Supporting Information

DBU-Promoted Carbonylative Synthesis of 1,3-Oxathiolan-2-ones from Propargylic Alcohols with TFBen as the CO

source

Jun Ying,[†] Chao Zhou,[†] and Xiao-Feng $Wu^{*,\dagger,\ddagger}$

† Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Campus, Hangzhou 310018,

People's Republic of China

[‡] Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Straβe 29a, 18059 Rostock, Germany

Table of Contents

1. General Information	S2
2. Preparation of TFBen	
3. Procedure for the Synthesis of Propargylic Alcohols	
4. Characterization of TFBen and Substrates	
5. General Procedure for Reaction of Propargylic Alcohols with S_8	and TFBen
6. Characterization of Products	S10
7. References	
8. Spectrum of TFBen and Substrates	S17
9. Spectrum of Products	

1. General Information

All reactions were performed under nitrogen protection unless otherwise noted. All reagents were obtained from commercial sources and used as received without further purification. Column chromatography was performed on silica gel (200–300 mesh) using petroleum ether (bp 60–90 °C) and ethyl acetate as eluent. Reactions were followed with TLC (0.25 mm silica gel 20 cm×20 cm). Vizualisation was accomplished with UV light.¹H and ¹³C NMR spectra were taken on 400 MHz instruments, and spectral data were reported in ppm relative to tetramethylsilane (TMS) as internal standard and CDCl₃ as solvent.

2. Preparation of TFBen

Formic acid (8.4 mL, 222.8 mmol, 5.0 equiv) was added to acetic anhydride (16.8 mL, 178.2 mmol, 4.0 equiv) at rt. The mixture was stirred at 60 °C for 1 h and cooled to rt. The resulting solution was poured into a flask containing 1,3,5-trihydroxybenzene (5.62 g, 44.6 mmol, 1.0 equiv) and NaOAc (1.83 g, 22.3 mmol, 0.5 equiv). The mixture was stirred for 4 h in a water bath and then diluted with toluene (100 mL), washed with H_2O (50 mL) twice. Keep the organic phase in fridge (2 - 8 °C) overnight. Then filtered and dried in vacuo to afford the desired product benzene-1,3,5-triyl triformate (TFBen) (5.1 g, 55%) as a white solid.

3. Procedure for the Synthesis of Propargylic Alcohols¹

To a 50 mL round-bottom flask was added an alkyne (7 mmol) in DMF (5 mL). The mixture was cooled to 0 °C and stirred for 10 min. Then sodium hydride (7 mmol, 1 equiv) was added and the reaction continued at 0 °C for 4 - 6 h. A ketone (1.2 equiv) was added and the system was warmed to room temperature for 10 h. After the reaction was completed, the reaction mixture was diluted with

saturated sodium bicarbonate solution (60 mL) and extracted with ethyl acetate (40 mL) three times. The combined organic phases were dried with anhydrous Na_2SO_4 , concentrated and purified by silica gel column chromatography (PE/EtOAc = 10/1) to obtain the desired propargylic alcohols.

4. Characterization of TFBen and Substrates

benzene-1,3,5-triyl triformate, TFBen²

5.1 g, white solid, mp 53.2–55.6 °C. ¹H NMR (400 MHz, CDCl₃) δ = 8.24 (s, 3H), 6.97 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 158.06, 150.30, 112.62.

2-methyl-4-(p-tolyl)but-3-yn-2-ol, 1b

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.29 (d, *J* = 8.1 Hz, 2H), 7.07 (d, *J* = 7.9 Hz, 2H), 2.57 (s, 1H), 2.32 (s, 3H), 1.60 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 138.15, 131.43, 128.89, 119.59, 93.10, 82.10, 65.49, 31.42, 21.32.

2-methyl-4-(4-propylphenyl)but-3-yn-2-ol, 1c

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.32 (d, *J* = 8.1 Hz, 2H), 7.09 (d, *J* = 8.0 Hz, 2H), 2.56 (t, *J* = 7.6 Hz, 2H), 2.21 (s, 1H), 1.64 - 1.58 (m, 8H), 0.91 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 143.01, 131.46, 128.35, 119.83, 93.10, 82.20, 65.56, 37.83, 31.47, 24.25, 13.65.

4-(4-(tert-butyl)phenyl)-2-methylbut-3-yn-2-ol, 1d

White solid. ¹H NMR (400 MHz, CDCl₃) δ = 7.33 (q, *J* = 8.5 Hz, 4H), 1.61 (s, 6H), 1.30 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ = 151.47, 131.32, 125.21, 119.66, 93.09, 82.19, 65.63, 34.7, 31.52, 31.14.

4-(4-methoxyphenyl)-2-methylbut-3-yn-2-ol, 1e

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.35 – 7.33 (m, 2H), 6.81 (d, *J* = 8.7 Hz, 2H), 3.78 (s, 3H), 2.51 (s, 1H), 1.60 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 159.39, 132.97, 114.78, 113.78, 92.43, 81.85, 65.49, 55.15, 31.46.

4-(4-fluorophenyl)-2-methylbut-3-yn-2-ol, 1f

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.38 (dd, *J* = 8.7, 5.4 Hz, 2H), 6.98 (t, *J* = 8.7 Hz, 2H), 2.37 (s, 1H), 1.61 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 162.385 (d, *J* = 247 Hz), 133.45 (d, *J* = 8 Hz), 118.76 (d, *J* = 3 Hz), 115.44 (d, *J* = 22 Hz), 93.46, 81.01, 65.51, 31.38.

4-(4-chlorophenyl)-2-methylbut-3-yn-2-ol, 1g

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.33 (d, *J* = 8.5 Hz, 2H), 7.26 (d, *J* = 8.6 Hz, 2H), 2.31 (s, 1H), 1.61 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 134.21, 132.81, 128.53, 121.19, 94.70, 81.00, 65.55, 31.36.

4-(4-bromophenyl)-2-methylbut-3-yn-2-ol, 1h

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.43 (d, *J* = 8.3 Hz, 2H), 7.27 (d, *J* = 8.3 Hz, 2H), 2.16 (s, 1H), 1.61 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 133.01, 131.43, 122.39, 121.61, 94.85, 81.03, 65.53, 31.31.

2-methyl-4-(o-tolyl)but-3-yn-2-ol, 1i

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.37 (d, *J* = 7.6 Hz, 1H), 7.22 – 7.17 (m, 2H), 7.13 – 7.09 (m, 1H), 2.41 (s, 3H), 1.63 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 140.08, 131.77, 129.32, 128.23, 125.44, 122.39, 97.86, 80.97, 65.69, 31.56, 20.54.

2-methyl-4-(p-tolyl)but-3-yn-2-ol, 1j

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.29 (d, *J* = 8.1 Hz, 2H), 7.07 (d, *J* = 7.9 Hz, 2H), 2.57 (s, 1H), 2.32 (s, 3H), 1.60 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 138.15, 131.43, 128.89, 119.59, 93.10, 82.10, 65.49, 31.42, 21.32.

4-(cyclohex-1-en-1-yl)-2-methylbut-3-yn-2-ol, 1k

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 6.07 (s, 1H), 2.81 (s, 1H), 2.08 (s, 4H), 1.63 – 1.57 (m, 4H), 1.53 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 134.60, 120.00, 91.13, 83.59, 65.28, 31.41, 29.04, 25.41, 22.11, 21.31.

4-cyclopropyl-2-methylbut-3-yn-2-ol, 1i

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 2.13 (s, 1H), 1.48 (s, 6H), 1.23 (ddd, J = 10.1, 8.2, 5.0 Hz, 1H), 0.78 – 0.73 (m, 2H), 0.67 – 0.63 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ = 85.51, 80.26, 65.16, 31.65, 8.10, -0.77.

2-methyl-6-phenylhex-3-yn-2-ol, 1m

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.28 (q, *J* = 7.9 Hz, 2H), 7.22 – 7.20 (m, 1H), 2.80 (t, *J* = 7.5 Hz, 2H), 2.46 (t, *J* = 7.5 Hz, 2H), 1.46 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 140.62, 128.47, 128.26, 126.22, 85.96, 81.73, 65.17, 35.05, 31.59, 20.80.

2-methyldec-3-yn-2-ol, 1n

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 2.16 (dd, *J* = 14.5, 7.3 Hz, 3H), 1.52 – 1.45 (m, 8H), 1.40 – 1.32 (m, 6H), 0.89 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 85.03, 82.53, 65.20, 31.67, 31.24, 28.58, 28.43, 22.47, 18.50, 13.98.

1-(phenylethynyl)cyclopentan-1-ol, 1o

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.43 – 7.39 (m, 2H), 7.29 – 7.25 (m, 3H), 2.23 (s, 1H), 2.08 – 2.03 (m, 4H), 1.90 - 1.73 (dddd, *J* = 15.2, 12.2, 11.4, 7.5 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃) δ = 131.53, 128.16, 128.08, 122.82, 92.87, 82.99, 74.81, 42.43, 23.43.

1-(phenylethynyl)cyclohexan-1-ol, 1p

White solid. ¹H NMR (400 MHz, CDCl₃) δ = 7.43 – 7.41 (m, 2H), 7.29 (dd, *J* = 6.5, 3.6 Hz, 3H), 2.38 (s, 1H), 2.03 – 1.99 (m, 2H), 1.74 – 1.54 (m, 7H), 1.29 – 1.26 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 131.56, 128.12, 128.05, 122.83, 92.81, 84.24, 68.99, 39.93, 25.11, 23.32.

1-(phenylethynyl)cycloheptan-1-ol, 1q

White solid. ¹H NMR (400 MHz, CDCl₃) δ = 7.43 (dd, *J* = 6.6, 3.0 Hz, 2H), 7.30 – 7.28 (m, 3H), 2.12 (dd, *J* = 13.9, 7.4 Hz, 3H), 1.95 – 1.88 (m, 2H), 1.62 (dd, *J* = 11.5, 7.7 Hz, 7H). ¹³C NMR (100 MHz, CDCl₃) δ = 131.58, 128.17, 128.10, 122.87, 93.77, 83.52, 72.17, 43.11, 27.90, 22.25.

3-methyl-1-phenylpent-1-yn-3-ol, 1r

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.40 (dd, *J* = 6.6, 3.0 Hz, 2H), 7.26 – 7.25 (m, 3H), 2.86 (s, 1H), 1.85 – 1.71 (m, 2H), 1.56 (s, 3H), 1.09 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 131.48, 128.05, 127.99, 122.72, 92.73, 83.15, 68.93, 36.48, 29.09, 8.99.

3-methyl-1-phenylhex-1-yn-3-ol, 1s

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.40 (dd, *J* = 5.0, 2.2 Hz, 2H), 7.29 – 7.27 (m, 3H), 2.40 (s, 1H), 1.76 – 1.70 (m, 2H), 1.62 – 1.57 (m, 5H), 0.98 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 131.55, 128.14, 128.10, 122.73, 92.94, 83.15, 68.50, 45.93, 29.74, 18.06, 14.18.

3-ethyl-1-phenylpent-1-yn-3-ol, 1t

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.42 (dd, *J* = 6.5, 2.9 Hz, 2H), 7.29 – 7.27 (m, 3H), 2.26 (s, 1H), 1.83 – 1.69 (m, 4H), 1.10 (t, *J* = 7.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 131.61, 128.15, 128.10, 122.82, 91.64, 84.38, 72.51, 34.38, 8.62.

3-methyl-1-phenylhept-1-yn-3-ol, 1u

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.41 (dd, *J* = 6.6, 3.0 Hz, 2H), 7.28 (dd, *J* = 6.4, 3.6 Hz, 3H), 2.52 (s, 1H), 1.861– 1.69 (m, 2H), 1.60 – 1.48 (m, 5H), 1.42 – 1.33 (m, 2H), 0.93 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 131.54, 128.12, 128.07, 122.75, 93.00, 83.12, 68.51, 43.43, 29.70, 26.87, 22.74, 13.98.

2-methyl-4-(thiophen-3-yl)but-3-yn-2-ol, 1v

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.42 – 7.41 (m, 1H), 7.25 – 7.24 (m, 1H), 7.09 – 7.08 (m, 1H), 1.61 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 129.76, 128.54, 125.17, 121.62, 93.35, 77.17, 65.49, 31.35.

4-phenylbut-3-yn-2-ol, 2x

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.43 (dd, *J* = 6.2, 2.6 Hz, 2H), 7.31 – 7.27 (m, 2H), 4.76 (dd, *J* = 13.1, 6.5 Hz, 1H), 2.29 (s, 1H), 1.55 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 131.49, 128.14, 128.10, 122.53, 91.04, 83.73, 58.49, 24.18.

5. General Procedure for Reaction of Propargylic Alcohols with S₈ and TFBen

 S_8 (4 equiv), TFBen (1.0 equiv) and DBU (2.0 equiv) were added to a 15 mL tube equipped with a magnetic stirrer which was then placed under vacuum and refilled with nitrogen three times. A solution of the propargylic alcohol **1** (0.5 mmol) in CH₃CN (2.0 mL) was added to the reaction tube, then the tube was sealed and the mixture was stirred at 60 °C for 48 h. After the reaction was completed, the reaction mixture was diluted with 50 mL water and extracted with 30 mL EtOAc three times. The combined organic phases were dried with anhydrous Na₂SO₄, concentrated and purified by silica gel column chromatography (PE/EtOAc = 50/1) to obtain the desired products **2**.

6. Characterization of Products

(Z)-4-benzylidene-5,5-dimethyl-1,3-oxathiolan-2-one, 2a

95.7 mg, 87% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.39 (dd, *J* = 9.9, 5.4 Hz, 2H), 7.28 (dd, *J* = 13.0, 5.7 Hz, 3H), 6.51 (s, 1H), 1.74 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 168.30, 138.65, 135.09, 128.78, 127.89, 127.86, 120.05, 90.80, 28.34. HRMS (ESI): [M+H⁺] calcd. for C₁₂H₁₃O₂S⁺, 221.0558; found, 221.0561.

(Z)-5,5-dimethyl-4-(4-methylbenzylidene)-1,3-oxathiolan-2-one, 2b

108.8 mg, 93% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.19 (s, 4H), 6.48 (s, 1H), 2.35 (s, 3H), 1.73 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 168.52, 137.84, 137.26, 132.18, 129.42, 127.78, 119.97, 90.79, 28.27, 21.18. HRMS (ESI): [M+H⁺] calcd. for C₁₃H₁₅O₂S⁺, 235.0787; found, 235.0776.

(Z)-5,5-dimethyl-4-(4-propylbenzylidene)-1,3-oxathiolan-2-one, 2c

115.3 mg, 88% yield, red oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.21 (d, *J* = 3.7 Hz, 4H), 6.49 (s, 1H), 2.62 – 2.57 (m, 2H), 1.73 (d, *J* = 3.7 Hz, 6H), 1.67 - 1.61 (dd, *J* = 14.9, 7.4 Hz, 2H), 0.96 -0.92 (td, *J* = 7.3, 3.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 168.52, 142.68, 137.29, 132.43, 128.88, 127.81, 120.00, 90.81, 37.67, 28.31, 24.34, 13.71. HRMS (ESI): [M+H⁺] calcd. for C₁₅H₁₉O₂S⁺, 263.1100; found, 263.1094.

(Z)-4-(4-(tert-butyl)benzylidene)-5,5-dimethyl-1,3-oxathiolan-2-one, 2d

131.1 mg, 95% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.42 (d, *J* = 8.4 Hz, 2H), 7.24 (d, *J* = 8.4 Hz, 2H), 6.49 (s, 1H), 1.73 (s, 6H), 1.34 – 1.26 (m, 9H). ¹³C NMR (100 MHz, CDCl₃) δ = 168.57, 151.09, 137.43, 132.16, 127.67, 125.73, 119.83, 90.85, 34.66, 31.16, 28.34.HRMS (ESI): [M+H⁺] calcd. for C₁₆H₂₁O₂S⁺, 277.1257; found, 277.1267.

(Z)-4-(4-methoxybenzylidene)-5,5-dimethyl-1,3-oxathiolan-2-one, 2e

97.5 mg, 78% yield, yellow solid. Mp 85 – 87 °C. ¹H NMR (400 MHz, CDCl₃) δ = 7.23 (d, *J* = 8.7 Hz, 2H), 6.92 (d, *J* = 8.7 Hz, 2H), 6.46 (s, 1H), 3.83 (s, 3H), 1.73 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 168.56, 159.10, 135.89, 129.25, 127.64, 119.60, 114.18, 90.81, 55.28, 28.27. HRMS (ESI): [M+H⁺] calcd. for C₁₃H₁₅O₃S⁺, 251.0736; found, 251.0737.

(Z)-4-(4-fluorobenzylidene)-5,5-dimethyl-1,3-oxathiolan-2-one, 2f

80.9 mg, 68% yield, white solid. Mp 87 °C. ¹H NMR (400 MHz, CDCl₃) δ = 7.27 (dd, *J* = 8.5, 5.3 Hz, 2H), 7.09 (t, *J* = 8.5 Hz, 2H), 6.49 (s, 1H), 1.74 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ = 168.01, 161.91 (d, *J* = 247.0 Hz), 138.44 (d, *J* = 2.0 Hz), 131.24 (d, *J* = 3 Hz), 129.59 (d, *J* = 8 Hz), 118.92, 115.80 (d, *J* = 22 Hz), 90.79, 28.26. HRMS (ESI): [M+H⁺] calcd. for C₁₂H₁₂FO₂S⁺, 239.0537; found, 239.0530.

(Z)-4-(4-chlorobenzylidene)-5,5-dimethyl-1,3-oxathiolan-2-one, 2g

106.6 mg, 84% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.36 (d, *J* = 8.5 Hz, 2H), 7.22 (d, *J* = 8.4 Hz, 2H), 6.46 (s, 1H), 1.74 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 167.76, 139.54, 133.57, 129.09, 128.95, 118.84, 118.82, 90.81, 28.29. HRMS (ESI): [M+H⁺] calcd. for C₁₂H₁₂ClO₂S⁺, 255.0241; found, 255.0245.

(Z)-4-(4-bromobenzylidene)-5,5-dimethyl-1,3-oxathiolan-2-one, 2h

104.6 mg, 70% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.51 (d, *J* = 8.4 Hz, 2H), 7.16 (d, *J* = 8.4 Hz, 2H), 6.44 (s, 1H), 1.74 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 167.79, 139.68, 133.99, 131.91, 129.35, 121.73, 118.87, 90.86, 28.29. HRMS (ESI): [M+H⁺] calcd. for C₁₂H₁₂BrO₂S⁺, 298.9736; found, 298.9738.

(Z)-5,5-dimethyl-4-(2-methylbenzylidene)-1,3-oxathiolan-2-one, 2i

99.4 mg, 85% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.25 – 7.22 (m, 2H), 7.20 (s, 2H), 6.59 (s, 1H), 2.29 (s, 3H), 1.76 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 168.55, 140.79, 136.10, 134.60, 130.27, 128.16, 126.80, 126.19, 118.64, 90.15, 28.31, 19.64. HRMS (ESI): [M+H⁺] calcd. for C₁₃H₁₅O₂S⁺, 235.0787; found, 235.0796.

(Z)-5,5-dimethyl-4-(4-methylbenzylidene)-1,3-oxathiolan-2-one, 2j

99.4 mg, 85% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.19 (s, 4H), 6.48 (s, 1H), 2.35 (s, 3H),
1.73 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 168.52, 137.84, 137.26, 132.18, 129.42, 127.78, 119.97,
90.79, 28.27, 21.18. HRMS (ESI): [M+H⁺] calcd. for C₁₃H₁₅O₂S⁺, 235.0787; found, 235.0776.

(Z)-4-(cyclohex-1-en-1-ylmethylene)-5,5-dimethyl-1,3-oxathiolan-2-one, 2k

97.4 mg, 87% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 5.94 (s, 1H), 5.78 (s, 1H), 2.18 – 2.15 (m, 4H), 1.70 - 1.66 (dd, *J* = 8.3, 4.4 Hz, 2H), 1.63 (s, 6H), 1.60 – 1.57 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ = 169.28, 133.97, 133.61, 131.33, 123.38, 90.64, 28.22, 27.32, 25.79, 22.49, 21.66. HRMS (ESI): [M+H⁺] calcd. for C₁₂H₁₇O₂S⁺, 225.0944; found, 225.0936.

(Z)-4-(cyclopropylmethylene)-5,5-dimethyl-1,3-oxathiolan-2-one, 2i

71.7 mg, 78% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 4.99 (d, *J* = 8.9 Hz, 1H), 1.59 (s, 6H), 1.18 – 1.12 (m, 1H), 0.87 (dt, *J* = 6.4, 4.7 Hz, 2H), 0.49 – 0.45 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ = 168.77, 136.66, 124.20, 89.40, 28.03, 13.60, 7.28. HRMS (ESI): [M+H⁺] calcd. for C₉H₁₃O₂S⁺, 185.0631; found, 185.0645.

(Z)-5,5-dimethyl-4-(3-phenylpropylidene)-1,3-oxathiolan-2-one, 2m

90.5 mg, 73% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.29 (t, *J* = 7.2 Hz, 2H), 7.21 (dd, *J* = 10.4, 3.9 Hz, 1H), 7.15 (d, *J* = 6.8 Hz, 2H), 5.50– 5.47 (m, 1H), 2.73 (t, *J* = 7.3 Hz, 2H), 2.41– 2.22 (m, 2H), 1.56 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 168.33, 140.45, 139.88, 128.40, 128.38, 126.20, 119.56, 89.33, 34.66, 33.58, 28.01. HRMS (ESI): [M+Na⁺] calcd. for C₁₄H₁₇O₂S⁺, 271.0763; found, 271.0765.

(Z)-4-heptylidene-5,5-dimethyl-1,3-oxathiolan-2-one, 2n

91.2 mg, 80% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 5.49 (t, *J* = 7.2 Hz, 1H), 2.03 – 1.97 (m, 2H), 1.61 (d, *J* = 2.4 Hz, 6H), 1.41 (dd, *J* = 13.9, 6.8 Hz, 2H), 1.44 – 1.38 (m, 6H), 0.89 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 168.60, 138.81, 120.91, 89.35, 31.97, 31.51, 28.64, 28.59, 28.10, 22.51, 14.00. HRMS (ESI): [M+Na⁺] calcd. for C₁₂H₂₁O₂S⁺, 244.1492; found, 244.1484.

(Z)-4-benzylidene-1-oxa-3-thiaspiro[4.4]nonan-2-one, 20

97.1 mg, 79% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.42 – 7.38 (m, 1H), 7.30 – 7.27 (m, 2H), 6.52 (s, 1H), 1.74 (s, 8H). ¹³C NMR (100 MHz, CDCl₃) δ = 168.70, 137.32, 135.20, 128.78, 127.86, 127.78, 119.92, 93.63, 34.43, 27.12, 7.88. HRMS (ESI): [M+H⁺] calcd. for C₁₄H₁₅O₂S⁺, 247.0787; found, 247.0804.

(Z)-4-benzylidene-1-oxa-3-thiaspiro[4.5]decan-2-one, 2p

127.4 mg, 98% yield, yellow solid, Mp 120 °C. ¹H NMR (400 MHz, CDCl₃) δ = 7.40 – 7.36 (m, 2H), 7.30 – 7.25 (m, 3H), 6.49 (s, 1H), 2.14 – 2.12 (m, 2H), 1.79 - 1.75 (t, *J* = 7.5 Hz, 8H). ¹³C NMR (100 MHz, CDCl₃) δ = 168.36, 138.56, 135.17, 128.68, 127.87, 127.65, 119.98, 92.59, 37.33, 24.56, 22.32. HRMS (ESI): [M+H⁺] calcd. for C₁₅H₁₇O₂S⁺, 261.0871; found, 261.0869.

(Z)-4-benzylidene-1-oxa-3-thiaspiro[4.6]undecan-2-one, 2q

123.3 mg, 90% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.41 – 7.38 (m, 2H), 7.31 – 7.22 (m, 3H), 6.54 (s, 1H), 2.35 - 2.25 (dd, *J* = 13.2, 4.5 Hz, 2H), 2.13 – 2.06 (m, 2H), 2.03 – 1.82 (m, 6H), 1.33 – 1.25 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ = 168.59, 140.32, 135.28, 128.71, 127.94, 127.70, 119.80, 96.05, 40.90, 28.70, 22.59. HRMS (ESI): [M+H⁺] calcd. for C₁₆H₁₉O₂S⁺, 275.1100; found, 275.1088.

(Z)-4-benzylidene-5-ethyl-5-methyl-1,3-oxathiolan-2-one, 2r

94.7 mg, 81% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.40 (t, *J* = 7.7 Hz, 2H), 7.31 (t, *J* = 7.2 Hz, 3H), 6.44 (s, 1H), 2.08 – 1.94 (m, 2H), 1.70 (s, 3H), 1.02 (dd, *J* = 7.7, 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 168.66, 137.17, 135.13, 128.73, 127.81, 127.72, 119.90, 93.60, 34.36, 27.05, 7.83. HRMS (ESI): [M+H⁺] calcd. for C₁₃H₁₅O₂S⁺, 235.0787; found, 235.0791.

(Z)-4-benzylidene-5-methyl-5-propyl-1,3-oxathiolan-2-one, 2s

104.1 mg, 84% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.40 (t, *J* = 7.6 Hz, 2H), 7.30 (dd, *J* = 7.9, 2.5 Hz, 3H), 6.44 (s, 1H), 2.01 – 1.85 (m, 2H), 1.70 (s, 3H), 1.52 - 1.43 (dtd, *J* = 10.6, 7.3, 3.5 Hz, 2H), 0.95 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 168.68, 137.63, 135.18, 128.78, 127.85, 127.77, 119.83, 93.32, 43.70, 27.42, 16.82, 13.97. HRMS (ESI): [M+H⁺] calcd. for C₁₄H₁₇O₂S⁺, 249.0944; found, 249.0948.

(Z)-4-benzylidene-5,5-diethyl-1,3-oxathiolan-2-one, 2t

115.3 mg, 93% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.39 (t, *J* = 7.6 Hz, 2H), 7.32 – 7.27 (m, 3H), 6.39 (s, 1H), 2.06 (dd, *J* = 14.5, 7.3 Hz, 2H), 1.89 (dd, *J* = 14.5, 7.3 Hz, 2H), 1.00 (t, *J* = 7.3 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 169.11, 135.64, 135.26, 128.71, 127.78, 127.64, 119.64, 96.66, 33.46, 7.40. HRMS (ESI): [M+Na⁺] calcd. for C₁₄H₁₇O₂S⁺, 271.0763; found, 271.0777.

(Z)-4-benzylidene-5-butyl-5-methyl-1,3-oxathiolan-2-one, 2u

127.1 mg, 97% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.42 - 7.38 (t, *J* = 7.7 Hz, 2H), 7.31 - 7.28 (m, 3H), 6.44 (s, 1H), 2.04 - 1.87 (m, 2H), 1.70 (s, 3H), 1.45 - 1.31 (m, 4H), 0.93 - 0.89 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 168.66, 137.59, 135.17, 128.76, 127.84, 127.74 , 119.81, 93.34, 41.24, 27.46, 25.46, 22.56, 13.85. HRMS (ESI): [M+Na⁺] calcd. for C₁₅H₁₉O₂S⁺, 285.0920; found, 285.0913.

(Z)-5,5-dimethyl-4-(thiophen-3-ylmethylene)-1,3-oxathiolan-2-one, 2v

89.2 mg, 79% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.36 (dd, *J* = 5.0, 2.9 Hz, 1H), 7.22 (d, *J* = 1.7 Hz, 1H), 7.12 (dd, *J* = 5.0, 1.0 Hz, 1H), 6.54 (s, 1H), 1.72 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 167.89, 137.59, 136.55, 127.09, 126.27, 123.52, 114.38, 90.53, 28.24. HRMS (ESI): [M+H⁺] calcd. for C₁₀H₁₁O₂S₂⁺, 227.0195; found, 227.0192.

5-methyl-4-methylene-5-phenyl-1,3-oxathiolan-2-one, 2w

87.5 mg, 85% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.51- 7.48 (dd, *J* = 8.2, 1.5 Hz, 2H), 7.38 (t, *J* = 7.6 Hz, 3H), 5.32 (s, 2H), 1.98 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 168.44, 146.76, 140.47, 128.64, 124.91, 108.62, 99.92, 91.99, 27.01. HRMS (ESI): [M+H⁺] calcd. for C₁₁H₁₁O₂S⁺, 207.0402; found, 207.0405.

7. References

1 X. Wang, M. Emoto, A. Sugimoto, Y. Miyake, K. Itto, M. Amasaka, S. Xu, H. Hirata, H. Fujii, H. Arimoto, *Tetrahedron.*, 2014, **55**, 2146-2149.

2 (a) L. Jiang, X. Qi, X. –F. Wu, *Tetrahedron*. 2016, **57**, 3368-3370. (b) L. Jiang, R. Li, C. Zhou, X. Qi, J. –B. Peng, X. –F. Wu, *Molecular Catalysis*, 2017, **433**, 8-11.

8. Spectrum of TFBen and Substrates

100 90 f1 (ppm)

9. Spectrum of Products

