m/z): [M]⁺ 201.0.

4-(Difluoromethoxy-d₁)-1-methyl-1H-indole. (**2s**, 150.6 mg, yield 76 %, 99.0 atom % D): Using PE:DCM =20:1 as eluent (Rf = 0.26, PE:DCM = 10:1). Colorless oil; ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.17–7.11 (m, 2H), 7.01 (d, *J* = 3.2 Hz, 1H), 6.82–6.81 (m, 1H), 6.57 (d, *J* = 3.1 Hz, 1H), 3.75 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ = -80.3 (t, *J* = 11.0 Hz). ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 144.6 (t, *J*_{C-F} = 2.7 Hz) , 138.7, 129.1 (CH), 121.9 (CH), 121.1, 116.5 (tt, *J*_{C-D} = 33.5 Hz, *J*_{C-F} = 255.2 Hz), 108.6 (CH), 107.0 (CH), 97.9 (CH), 33.1 (CH₃). HRMS (EI-Orbitrap) *m/z*: Calcd for C₁₀H₈DF₂NO [M]⁺: 198.07150; Found: 198.07106. GC–MS (EI, *m/z*): [M]⁺ 198.1.

5-Bromo-3-(difluoromethoxy-d₁)-2-nitropyridine. (2t, 244.8 mg, yield 90 %, 99.0 atom % D): Using PE:DCM as eluent (Rf = 0.67, PE:DCM = 1:2). Yellow oil; ¹H NMR (400 MHz, CDCl₃, ppm): δ = 8.48 (d, *J* = 1.8 Hz, 1H), 8.05–8.04 (m, 1H). ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ = -83.4 (t, *J* = 10.9 Hz). ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 149.6, 146.2 (CH), 138.6, 135.3 (CH), 124.7 (d, *J* = 9.7 Hz), 114.78 (tt, *J*_{C-D} = 35.0 Hz, *J*_{C-F} = 267.6 Hz). HRMS (EI-Orbitrap) *m/z*: Calcd for C₆H₂DBrF₂N₂O₃ [M]⁺: 268.93579; Found: 268.93527.

2-(Difluoromethoxy-d₁)-1-(2-(difluoromethoxy-d₁)naphthalen-1-

yl)naphthalene. Using PE:DCM = 20:1 as eluent (Rf = 0.67, PE:DCM = 1:2). White foam; (**2u**, 116.5 mg, yield 30 %, 99.0 atom % D) ¹H NMR (400 MHz, CDCl₃, ppm): δ = 8.02 (d, *J* = 9.0 Hz, 2H), 7.93 (d, *J* = 8.2 Hz 2H), 7.53 (d, *J* = 9.0 Hz, 2H), 7.48–7.44 (m, 2H), 7.32–7.28 (m, 2H), 7.13 (d, *J* = 8.5 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ = -79.2 (dt, *J* = 11.3 Hz, 165.7 Hz), -81.2 (dt, *J* = 11.0 Hz, 165.7 Hz). ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 146.9, 133.5, 131.4, 130.6 (CH), 128.2 (CH), 127.3 (CH), 125.8 (CH), 123.0, 119.3 (CH), 116.1 (tt, *J*_{C-D} = 34.2 Hz, *J*_{C-F} = 257.1 Hz). HRMS (EI-Orbitrap) *m/z*: Calcd for C₂₂H₁₂D₂F₄O₂ [M]⁺: 388.10555; Found: 388.10496. GC–MS (EI, *m/z*): [M]⁺ 388.1.

((8R,9S,13S,14S)-16,16-D,D-3-(difluoromethoxy-d₁)-7,8,9,11,12,13,15,16octahydro-13-methyl-6H-cyclopenta[a]phenanthren-17(14H)-one. (2v, 193.9 mg, yield 60%, 99.0 atom % D): Using PE:DCM = 5:1 as eluent (Rf = 0.28, PE:DCM = 1:2). Colorless oil; ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.26 (d, *J* = 8.5 Hz, 1H), 6.90 (dd, *J* = 2.4 Hz, 8.5 Hz, 1H), 6.85 (d, *J* = 2.0 Hz, 1H), 2.93–2.90 (m, 2H), 2.48–2.24 (m, 2H), 2.07–1.95 (m, 3H), 1.70–1.42 (m, 6H), 0.91 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ = -81.1 (t, *J* = 11.3 Hz). ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 220.7, 149.2 (t, *J*_{C-F} = 2.7 Hz), 138.5, 137.0, 126.7 (CH), 119.7 (CH), 116.8 (CH), 115.8 (tt, *J*_{C-D} = 33.6 Hz, *J*_{C-F} = 256.2 Hz), 50.4 (CH), 47.9, 44.0 (CH), 38.1 (CH), 35.4–35.0 (CD₂) (m), 31.5 (CH₂), 29.4 (CH₂), 26.3 (CH₂), 25.8(CH₂), 21.4 (CH₂₎, 13.8 (CH₃). HRMS (EI-Orbitrap) *m/z*: Calcd for C₁₉H₁₉D₃F₂O₂ [M]⁺: 323.17762; Found: 323.17694. GC–MS (EI, *m/z*): [M]⁺ 323.2.

2-(Difluoromethoxy-d₁)-4-fluoro-5-nitrobenzenamine (3l). Using PE:DCM = 4:1 as eluent (Rf = 0.31, PE:DCM = 2:1). Mp. 59–61 °C. Orange solid; ¹H NMR (400 MHz, DMSO- d_6 , ppm): δ = 7.49 (d, J = 7.6 Hz, 1H), 7.27 (d, J = 7.6 Hz, 1H), 5.59 (s, 2H). ¹³C NMR (100 MHz, DMSO- d_6 , ppm): δ = 145.8 (d, J = 250.6 Hz), 141.1–141.0 (m), 136.8 (d, J = 1.9 Hz), 133.2 (d, J = 7.4 Hz), 115.6 (tt, J_{C-D} = 34.9 Hz, J_{C-F} = 257.9 Hz), 109.7, 107.7 (d, J = 25.8 Hz). ¹⁹F NMR (376 MHz, DMSO- d_6 , ppm): δ = -80.1 (t, J = 10.9 Hz), -132.2 (s). HRMS (ESI–TOF), m/z: calcd for C₇H₅DF₃N₂O₃ [M + H]⁺, 224.0393; found, 224.0388.

N-(2-(difluoromethoxy-d₁)-4-fluoro-5-nitrophenyl)-4-(1-methyl-1H-indol-3-yl)pyrimidin-2-amine (DFA-1). (Rf = 0.71, MeOH:DCM = 1:10). Mp. 181–183 °C. Yellow solid; ¹H NMR (400 MHz, DMSO- d_6 , ppm): δ = 9.07 (d, J = 8.3 Hz, 1H), 8.7 (s, 1H), 8.36–8.29 (m, 3H), 7.54 (dd, J = 26.3 Hz, 11.9 Hz, 2H), 7.30–7.23 (m, 2H), 7.14 (t, 6.85 (d, J = 7.4 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6 , ppm): δ = 162.1, 159.3, 157.1, 150.2 (J = 258.6 Hz), 144.3–146.2 (m), 137.6, 133.2, 132.5 (d, J = 7.2 Hz), 127.8 (d, J = 3.0 Hz), 125.3, 122.2, 121.7, 120.9, 119.1, 112.1, 110.4, 108.4, 107.5 (d, J = 25.4 Hz), 33.0 (d, J = 5.3 Hz). HRMS (ESI–TOF), *m/z*: calcd for C₂₀H₁₄DF₃N₅O₃ [M + H]⁺, 431.1190; found, 431.1193.

2-(difluoromethoxy-d₁)-N⁴-(2-(dimethylamino)ethyl)-N⁴-methyl-N¹-(4-(1-methyl-1H-indol-3-yl)pyrimidin-2-yl)-5-nitrobenzene-1,4-diamine (DFA-2). (Rf = 0.42, MeOH:DCM = 1:10). Mp. 133–135°C. Orange solid; ¹H NMR (400 MHz, DMSO- d_6 , ppm): δ = 8.56 (s,1H), 8.40 (s,1H), 8.33–8.29 (m, 3H), 7.51 (d, J = 8.2 Hz, 1H), 7.26–7.21 (m, 2H), 7.11–7.07(m, 1H), 3.87 (s, 1H), 3.26 (t, J = 6.9 Hz, 2H), 2.84 (s, 1H), 2.46 (t, J = 6.8 Hz, 2H), 2.15 (s, 6H). ¹³C NMR (100 MHz, DMSO- d_6 , ppm): δ = 162.2, 160.3, 157.1, 147.4, 142.4, 137.6, 136.1, 133.0, 125.5, 122.8, 122.3, 122.2, 122.0, 120.7, 112.2, 110.3, 109.4, 107.4, 56.2, 52.5, 45.4 (d, J = 17.6 Hz), 33.0 (d, J = 5.4 Hz). HRMS (ESI–TOF), *m/z*: calcd for C₂₅H₂₇DF₂N₇O₃ [M + H]⁺, 513.2284; found, 513.2287.

5-(difluoromethoxy-d₁)-N¹-(2-(dimethylamino)ethyl)-N¹-methyl-N⁴-(4-(1-methyl-1H-indol-3-yl)pyrimidin-2-yl)benzene-1,2,4-triamine (DFA-3). (Rf = 0.35, MeOH:DCM = 1:10). Mp. 68–70 °C. Brown solid; ¹H NMR (400 MHz, DMSO- d_6 , ppm): δ = 8.33 (d, J = 7.9 Hz, 1H), 8.27–8.20 (m, 3H), 7.51 (d, J = 8.2 Hz, 1H), 7.23 (t, J = 7.4 Hz, 1H), 7.13–7.08 (m, 3H), 6.85 (s, 1H), 3.86 (s, 3H), 2.89 (t, J = 6.3 Hz, 2H), 2.63 (s, 1H), 2.44 (t, J = 6.2 Hz, 2H), 2.22 (s, 6H). ¹³C NMR (100 MHz, DMSO- d_6 , ppm): δ = 162.1, 160.9, 156.9, 141.2, 137.5, 134.7, 134.2, 132.7, 127.8, 125.5, 122.3, 122.1, 120.7, 113.0, 112.3, 110.8, 110.2, 106.7, 57.0, 53.4, 45.5, 41.0, 33.0 (d, J = 3.0 Hz). HRMS (ESI–TOF), *m/z*: calcd for C₂₅H₂₉DF₂N₇O [M+H]⁺, 483.2543; found, 483.2544.

DFA

N-(5-(4-(1-methyl-1H-indol-3-yl)pyrimidin-2-ylamino)-2-(N-(2-(dimethylamino)ethyl)-N-methylamino)-4-(difluoromethoxy-

d₁)phenyl)acrylamide (DFA). (Rf = 0.48, MeOH:DCM = 1:10). Mp. 82–84 °C. Offwhite solid; ¹H NMR (400 MHz, DMSO- d_6 , ppm): δ = 10.3 (s, 1H), 8.95 (s, 1H), 8.49 (s, 1H), 8.36–8.23 (m, 3H), 7.51 (d, J = 7.6 Hz, 1H), 7.22–7.09 (m, 4H), 6.49–6.42 (m, 1H), 6.28 (d, J = 16.5 Hz, 1H), 5.80 (d, J = 9.5 Hz, 1H), 3.88 (s, 1H), 2.88 (brs, 2H), 2.71 (s, 1H), 2.36 (s, 2H), 2.22 (s, 6H). ¹³C NMR (100 MHz, DMSO-

 d_6 , ppm): δ = 162.9, 161.9, 160.2, 157.4, 138.9 (d, J = 8.34 Hz), 137.6, 133.4, 131.9, 128.0, 126.9 (d, J = 2.6 Hz), 125.4, 122.0, 121.7, 120.7, 116.5, 113.6, 112.3, 110.4, 107.2, 56.7, 55.7, 45.2, 42.0, 33.0 (d, J = 3.0 Hz). HRMS (ESI–TOF), m/z: calcd for C₂₈H₃₁DF₂N₇O₂ [M+H]⁺, 537.2648; found, 537.2650.

4. ¹H, ¹³C and ¹⁹F NMR spectra for difluorodeuteromethyl aryl ethers

SI-13

Figure S3 ¹⁹F NMR of compound **2a** (CDCl₃)

Figure S4 ¹H NMR of compound **2b** (CDCl₃)

Figure S32 ¹³C NMR of compound **2k** (CDCl₃)

Figure S42 ¹⁹F NMR of compound **2n** (CDCl₃)

Figure S68 ¹³C NMR of compound **3l** (d₆-DMSO)

Figure S77 ¹³C NMR of compound **DFA-3** (d₆-DMSO)

5. References:

(1) Y. S. Wu, C. S. Niu, Y. Geng, A. P. Liang, Z. W. Guo, J. T. Liu, J. L. Yang, Y. F. Huo, X. W. Han, Q. G. Meng, Patent, *CN* 106083736 A 2016.

(2) Hu, S., Liu, X., Bai, J., Long, W. Patent, WO 2015003658 A1, 2015.
(3) R. A. Ward, M. J. Anderton, S. Ashton, P. A. Bethel, M. Box, S. Butterworth, N. Colclough, C. G. Chorley, C. Chuaqui, D. A. E. Cross, L. A. Dakin, J. É. Debreczeni, C. Eberlein, M. R. V. Finlay, G. B. Hill, M. Grist, T. C. M. Klinowska, C. Lane, S. Martin, J. P. Orme, P. Smith, F. Wang, M. J. Waring, J. Med. Chem. 2013, 56, 7025.
(4) Y. S. Wu; Y. Geng, D. Zou, J. Y. Li, C. S. Niu, M. L. Zheng, A. P. Liang, Patent, CN 107226769 A, 2017.