Electronic Supplementary Information

Ancistrocyclinones A and B, unprecedented pentacyclic

N,C-coupled naphthylisoquinoline alkaloids, from the

Chinese liana Ancistrocladus tectorius

Raina Seupel^a, Yasmin Hemberger^a, Doris Feineis,^a

Minjuan Xu^{b,c}, Ean-Jeong Seo,^d Thomas Efferth^d,

Gerhard Bringmann^{a,}*,

^aInstitute of Organic Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany

^bKey Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jia Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China

^cMarine Drugs Research Center, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, P.R. China

^d Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, University of Mainz, Staudinger Weg 5, D-55128 Mainz, Germany

Table of Contents

Page

•	Table 1: ¹ H and ¹³ C NMR data of ancistrocyclinone A (5) and B (6) in MeOD	
	(400 MHz and 150 MHz)	4
•	Figure 1: ¹ H NMR spectrum of ancistrocyclinone A (5) in MeOD	5
•	Figure 2: ¹³ C NMR spectrum of ancistrocyclinone A (5) in MeOD	6
•	Figure 3: DEPT NMR spectrum of ancistrocyclinone A (5) in MeOD	7
•	Figure 4: ¹ H, ¹ H-COSY spectrum of ancistrocyclinone A (5) in MeOD	8
•	Figure 5: NOESY spectrum of ancistrocyclinone A (5) in MeOD	9
•	Figure 6: HSQC spectrum of ancistrocyclinone A (5) in MeOD	10
•	Figure 7: HMBC spectrum of ancistrocyclinone A (5) in MeOD	11
•	Figure 8: HRESI spectrum of ancistrocyclinone A (5)	12
•	Figure 9: IR spectrum of ancistrocyclinone A (5)	13
•	Figure 10: ECD spectrum of ancistrocyclinone A (5)	14
•	Figure 11: Oxidative degradation products of ancistrocyclinone A (5)	15
•	Figure 12: ¹ H NMR spectrum of ancistrocyclinone B (6) in MeOD	16
•	Figure 13: ¹³ C NMR spectrum of ancistrocyclinone B (6) in MeOD	17
•	Figure 14: DEPT NMR spectrum of ancistrocyclinone B (6) in MeOD	18
•	Figure 15: ¹ H, ¹ H-COSY spectrum of ancistrocyclinone B (6) in MeOD	19
•	Figure 16: NOESY spectrum of ancistrocyclinone B (6) in MeOD	20
•	Figure 17: HSQC spectrum of ancistrocyclinone B (6) in MeOD	21
•	Figure 18: HMBC spectrum of ancistrocyclinone B (6) in MeOD	22
•	Figure 19: HRESI spectrum of ancistrocyclinone B (6)	23
•	Figure 20: IR spectrum of ancistrocyclinone B (6)	24
•	Figure 21: ECD spectrum of ancistrocyclinone B (6)	25
•	Figure 22: Oxidative degradation products of ancistrocyclinone B (6)	26
•	Table 2: Oxidation of 4'-O-Demethylancistrocladinium A (8)	27
•	Figure 23: Selected NMR data of chinones 11a and 11b	28
•	Figure 24. Assignment of the absolute axial configuration of the two atropo-	
	diastereomers of 11 by LC-ECD	28
•	Figure 25: ¹ H NMR spectrum of chinone 11a (major compound) in MeOD	29
•	Figure 26: ¹ H NMR spectrum of chinone 11b (minor compound) in MeOD	30

•	Figure 27: ¹³ C NMR spectrum of chinone 11a (major compound) in MeOD	31
•	Figure 28: ¹³ C NMR spectrum of chinone 11b (minor compound) in MeOD	32
•	Figure 29: DEPT NMR spectrum of chinone 11 in MeOD	33
	Figure 30: ¹ H, ¹ H-COSY spectrum of chinone 11 in MeOD	34
•	Figure 31: NOESY spectrum of chinone 11 in MeOD	35
•	Figure 32: HSQC spectrum of chinone 11 in MeOD	36
•	Figure 33: HMBC spectrum of chinone 11 in MeOD	37
•	Figure 34: HRESI mass spectrum of chinone 11.	38
•	Figure 35: ¹ H NMR spectrum of synthetic ancistrocyclinone A (5) in MeOD	39
•	Figure 36: ¹³ C NMR spectrum of synthetic ancistrocyclinone A (5) in MeOD	40
•	Figure 37: Comparison of the ¹ H NMR spectra of isolated and synthetic	
	ancistrocyclinone A (5)	41
•	Figure 38: Comparison of the ¹³ C NMR spectra of isolated and synthetic	
	ancistrocyclinone A (5)	42
•	Figure 39: Cytotoxic activities of ancistrocladinium A (7a/b) and	43
	ancistrocyclinone A (5)	

	5		6	
Position	$\delta_{ m H}$	$\delta_{ m C}$	$\delta_{ m H}$	$\delta_{ m C}$
1		148.6		148.8
3	5.98 (m)	55.3	5.94 (m)	55.1
4	3.21 (dd, 16.9,1.7)	34.3	3.13 (dd, 16.7,1.7)	34.2
	3.56 (dd, 16.6, 5.6)		3.51 (dd, 15.6, 5.1)	
5	6.80 (d, 2.2)	108.4	6.60 (s)	108.5
6		168.2		167.2
7	6.82 (d, 2.2)	99.5	6.68 (d, 2.2)	100.2
8		162.9		162.9
9		109.7		110.3
10		139.4		139.5
1'		141.0		141.1
2'		146.0		146.0
3'	6.91 (d, 1.3)	136.7	6.90 (d, 1.4)	136.6
4'		184.2		184.3
5'		163.9		163.7
6'	8.15 (d, 10.0)	122.5	8.12 (d, 10.0)	122.2
7'	8.93 (d, 10.0)	127.4	8.90 (d, 10.1)	127.3
8'		132.8		132.8
9'		126.4		126.2
10'		115.1		115.2
11'	9.19 (s)	125.0	9.17 (s)	125.0
3-CH ₃	1.50 (d, 6.9)	16.7	1.49 (d, 6.9)	16.6
6-OCH ₃	4.01 (s)	56.7		
8-OCH ₃	4.12 (s)	57.2	4.08 (s)	57.0
2'-CH ₃	2.64 (d, 1.4)	18.7	2.63 (d, 1.4)	18.7
5'-OCH ₃	4.26 (s)	57.9	4.25 (s)	57.9

Table 1: ¹H and ¹³C NMR data of ancistrocyclinone A (**5**) and B (**6**) in MeOD (400 MHz and 150 MHz).^a

^a Multiplicities and coupling constants J (Hz) are shown in parentheses, δ values are given in ppm.

Figure 1: ¹H NMR spectrum of ancistrocyclinone A (**5**) in MeOD.

Figure 5: NOESY spectrum of ancistrocyclinone A (5) in MeOD.

Figure 6: HSQC spectrum of ancistrocyclinone A (5) in MeOD.

Figure 7: HMBC spectrum of ancistrocyclinone A (5) in MeOD.

Figure 8: HRESI mass spectrum of ancistrocyclinone A (5).

Figure 9: IR spectrum of ancistrocyclinone A (5).

Figure 10: ECD spectrum of ancistrocyclinone A (5).

۰.

Ala = Alanine N-Me-Ala = N-Methylalanine ABA = 3-Aminobutyric acid N-Me-ABA = N-Methyl-3aminobutyric acid

Figure 11: Oxidative degradation products of ancistrocyclinone A (5).

Figure 15: ¹H, ¹H-COSY spectrum of ancistrocyclinone B (6) in MeOD.

Figure 16: NOESY spectrum of ancistrocyclinone B (6) in MeOD.

Figure 17: HSQC spectrum of ancistrocyclinone B (6) in MeOD.

Figure 19: HRESI mass spectrum of ancistrocyclinone B (6).

Mass Spectrum Molecular Formula Report

Figure 20: IR spectrum of ancistrocyclinone B (6).

Figure 21: ECD spectrum of ancistrocyclinone B (6).

Figure 22: Oxidative degradation products of ancistrocyclinone B (6).

Entry	Oxidizing agent	Yield 11 [%]	Yield 5 [%]
1	Fremy salt	-	-
2	O ₂	-	-
3	Pb(OAc) ₄	23	36
4	Ag ₂ O	-	-
5	MnO ₂	-	-
6	H_2O_2	-	-
7	$K_2Cr_2O_4$	-	-
8	$K_3[Fe(CN)_6]$	-	-
9	KClO ₄	-	-

Table 2: Oxidation of 4'-O-demethylancistrocladinium A (8) to 5.

Figure 23: Selected NMR data of chinones **11a** and **11b**: (A) ¹H and ¹³C NMR data (δ in ppm) of **11a**, and (b) of **11b**, (c) NOESY (double red arrows) correlations indicative of the relative configurations at the biaryl axes in **11a**, and (d) in **11b**.

Figure 24: Assignment of the absolute axial configuration of the two atropo-diastereomers of 11 by LC-ECD coupling and by comparison of the LC-ECD spectra of peak A (left) and peak B (right) with the ECD curve of 4'-O-demethylancistrocladinium A (8a).

Figure 25: ¹H NMR spectrum of chinone **11a** (major compound) in MeOD.

Figure 26: ¹H NMR spectrum of chinone **11b** (minor compound) in MeOD.

Figure 27: ¹³C NMR spectrum of chinone 11a (major compound) in MeOD.

Figure 28: ¹³C NMR spectrum of chinone **11b** (minor compound) in MeOD.

Figure 29: DEPT NMR spectrum of chinone 11 in MeOD.

Figure 34: HRESI mass spectrum of chinone 11.

Figure 35: ¹H NMR spectrum of synthetic ancistrocyclinone A (5) in MeOD.

Figure 36: ¹³C NMR spectrum of synthetic ancistrocyclinone A (5) in MeOD.

Figure 37: Comparison of the ¹H NMR spectra of isolated (top) and synthetic (bottom) ancistrocyclinone A (5).

Figure 38: Comparison of the ¹³C NMR spectra of isolated (top) and synthetic (bottom) ancistrocyclinone A (5).

Figure 39: Cytotoxic activities of ancistrocladinium A (7a/b) and ancistrocyclinone A (5) against parental drug-sensitive CCRF-CEM leukemia cells and their multi-drug resistant subline, CEM/ADR5000. The compounds were dissolved in DMSO (< 1%) and cell culture medium at concentrations of 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, and 100 μ M. Cell viability was assessed by the resazurin assay. Mean values and standard deviation of three independent experiments with each six parallel measurements are shown.